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Abstract

This paper presents the planner GAMER for IPC-6 that
solves domain-independent action planning problems cost-
optimally with BDDs. Based on experience in general game
playing, we support multi-actions that make it easier to tackle
conditional effects or temporally extended goals. While
STRIPS problems can be linearly converted to multi-action
PDDL, the reverse compilation may require a description that
is exponentially larger. The algorithmic contributions are
bidirectional weighted graph search based on perimeters and
planning for optimal net-benefit.

Introduction
Optimal sequential planning for minimizing the sum of ac-
tion costs is a natural search concept for many applications.
Due to the unfolding of the planning graph, in large search
depth parallel optimal planners (Blum and Furst 1995;
Kautz and Selman 1996) appear to be less effective.

The state-of-the-art in cost-optimal sequential planning
includes heuristic search planning with flexible abstraction
heuristics (Helmert, Haslum, and Hoffmann 2007) and with
explicit-state pattern database search (Haslum et al. 2007).
These planners refer to a fully instantiated planning prob-
lem together with a minimized state encoding of atoms
into multi-variate variables (Helmert 2004; Edelkamp and
Helmert 1999) and compete well with other step-optimal
heuristic search planners (Zhou and Hansen 2004; Grand-
colas and Pain-Barre 2007; Hickmott et al. 2006).

Binary Decision Diagrams (BDDs) (Bryant 1985) are
used for optimal sequential planning to reduce the mem-
ory requirements of the state sets as problem sizes increase
(Cimatti, Roveri, and Traverso 1998; Jensen et al. 2006).
State variables may be encoded binary and ordered along
their causal graph dependencies. Sets of planning states are
represented in form of Boolean functions, and actions are
formalized as transition relations. This allows to compute
the successor state set, which determines all states reached
by applying one action to the states in the input set. Iterat-
ing the process (starting with the representation of the ini-
tial state) yields symbolic breadth-first search (BFS). The
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fact that BFS performs well wrt. heuristic search is an ob-
servation also encountered in explicit-state search (Helmert
and Röger 2007). It is related to the exponential increase
in the number of states below the optimum cost for many
benchmark domains, even if only small constant errors in
the heuristic are assumed.

Planning with BDDs
We consider optimal STRIPS with costs. For a given plan-
ning problem P = (S,A, I,G, C), the task is to find a se-
quence of actions a1, . . . , ak ∈ A from I to G with min-
imal

∑k
i=1 C(ai). We assume that the highest action cost

is bounded by some constant C. Additionally, we consider
a minimized planning state enconding that leads to SAS+

planning (Helmert 2004).
While symbolic planning sometimes refers to analyzing

planning graphs (Blum and Furst 1995) or to checking the
satisfiability of formulas (Kautz and Selman 1996), we re-
fer to the exploration in the context of using BDDs (Bryant
1985). The advantage of BDD-based compared to SAT-
based planning is that the number of variables does not in-
crease with the search depth.

Actions are formalized as relations, representing sets of
tuples of predecessor and successor states. This allows to
compute the image as a conjunction of the state set (for-
mula) and the transition relation Trans (formula), existen-
tially quantified over the set of predecessor state variables.
This way, all states reached by applying one action to one
state in the input set are determined. Iterating the process
(starting with the representation of the initial state) yields
a symbolic implementation of breadth-first search. Fortu-
nately, by keeping sub-relations Transa attached to each ac-
tion a ∈ A it is not required to build a monolithic tran-
sition relation. The image of a state set S then reads as∨

a∈A (∃x. (Transa(x, x′) ∧ S(x))) .
Bidirectional search algorithms are distributed in the

sense that two search frontiers are searched concurrently.
Since symbolic predecessors are the inverse of symbolic
successors, symbolic bidirectional BFS algorithms start
from the partial goal assignment. It comes at a low price
as it does not rely on any heuristic evaluation function.

