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Abstract
Cost-optimal planning has not seen many successful ap-
proaches that work well across all domains. Some cost-
optimal planners excel on some domains, while exhibiting
less exciting performance on others. For a particular domain,
however, there is often a cost-optimal planner that works ex-
tremely well. For that reason, portfolio-based techniques have
recently become popular. These either decide offline on a par-
ticular resource allocation scheme for a given collection of
planners or try to perform an online classification of a given
planning task to select a planner to be applied to solving the
task at hand.
Our planner Delfi is an online portfolio planner. In contrast to
existing techniques, Delfi exploits deep learning techniques
to learn a model that predicts which of the planners in the
portfolio can solve a given planning task within the imposed
time and memory bounds. Delfi uses graphical representa-
tions of a planning task which allows exploiting existing tools
for image convolution. In this planner abstract, we describe
the techniques used to create our portfolio planner.

Introduction
As planning is known to be computationally hard even
for extremely conservative problem formalisms (Bylander
1994), no single planner should be expected to work well
on all planning domains, or even on all tasks in a particular
domain. As a result, research has not only focused on de-
veloping different planning techniques, such as improving
search or heuristics, but also on exploiting multiple diverse
approaches for solving planning tasks.

One such a approach is to aggregate multiple planners in
a portfolio (Seipp et al. 2012; Vallati 2012; Cenamor, de la
Rosa, and Fernández 2013; Seipp et al. 2015), which is what
we do in this work. Such portfolios are often sequential and
defined by two decisions: (i) which planner of the available
to run next, and (ii) for how long to run it until the next plan-
ner is selected. Furthermore, the portfolio-based approaches
can be partitioned in those that make those decisions ahead
of time, called offline portfolios (Helmert et al. 2011; Núñez,
Borrajo, and Linares López 2014; Seipp, Sievers, and Hutter
2014a; 2014b; 2014c) and those that make these decisions
per given input task, called online portfolios (Cenamor, de
la Rosa, and Fernández 2014).

Our planner, called Delfi for DEap Learning of PortFo-
lIos, is an online portfolio planner submitted to optimal clas-

sical track of the International Planning Competition (IPC)
2018. It consists of (a) a collection of cost-optimal planners
based on Fast Downward (Helmert 2006), and (b) a mod-
ule that, given a planning task, selects the planner from the
collection for which the confidence that it solves the given
planning task is highest. Once selected, the planner is run on
the given task for the entire available time. In the remain-
der of this planner abstract, we describe both components in
detail.

Collection of Cost-Optimal Planners
The large literature on classical planning results in an exten-
sive pool of available planning systems that we could in prin-
ciple all use. However, there are a few aspects that guided
our decision to collect a rather small subset of specific plan-
ners. Firstly, the task of integrating the diverse planners
within one system able to run them all in the same setting is
a big (technical) challenge, and evaluating all of these plan-
ners for the training phase of learning the model would be
extremely time-consuming. Secondly, portfolio planners al-
ways suffer from clearly identifying their components that
are primarily responsible for the good performance of the
portfolio planner.

Bearing in mind the first aspect, we restricted the pool of
planners to those based on Fast Downward (Helmert 2006).
This has the additional advantage that we also exploit how
far a portfolio exclusively based on a single planning sys-
tem fares. With respect to the second aspect, we excluded
all recent (and state-of-the-art) planners that have not been
evaluated in any previous competition. In particular, many
of these planners are submitted independently to the IPC
2018. Furthermore, we mainly focused on planners with
main components that we co-developed in order to primarily
evaluate our own contributions.

These considerations result in a collection of 17 plan-
ners for our portfolio planner Delfi. With the exception of
SymBA∗ (Torralba et al. 2014), the winner of the IPC 2014,
included as-is in our collection of planners, all planners are
based on a recent version of Fast Downward. These 16 plan-
ners use A∗ search (Hart, Nilsson, and Raphael 1968) and
differ in the subsets of the following additional components
they use. Please refer to the Appendix for the complete list
of planner configurations of our collection, which is identi-
cal for both variants of Delfi.



• Pruning based on partial order reduction using strong
stubborn sets (Wehrle and Helmert 2014). Delfi uses the
implementation of strong stubborn sets available in Fast
Downward, which is based on the original implementa-
tion of Alkhazraji et al. (2012) and Wehrle and Helmert
(2012) that has also been used in Metis 2014 (Alkhazraji
et al. 2014). However, the current implementation has
been improved in terms of efficiency since its original de-
velopment.1 To support conditional effects, we extended
the implementation in the same way as in Metis 2014. We
also use the same mechanism that disables pruning after
the first 1000 expansions if only 10% or fewer states have
been pruned at this point. This component is part of all 16
planners.

• Pruning based on structural symmetries (Shleyfman et al.
2015) using DKS (Domshlak, Katz, and Shleyfman 2012)
or orbit space search (OSS) (Domshlak, Katz, and Shleyf-
man 2015). We extended the original implementation of
problem description graphs, also called symmetry graphs,
which serve as basis for computing symmetries, to sup-
port conditional effects. Sievers et al. (2017) recently for-
mally defined this extension in the context of structural
symmetries of lifted representations. Out of the 16 plan-
ners, 8 use DKS search and the other 8 use OSS, with-
out any other further difference except that merge-and-
shrink configurations with OSS need to disable pruning of
unreachable states to avoid incorrectly reporting pruned
states as dead ends (cf. Sievers et al., 2015, for more de-
tails).

• Admissible heuristics:
– The blind heuristic.
– The LM-cut heuristic (Helmert and Domshlak 2009).

To support conditional effects, we implemented a vari-
ant of the LM-cut heuristic that considers effect con-
ditions in the same way as Metis 2014 (Alkhazraji et
al. 2014) does. However, we refrain from choosing the
regular LM-cut heuristic or the variant that supports
conditional effects depending on the requirements of
the input planning task, and instead always use the lat-
ter implementation that comes with a small overhead
due to the need for different data structures.

– The canonical pattern database (CPDB) heuristic with
hillclimbing (HC) to compute pattern collections, also
referred to as iPDB in the literature (Haslum et al.
2007). We add a time limit of 900s to the hillclimbing
algorithm and denote the planner by HC-CPDB.

– The zero-one cost partitioning pattern database
(ZOPDB) heuristic with a genetic algorithm (GA) to
compute pattern collections (Edelkamp 2006). We call
the planner GA-ZOPDB.

– Four variants of the merge-and-shrink heuristic
(Dräger, Finkbeiner, and Podelski 2009; Helmert et
al. 2014; Sievers 2017). Three of them use the state-
of-the-art shrink strategy based on bisimulation (Nis-

1See http://issues.fast-downward.org/
issue499 and http://issues.fast-downward.
org/issue628.

sim, Hoffmann, and Helmert 2011) with a size limit
of 50000 states on transition systems, always allowing
(perfect) shrinking, called B. The fourth variant uses a
greedy variant of B, called G, not imposing any size
limit on transition systems, and also always allowing
shrinking. All configurations use full pruning (Sievers
2017), i.e., always prune both unreachable and irrel-
evant states, unless combined with OSS as discussed
above, in which case pruning of unreachable states is
disabled. We perform exact label reductions based on
Θ-combinability (Sievers, Wehrle, and Helmert 2014)
with a fixed point algorithm using a random order on
factors.
Finally, all variants use a time limit of 900s for comput-
ing the heuristic, which leads to computing so-called
partial merge-and-shrink abstractions that do not cover
all variables of the task whenever the time limit is
hit. In these cases, we pick one of the remaining in-
duced heuristics according to the following rule of
thumb: we prefer the heuristic with the largest esti-
mate for the initial state (rationale: better informed
heuristic), breaking ties in favor of larger factors (ratio-
nale: more fine-grained abstraction), and choose a ran-
dom heuristic among all remaining candidates of equal
preference. For more details on this, we refer to the
paper introducing partial abstractions (Sievers 2018b)
and the separate competition entry called Fast Down-
ward Merge-and-Shrink (Sievers 2018a) which uses the
same merge-and-shrink configurations as our portfolio.
The remaining difference between the four variants is
the merge strategy, which finally results in the follow-
ing merge-and-shrink configurations:
∗ B-SCCdfp: the state-of-the-art merge strategy based

on strongly connected components of the causal graph
(Sievers, Wehrle, and Helmert 2016), which uses
DFP (Sievers, Wehrle, and Helmert 2014) for internal
merging.