For positive action costs, the first plan reported by the
single-source shortest-paths search algorithm of Dijkstra’s
(1959) is optimal. For implicit graphs, we need two data



Algorithm 1 Symbolic-Shortest-Paths.
Input: P = (S,A, I,G, C) in symbolic form

with I(x), G(x), and Transa(x, x′)
Output: Optimal solution path

Open[0](x)← I(x)
for all f = 0, 1, 2, . . .

for all l = 0, . . . , f − 1
Open[f ]← Open[f ] \ Open[f − l]

if (Open[f − C] ∨ . . . ∨ Open[f ] = ⊥)
return ”Exploration completed, no plan found”

Min(x)← Open[f ](x)
if (Min(x) ∧ G(x) 6= ⊥)

return ConstructSolutionPath(Min(x) ∧ G(x))
for all i = 1, . . . , C

Succi(x′)←
∨

a∈A,C(a)=i(∃x.Min(x) ∧ Transa(x, x′))
Succi(x)← ∃x′(Succi(x′) ∧ x = x′)
Open[f + i](x)← Open[f + i](x) ∨ Succi(x)

structures, one to access nodes in the search frontier and one
to detect duplicates.

The symbolic-shortest-paths search procedure is imple-
mented in Algorithm 1. The BDD Open[0] is initialized
to the representation of the initial state. Unless the goal is
reached, in one iteration we first choose the next f -value to-
gether with the BDD Min of all states in the priority queue
having this value. Then for each a ∈ A with C(a) = i the
transition relation Transa(x, x′) is applied to determine the
BDD for the subset of all successor states that can be reached
with cost i. In order to attach new f -values to this set, we
insert the result into bucket f + i.

Action cost values zero are possible but require a little
more effort to implement. We have to perform an additional
BFS to compute the closure for each bucket: once a zero-
cost image is encountered for a bucket to be expanded, a
fixpoint is computed. This results in the representation of all
states that are reachable by applying one action with non-
zero cost followed by a sequence of zero-cost actions.

Partial Symbolic Pattern Databases
Perimeter search (Dillenburg and Nelson 1994) tries to reap
the benefits of front-to-front evaluations in bidirectional
search while avoiding the computational efforts involved in
re-targeting the heuristics towards a continuously changing
search frontier. It conducts a cost-bounded best-first search
starting from the goal nodes; the nodes on the final search
frontier, called the perimeter, are stored in a dictionary. Then
a forward search, starting from I, employs front-to-front
evaluation with respect to these nodes. Alternatively, in
front-to-goal perimeter search all nodes outside the perime-
ter are assigned to the maximum of the minimum of the
goal distances of all expanded nodes in the perimeter and
an additionally available heuristic estimate. Although larger
perimeters provide better heuristics, they take increasingly
longer to compute. The memory requirements for storing
the perimeter are considerable and, more crucially, the ef-
fort for multiple heuristic computations can become large.

In essence, a partial pattern database (Anderson, Holte,
and Schaeffer 2007) is a perimeter in the abstract space (with
the interior stored). Any node in the original space has a
heuristic estimate to the goal: if it is in the partial pattern
database, the recorded goal distance value is returned; if not,
the radius d of the perimeter is returned. This heuristic is
both admissible and consistent. Building a partial pattern
database starts from the abstract goal and stores heuristic
values. When a memory- or time-limit is reached it ter-
minates and the heuristic values are used for the forward
search. The value d is the minimum cost of all abstract nodes
outside the partial pattern database.

On one extreme, a partial pattern database with no ab-
straction reverts to exactly a perimeter. On the other ex-
treme, a partial pattern database with a coarse-grained ab-
straction will cover the entire space, and performs exactly
like an ordinary pattern database. Bidirectional BFS is inter-
leaved partial pattern database search without abstraction.

An ordinary pattern database represents the entire space;
every state visited during the forward search has a cor-
responding heuristic value in the database. The pattern
database abstraction level is determined by the amount of
available memory. Fine-grained abstraction levels are not
possible, because the memory requirements increase expo-
nentially with finer abstractions. Explicit-state partial pat-
tern databases generally do not cover the entire space.

A partial symbolic pattern database is the outcome of a
partial symbolic backward shortest paths exploration in ab-
stract space. It consists of a set of abstract states S ′<d and
their goal distance, where S ′<d contains all states in S ′ with
cost-to-goal less than d, and where d is a lower bound on
the cost of any abstract state not contained in S ′<d. The
state sets are kept as BDDs H[i] representing S ′<i+1 \ S ′<i,
i ∈ {0, . . . , d − 1}. The BDD H[d] represents the state
S ′ \ S ′<d such that a partial pattern database partitions the
abstract search space. The construction works similar to
Algorithm 1, but backwards. For forward search, symbolic
heuristic A* search (Edelkamp and Reffel 1998) is used.