∗ B-MIASMdfp: the entirely precomputed merge strat-
egy maximum intermediate abstraction size minimiz-
ing (Fan, Müller, and Holte 2014), which uses DFP as
a fallback mechanism.

∗ B-sbMIASM (previously also called DYN-MIASM):
the merge strategy score-based MIASM (Sievers,
Wehrle, and Helmert 2016), which is a simple variant
of MIASM.

∗ G-SCCdfp: as SCCdfp, but with the greedy variant of
bisimulation-based shrinking.

As mentioned above, each heuristic is used in two plan-
ners, once with OSS and once with DKS. For the two
PDB-based heuristics that do not support conditional ef-
fects natively, we compile away conditional effects by
multiplying out all operators, adding copies for each pos-
sible scenario of different subsets of satisfied effect con-
ditions and operator preconditions.

• Postprocessing the SAS+ representation obtained with
the translator of Fast Downward (Helmert 2009) by us-
ing the implementation of h2 mutex detection of Alcázar
and Torralba (2015). This component is present in 14



(a) Lifted representation (b) Grounded representation

Figure 1: Images constructed from lifted and grounded rep-
resentations of task pfile01-001.pddl of BARMAN-OPT11.

out of 16 planners. The two planners that do not ex-
ploit h2 mutexes use the merge-and-shrink configuration
B-MIASMdfp (once with OSS, once with DKS) which
heavily relies on remaining mutexes in the SAS+ repre-
sentation. Our preliminary experiments showed that us-
ing the postprocessing in this case significantly harmed
the performance.

Online Planner Selection
The online planner selection of Delfi is based on a model
that predicts for all planners of the portfolio whether they
solve a given planning task within the fixed resource and
time limits of the competition or not. To learn such a model,
we created a collection of tasks to serve as training set, ran
all planners in our collection on these tasks to find whether
they solve the task or not, and used the resulting data to train
a deep neural network. In what follows, we describe how we
created the data as well as how we trained the model.

Data Creation
Our collection of tasks includes all benchmarks of the clas-
sical tracks of all IPCs as well as some domains from the
learning tracks. We further include the domains BRIEF-
CASEWORLD, FERRY, and HANOI from the IPP bench-
mark collection (Köhler 1999), and the genome edit dis-
tance (GEDP) domain (Haslum 2011). We also use domains
generated by the conformant-to-classical planning compila-
tion (T0) (Palacios and Geffner 2009) and the finite-state
controller synthesis compilation (FSC) (Bonet, Palacios,
and Geffner 2009). In addition to existing tasks of these
domains, we generated additional ones for some domains
where generators were available. Please see the Appendix
for a complete list of used domains. To filter out too hard
tasks, we removed all tasks from the training set that were
not solved by any of our planners.

Data Representation
To be able to take advantage of existing deep learning tools,
we need to represent planning tasks in a way that can be
consumed by these tools. In the context of solving other
model-based problems, such as SAT and CSP, Loreggia et
al. (2016) converted the textual description of input prob-
lems to a grayscale image by converting each character to a

Figure 2: Visualization of the model graph structure.

pixel. Inspired by their ideas, we also chose to represent each
task by a grayscale image of a constant size of 128∗128 pix-
els.

However, in contrast to Loreggia et al. (2016), we chose
to abstract from the textual representation and decided to
use a structural representation of planning tasks, namely the
abstract structure (Sievers et al. 2017), which encodes the
PDDL description of the task. We either directly convert this
abstract structure to a graph by computing the abstract struc-
ture graph as described by Sievers et al. (2017), or we first
ground the abstract structure (which corresponds to ground-
ing the planning task) and the turn it into a graph. In the latter
case, we technically do not use the abstract structure graph
but the conceptually equivalent problem description graph
(Shleyfman et al. 2015), which usually is used to compute
symmetries of a ground task. Finally, we turn the graph into
a grayscale image that represents the adjacency matrix of the
graph and reduce the grayscale image to the desired constant
size.

In some preliminary experiments, we experimented with
both ways of creating an image for a planning task and de-
cided to use both. Delfi 1 computes the image from the lifted
representation of the task, and Delfi 2 from the grounded
one. (This is the only difference of the two variants of our
planner.) Figure 1 illustrates the different images we obtain
for a task of the BARMAN domain.

Model Creation
Our tool of choice for both model creation and training
is Keras (Chollet and others 2015) with Tensorflow as a
backend. For our model, we employ a simple convolutional
neural network (CNN) (LeCun, Bengio, and Hinton 2015)
consisting of one convolutional layer, one pooling layer,



one dropout layer, and one hidden layer. The main reason
to choose a network with few parameters is to reduce the
chances of overfitting given the comparably limited amount
of data we created. Figure 2 shows the structure of the CNN.

We model planner performance by a binary feature that
indicates whether the planner solves a task within the given
time (1800 seconds) and memory (7744 MiB) limits or not.
We also experimented with using the actual runtime, hence
not predicting whether a planner solves a task or not, but
rather predicting the runtime of the planner on the task.
However, our preliminary tests indicated that the perfor-
mance of the network when using the binary feature is com-
parable to when using the actual runtime. Our conjecture is
that this is due to the relatively small amount of training data
and due to the fact that the model learned with the binary
feature bases the decision for a planner on the confidence
that this planner solves the task, which means that it is likely
to prefer faster planners. As a result, we decided to use the
simpler representation in our model.

Consequently, we trained the CNN by optimizing for bi-
nary cross-entropy (Rubinstein 1997) so that each planner
has a certain probability assigned to it that indicates how
likely it is to solve a problem within the limits. Although our
CNN is rather simple, it still features a range of model hyper-
parameters, which we fine-tuned employing the approach by
Diaz et al. (2017).2 For both lifted and grounded representa-
tions, the hyper-parameter optimization found very similar
parameters and thus we choose the same parameters in both
cases, which are as follows. The convolutional layer filter
size is 3, the pooling filter size is 1, and the dropout rate
is 0.48. The CNN is optimized using Stochastic Gradient
Decent with learning rate 0.1, decay 0.04, momentum 0.95,
nesterov set to FALSE and a batch size of 52.

Post-IPC Analysis
In the following, we evaluate the performance of the two
Delfi planners in the optimal classical track of the IPC 2018.
While Delfi 2 finished 7 among all 16 submissions, Delfi
1 took the first place. To assess the contribution of the in-
dividual components of the portfolios, we ran them on all
benchmarks under IPC conditions. We report both perfor-
mance on the training set on which we learned prior to the
IPC and performance on the new planning benchmarks from
the competition, which we will refer to as the test set. In ad-
dition to the individual results, we include the competition
results of Delfi 1 and 23 and of the oracle planner that takes
the maximum over all planners on a per-instance base. Fi-
nally, as a baseline for portfolio performance on the test set,
we also evaluate the uniform portfolio that runs each planner
from the portfolio with a equal time share of the IPC limit

2To evaluate our approach prior to the competition, we held
back the IPC 2014 domains as a separate validation set. Only
when learning the final model for the competition, we used the full
benchmark set with the previously determined fine-tuned hyperpa-
rameters.

3We also re-ran both Delfi planners ourselves but decided to
stick with the official competition results. The differences in cov-
erage and planner selection per domain were marginal.

of 30 minutes.
Table 1 shows aggregated coverage of the training set. For

full domain-wise coverage on the training set, see Table 4 in
the Appendix. We see that both variants of Delfi (coverage of
2282 and 2236) greatly improve over the best single planner
in our portfolio, LM-cut (coverage of 1956). At the same
time, the oracle portfolio solves 2350 tasks, which gives rise
to the hope that the learned models of the Delfi planners are
not overfitted too much on the training set.

Table 2 shows domain-wise coverage of the test set, us-
ing the same way as the IPC to compute aggregated results
for the two domains where two formulations have been used
(CALDERA and ORGANIC-SYNTHESIS), which is to take the
task-wise maximum performance of each planner. Looking
at the performance of the individual planners, we find that
their coverage of different domains is diverse. In particular,
Symba and HC-PDB (iPDB) are very complementary, but
also LM-cut and some merge-and-shrink variants achieve
best coverage in some domains.