General Game Playing
General Game Playing (GGP) is concerned with playing or
solving general games, i. e. games that are not known be-
forehand. Similar to AI planning, for writing an algorithm
to play or solve general games, no specialized knowledge
about them can be used. We work with games given in the
Game Description Language (GDL) (Love, Hinrichs, and
Genesereth 2006), which was invented by the logic group
of Stanford University. Since 2005, an annual GGP Compe-
tition (Genesereth, Love, and Pell 2005) takes place, which
was last won 2007 by Yngvi Björnsson’s and Hilmar Finns-
son’s CADIAPLAYER. GDL is designed for the descrip-
tion of general complete information games satisfying the
restrictions to be finite, discrete, and deterministic.

When a game ends, all players receive a certain reward.
This is an integer value within {0, . . . , 100} with 0 be-
ing the worst and 100 the optimal reward. Thus, each
player will try to get a reward as high as possible (and
maybe at the same time keep the opponent’s reward as low
as possible). The description is based on the Knowledge



Interchange Format (KIF) (Genesereth and Fikes 1992),
which is a logic based language. The most successful
players (Clune 2007; Kuhlmann, Dresner, and Stone 2006;
Schiffel and Thielscher 2007) are mainly interested in con-
structing competitive players, whereas we aim at classifying
(solving) them (Edelkamp and Kissmann 2007; 2008). That
is, we want to get the rewards for all players in case of opti-
mal play (optimal rewards) for each of the reachable states.
Thus, when the classification is done, we can exploit the in-
formation to obtain a perfect player.

Multi-Actions
Our implementation for the classification of general games
originally worked with a variation of PDDL that we called
GDDL (Edelkamp and Kissmann 2007). This we extended
further to use what we call multi-actions for the moves.
These multi-actions consist of a global precondition and sev-
eral precondition/effect pairs where the preconditions can
be arbitrary formulas while the effects are single (Boolean)
variables. Such a multi-action pre1, eff 1, . . . , pren, eff n
might also be written as global ∧ (pre1 ↔ eff 1) ∧ . . . ∧
(pren ↔ eff n). Intuitively, we interpret it as follows. If
global holds, we can perform this action. It will create the
current state’s successor by applying the precondition/effect
pairs The effect has to hold in the successor state iff the cor-
responding precondition holds in the current state. All vari-
ables not in any of the effects will be set to false. Thus, we
need to set the frame explicitly.

Our planner allows both STRIPS actions and multi-
actions. The latter concept is clearly more expressive. From
a STRIPS representation of an action a = (P,A, D) with
precondition list P , add list A and delete list D, the corre-
sponding multi-action can be derived by setting global to P ,
and for each p ∈ A we include true⇔ p. Adding the frame,
i.e. the variables that do not change to a STRIPS action is
simple and can be automated. We can omit the variables
in D as all variables not appearing in any effect will be set
to false and thus are deleted from the state. The backward
translation, however, is involved.

The advantages of multi-actions are two-fold. First, con-
ditional effects are easy to integrate, and secondly, tempo-
rally extended goals/state trajectory constraints have a better
fit. Conditional effects are included in the ADL fragment of
PDDL. Their representation in PDDL requires a construct
when, which can be expressed naturally, when operating
with multi-actions. The point we stress is that the compila-
tion into a BDD is simpler using the multi-action representa-
tion than when considering conditional effects as integrated
actions that have to be linked. The exponential gap for the
conditional effects is well-known (Nebel 2000).

It has been shown earlier (Edelkamp 2006b) that state tra-
jectory constraints can be compiled to PDDL 2 using an
automata-based approach. For each constraint, an automa-
ton is built that runs concurrent to the search and monitors
the violatedness of it. The automata are then translated back
into STRIPS actions. For this case, the transition relation
of each constraint is synchronously composed with the state
space. Synchronicity has been simulated by extra proposi-
tions connecting the state spaces.