Looking at the performance of the portfolios, we see that
the uniform portfolio does not improve over the best indi-
vidual planner, Symba, but even solves fewer tasks. While
Delfi 1 is much stronger than the baseline uniform portfo-
lio, the same is not true for Delfi 2, which even lacks behind
the best individual planner Symba. We discuss the difference
between Delfi 1 and 2 in more detail below. Finally, it is also
worth pointing out that the oracle planner solves 18 tasks out
of 240 more than Delfi 1, which leads us to conclude that the
learned model of Delfi 1 generalized very well to the test set
that the IPC 2018 benchmarks represent.

We now analyze the Delfi planners in more detail. Table 3
shows the number of times a component planner was chosen
by Delfi: the first block shows the number of times a specific
planner was chosen for each domain, and the second block
shows the number of times each planner was chosen in total.
We consider both variants of the two domains with two dif-
ferent formulations (CALDERA and ORGANIC-SYNTHESIS)
individually rather than the combined domain, since it is not
clear which planner to consider the chosen one if a different
planner was chosen for both formulations.4

Delfi 1 often consistently chooses one or few planners in
a given domain (with the exception of NURIKABE), which
seems to be reasonable since we expect the same planner
to be strong for different tasks across a given domain. Delfi
2, on the other hand, more frequently chooses a larger vari-
ety of planners in a domain.5 While we cannot explain this
significant difference yet, it is clearly due to the difference
of the representation of planning tasks, i.e., the difference

4However, for our set of planners, we note that we could re-
strict the analysis to the original formulation of CALDERA, in
which OSS-LM-cut solves 13 tasks like Delfi 1, and to ORGANIC-
SYNTHESIS-SPLIT, which dominates ORGANIC-SYNTHESIS for all
planners.

5In 13 ORGANIC-SYNTHESIS tasks, the translator runs out of
memory so that Delfi 2 cannot compute the problem description
graph. In 3 ORGANIC-SYNTHESIS-SPLIT and 2 NURIBAKE tasks,
the translator hits the time limit of 60s that we imposed for graph
computation. In all of cases, Delfi 2 cannot use its model for plan-
ner selection but uses the fallback planner DSK-lmc.



Portfolio Components Delfi Orcl

DKS OSS 1 2

blind lmc P1 P2 M1 M2 M3 M4 blind lmc P1 P2 M1 M2 M3 M4 Sym

C (3721) 1470 1956 1836 1602 1796 1645 1767 1615 1472 1948 1838 1606 1782 1643 1707 1568 1867 2282 2236 2350

Table 1: Coverage of the training set. Abbreviations: lmc: LM-cut; P1: HC-PDB; P2: GA-ZOPDB; M1: B-SCCdfp; M2: B-
MIASMdfp; M3: B-sbMIASM; M4: G-SCCdfp; Sym: SymBA∗ 2014; Orcl: oracle portfolio over all component planners.

Portfolio Components Unif Delfi Orcl

DKS OSS 1 2

blind lmc P1 P2 M1 M2 M3 M4 blind lmc P1 P2 M1 M2 M3 M4 Sym

agricola (20) 5 0 7 5 6 0 10 5 6 0 7 6 6 0 6 6 13 7 12 11 14
caldera-comb (20) 12 13 16 13 12 0 12 12 12 13 16 13 12 0 12 12 12 13 13 11 16
data-network (20) 6 12 11 9 10 10 9 3 6 12 11 9 10 10 9 3 13 13 13 13 13
nurikabe (20) 10 12 12 11 11 12 12 11 10 12 12 11 11 11 11 11 11 10 12 11 12
org-syn-comb (20) 14 14 13 14 13 7 13 13 14 14 13 14 13 7 13 13 14 13 13 13 14
petri-net-al (20) 2 9 0 2 2 0 2 2 2 9 0 2 2 0 2 2 20 15 20 9 20
settlers (20) 8 9 0 0 9 9 8 9 8 9 0 0 9 9 8 9 9 6 9 8 9
snake (20) 11 7 14 11 11 7 11 10 11 7 14 11 11 6 11 10 4 10 11 7 14
spider (20) 11 11 14 11 11 0 11 3 11 11 14 11 11 0 11 3 7 13 11 7 14
termes (20) 7 6 12 10 10 10 11 6 7 6 12 10 10 10 11 6 18 13 12 15 18

Sum (200) 86 93 99 86 95 55 99 74 87 93 99 87 95 53 94 75 121 113 126 105 144

Table 2: Coverage of the test set (IPC 2018 benchmarks). Abbreviations: lmc: LM-cut; P1: HC-PDB; P2: GA-ZOPDB; M1:
B-SCCdfp; M2: B-MIASMdfp; M3: B-sbMIASM; M4: G-SCCdfp; Sym: SymBA∗ 2014; Unif: uniform portfolio over all
component planners; Orcl: oracle portfolio over all component planners.

Delfi 1 Delfi 2

agricola (20) Sym (20) Sym (19), OSS-P1 (1)
caldera (20) OSS-lmc (20) Sym (10), DKS-M2 (3), DKS-M1 (2), DKS-lmc (2)

DKS-P1 (1), DKS-M3 (1), OSS-lmc (1)
caldera-split (20) Sym (7), OSS-lmc (8), DKS-lmc (5) Sym (6), OSS-lmc (6), DKS-lmc (4), DKS-M4 (2), OSS-P1 (1), DKS-M1 (1)
data-network (20) Sym (17), OSS-lmc (3) Sym (16), OSS-M2 (3), OSS-P1 (1)
nurikabe (20) Sym (6), DKS-P1 (6), DKS-blind (2), OSS-P1 (2), Sym(12), DKS-lmc (3), OSS-M2 (2), DKS-M2 (1), time out (2)

DKS-lmc (2), DKS-M2 (1), OSS-lmc (1)
organic-synthesis (20) Sym (18), OSS-lmc (2) OSS-P1 (3), Sym(2), DKS-P1 (1), OSS-M2 (1), memory out (13)
organic-synthesis-split (20) Sym (20) Sym (14), OSS-lmc (2), DKS-P1 (1), time out (3)
petri-net-alignment (20) Sym (20) DKS-lmc (10), OSS-lmc (9), Sym(1)
settlers (20) OSS-lmc (20) Sym (20)
snake (20) OSS-M1 (9), OSS-P1 (7), DKS-P1 (2), Sym (2) DKS-lmc (12), Sym (8)
spider (20) DKS-M3 (6), DKS-M1 (6), OSS-M1 (5), DKS-lmc (3) Sym (16), DKS-lmc (3), OSS-lmc (1)
termes (20) DKS-M2 (20) Sym (10), DKS-lmc (6), OSS-M2 (4)

Sum 240 222 (13 memory out, 5 time out)

Symba 110 134
OSS-lmc 54 19
DKS-lmc 10 40
OSS-P1 9 6
DKS-P1 8 3
OSS-M1 14 0
DKS-M1 6 3
DKS-M2 21 4
OSS-M2 0 3
DKS-M3 6 1
DKS-blind 2 0

Table 3: Top: domain-wise number of tasks a planner is selected by our portfolios. Bottom: for each planner, number of times
it is selected by our portfolios in total.



between the abstract structure graph (Delfi 1) and the prob-
lem description graph (Delfi 2). One important distinguish-
ing feature of this difference is that the problem descrip-
tion graph represents the grounded task (SAS+), which is
a specific representation that depends on the used grounding
and invariant synthesis algorithms, while the abstract struc-
ture graph represents the lifted representation (PDDL) of the
task.

In the benchmark set, there is an observable difference
that may explain the different choices to some extent: the
IPC 2018 domains exhibit much more conditional effects
than the domains of our training set. When we performed
initial experiments on the reduced training set (excluding
the IPC 2014 domains as a validation set), we observed that
using the problem description graph (Delfi 2) resulted in a
stronger performance than using the abstract structure graph
(Delfi 1) due to better choices of suitable planners. The same
is not true anymore when looking at the full training set
performance and the test set performance reported here. In
future work, we plan to further investigate the differences
in the representation of planning tasks and their impact on
planner selection.