Net-Benefit
Net-benefit planning at IPC-6 concerns trading utility re-
ceived by achieving soft goals for total cost of the actions
used to achieve them. Planners competing in the optimal
track are expected to find best plans in terms of a linear ob-
jective function. We consider optimal planning with action
costs, goal utilities and no metric quantities. For preference
constraints of type (preference p φp) we associate a Boolean
variable violatedp (denoting the violation of p). Moreover,
maximization problems can be easily transformed into min-
imization problems, and adding a constant offsets does not
change the solution set. If we have an indicator relation
Φp(v, x) = (violatedp ⇔ ¬φp) the conjunct

∧
p Φp(v, x)

evaluates all preferences together. As most BDD packages
already support variables of finite domain, we abstract from
the binary representation of the number for v.

In planning with preferences (and no action costs)
(Edelkamp 2006a), we no longer have increasing total costs
to be minimized. Hence, we cannot neglect states with a cost
evaluation larger than the current one. Essentially, we are
forced to look at all states. The branch-and-bound algorithm
incrementally improves an upper bound U on the solution
length. When it comes to analyzing a layer in which more
than one goal is contained a goal g with the minimum value
m(g) is selected for solution reconstruction. Based on the
range of the variables in the domain metric we first compute
the minimum and maximum value (minm and maxm) that
m can take. For indicator variables violatedi ∈ {0, 1}, i ∈
{1, . . . , k}, we have minviolatedi

= 0 and maxviolatedi
=

1. If m is a linear function α1violated1 + . . . + αkviolatedk

with αi ≥ 0, i ∈ {1, . . . , k} we obtain

minm =
k∑

i=1

αi · minviolatedi
= 0

maxm =
k∑

i=1

αi · maxviolatedi
=

k∑
i=1

αi

In planning with preferences and total action cost, for the
sake of brevity, we assume no scaling of the total cost value.
Let benefit(π) =

∑
i αiviolatedi(sn). Then the metric we

consider is m(π) = benefit(π) + total-cost(π). Integrating
total-cost into the cost metric using BDD arithmetic is diffi-
cult as the value total-cost is not bounded from above.

Fortunately, with the bucket to be expanded we already
have the current f -value for evaluating total-cost at hand.
This allows to use a different upper bound in the branch-and-
bound algorithm. The pseudo-code is presented in Algo-
rithm 2. With V we denote the current best solution obtained
according to evaluating m(π), which improves over time.
With V ′ we denote the old value of V . As the f -value in-
creases monotonically, we can also adapt V to improve over
time. The pseudo-code also adapts a small refinement, by
observing that the upper bound U for benefit(π) is bounded
V , which is effective if the impact total-cost is small.

As with the other branch-and-bound algorithm the net-
benefit procedure look at all goal states that are not dom-
inated. For action costs C(a) ∈ {1, . . . , C}, a ∈ A, the
symbolic net-benefit algorithm finds an optimal solution.



Algorithm 2 Net-Benefit Planning Algorithm.
Input: Problem P with action cost C(a), a ∈ A

Cost functionM to be minimized, preferences Φp

Output: Cost-optimal plan from I to state satisfying G

U ← maxm; f = minm +1
V ← V ′ ←∞
Bound(v)←

∨U−1
i=minm

(v = i)
Open[f ]← I
loop

Open[f ](x)← Open[f ](x) ∧ ¬
∨f−1

j=0 Open[f ](x)
if (

∨f
i=f−C Open[i] = ⊥) or (U = minm)

return RetrieveStoredPlan()
Intersection(x)← Open(x) ∧ G(x)
Eval(v, x)← Intersection(x) ∧

∧
p Φp(v, x)

Metric(v, x)← Eval(v, x) ∧ Bound(v)
if (Metric(v, x) 6= ⊥)

U ′ ← minm

while (Eval(v, x) ∧ (v = U ′) = ⊥) and U ′ + f < V
U ′ ← U ′ + 1

if (U ′ + f < V )
V ← U ′ + f
if (V − f < U) U ← V − f
if (V < V ′)

V ′ ← V
ConstructAndStorePlan(Eval(v, x) ∧ (v = U ′))
Bound(v)←

∨U−1
i=minm

(v = i)
for all i = 1, . . . , C

Succi(x′)←
∨

a∈A,C(a)=i ∃x. Open[f ](x) ∧ Transa(x, x′)
Succi(x)← ∃x′. Succi(x′) ∧ (x = x′)
Open[f + i](x)← Open[f + i](x) ∨ Succi(x)
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