To assess how well Delfi selects planners for a given task,
we also investigate which planners are required to achieve
oracle performance. Surprisingly, we found two set covers
of only size 3 that cover all tasks solved by any planner:
the first consists of Symba, DKS-M3, and DKS-P1, and the
second one of Symba, DKS-M3, and OSS-P1. In particular,
it is enough to consider Symba, one variant of PDB-based
planners, and one variant of merge-and-shrink-based plan-
ners (for NURIBAKE), and there is no need for LM-cut or
any of the other heuristics at all. While both variants of Delfi
frequently choose Symba and sometimes choose PDB-based
and merge-and-shrink-based planners, they choose LM-cut
the second most of times, even though this would not be
required. A possible reason is that LM-cut performs much
better on the training set than PDB-based and merge-and-
shrink-based planners and hence is more likely to be chosen
also on the test set.

Conclusions
In this planner abstract, we described the Delfi planners that
participated in the optimal classical track of the IPC 2018.
The Delfi planners are online portfolios that select a compo-
nent planner deemed suitable for the given task based on a
model learned with deep learning techniques. In particular,
to represent planning tasks, we used two graphical repre-
sentations for planning tasks, turned them into images and
used a convolutional neural network to learn a model that
predicts whether a planner solves a given task or not. The
performance of Delfi 1, taking the first place in the competi-
tion, showed that the learned model generalized well to the
new benchmarks used in the competition.

In future work, we would like to greatly extend the set of
component planners of our portfolio to evaluate how far the
performance of Delfi can be pushed if using many available
state-of-the-art planners. We also plan to investigate alterna-
tive learning techniques that operate directly on the graph

representations rather than relying on images created from
these graphs.
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Appendix
Collection of Planner Configurations
The following are the configurations for the 16 Fast Downward based planners.
1. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(blind,symmetries=sym,

pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

2. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(celmcut,symmetries=sym,

pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

3. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),

merge_strategy=merge_sccs(order_of_sccs=topological,merge_selector=score_based_filtering(scoring_functions=

[goal_relevance,dfp,total_order(atomic_before_product=false,atomic_ts_order=reverse_level,product_ts_order=

new_to_old)])),label_reduction=exact(before_shrinking=true,before_merging=false),max_states=50000,

threshold_before_merge=1,max_time=900),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

4. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),

merge_strategy=merge_stateless(merge_selector=score_based_filtering(scoring_functions=[sf_miasm(

shrink_strategy=shrink_bisimulation,max_states=50000),total_order(atomic_before_product=true,

atomic_ts_order=reverse_level,product_ts_order=old_to_new)])),label_reduction=exact(before_shrinking=true,

before_merging=false),max_states=50000,threshold_before_merge=1,max_time=900),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

5. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_precomputed(

merge_tree=miasm(abstraction=miasm_merge_and_shrink(),fallback_merge_selector=score_based_filtering(

scoring_functions=[goal_relevance,dfp,total_order(atomic_ts_order=reverse_level,product_ts_order=

new_to_old,atomic_before_product=false)]))),label_reduction=exact(before_shrinking=true,before_merging=false),

max_states=50000,threshold_before_merge=1,max_time=900),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

6. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=true),merge_strategy=merge_sccs(order_of_sccs=

topological, merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,

total_order(atomic_before_product=false, atomic_ts_order=level,product_ts_order=random)])),

label_reduction=exact(before_shrinking=true,before_merging=false),

max_states=infinity,threshold_before_merge=1,max_time=900),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

7. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(cpdbs(patterns=hillclimbing(max_time=900),transform=multiply_out_conditional_effects),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

8. --symmetries ’sym=structural_symmetries(search_symmetries=dks)’

--search ’astar(zopdbs(patterns=genetic(pdb_max_size=50000,num_collections=5,num_episodes=30,

mutation_probability=0.01), transform=multiply_out_conditional_effects),symmetries=sym,

pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01), num_por_probes=1000)’

9. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(blind,symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

10. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(celmcut,symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

11. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_sccs(order_of_sccs=

topological, merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,

total_order(atomic_before_product=false, atomic_ts_order=reverse_level,product_ts_order=new_to_old)])),

label_reduction=exact(before_shrinking=true, before_merging=false),max_states=50000,threshold_before_merge=1,

max_time=900,prune_unreachable_states=false),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’



12. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_stateless(merge_selector=

score_based_filtering(scoring_functions=[sf_miasm(shrink_strategy=shrink_bisimulation,max_states=50000),

total_order(atomic_before_product=true,atomic_ts_order=reverse_level,product_ts_order=old_to_new)])),

label_reduction=exact(before_shrinking=true,before_merging=false),

max_states=50000,threshold_before_merge=1,max_time=900,prune_unreachable_states=false),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

13. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=false),merge_strategy=merge_precomputed(merge_tree=

miasm(abstraction=miasm_merge_and_shrink(),fallback_merge_selector=score_based_filtering(scoring_functions=

[goal_relevance,dfp,total_order(atomic_ts_order=reverse_level,product_ts_order=new_to_old,

atomic_before_product=false)]))),label_reduction=exact(before_shrinking=true,before_merging=false),

max_states=50000,threshold_before_merge=1,max_time=900,prune_unreachable_states=false),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

14. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(

merge_and_shrink(shrink_strategy=shrink_bisimulation(greedy=true),merge_strategy=merge_sccs(order_of_sccs=

topological, merge_selector=score_based_filtering(scoring_functions=[goal_relevance,dfp,

total_order(atomic_before_product=false,atomic_ts_order=level,product_ts_order=random)])),

label_reduction=exact(before_shrinking=true, efore_merging=false),max_states=infinity,

threshold_before_merge=1,max_time=900,prune_unreachable_states=false),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

15. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(cpdbs(patterns=hillclimbing(max_time=900),transform=multiply_out_conditional_effects),

symmetries=sym,pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01),num_por_probes=1000)’

16. --symmetries ’sym=structural_symmetries(search_symmetries=oss)’

--search ’astar(zopdbs(patterns=genetic(pdb_max_size=50000,num_collections=5,num_episodes=30,

mutation_probability=0.01), transform=multiply_out_conditional_effects),symmetries=sym,

pruning=stubborn_sets_simple(minimum_pruning_ratio=0.01), num_por_probes=1000)’

Domains of the Training Set
The following lists contain all benchmark domains we used for training, named as in the repository under https://
bitbucket.org/SilvanS/ipc2018-benchmarks. Domains with the prefix ss are either additional domains not con-
tained in the original repository under https://bitbucket.org/aibasel/downward-benchmarks or copies of
already present domains containing additional tasks that we generated.

STRIPS domains:

[’airport’, ’barman-opt11-strips’, ’barman-opt14-strips’, ’blocks’,
’childsnack-opt14-strips’, ’depot’, ’driverlog’, ’elevators-opt08-strips’,
’elevators-opt11-strips’, ’floortile-opt11-strips’,
’floortile-opt14-strips’, ’freecell’, ’ged-opt14-strips’, ’grid’,
’gripper’, ’hiking-opt14-strips’, ’logistics00’, ’logistics98’, ’miconic’,
’movie’, ’mprime’, ’mystery’, ’nomystery-opt11-strips’,
’openstacks-opt08-strips’, ’openstacks-opt11-strips’,
’openstacks-opt14-strips’, ’openstacks-strips’, ’parcprinter-08-strips’,
’parcprinter-opt11-strips’, ’parking-opt11-strips’, ’parking-opt14-strips’,
’pathways-noneg’, ’pegsol-08-strips’, ’pegsol-opt11-strips’,
’pipesworld-notankage’, ’pipesworld-tankage’, ’psr-small’, ’rovers’,
’satellite’, ’scanalyzer-08-strips’, ’scanalyzer-opt11-strips’,
’sokoban-opt08-strips’, ’sokoban-opt11-strips’, ’storage’,
’tetris-opt14-strips’, ’tidybot-opt11-strips’, ’tidybot-opt14-strips’,
’tpp’, ’transport-opt08-strips’, ’transport-opt11-strips’,
’transport-opt14-strips’, ’trucks-strips’, ’visitall-opt11-strips’,
’visitall-opt14-strips’, ’woodworking-opt08-strips’,
’woodworking-opt11-strips’, ’zenotravel’, ’ss_barman’, ’ss_ferry’,
’ss_goldminer’, ’ss_grid’, ’ss_hanoi’, ’ss_hiking’, ’ss_npuzzle’,
’ss_spanner’,]

Domains with conditional effects:



[’briefcaseworld’, ’cavediving-14-adl’, ’citycar-opt14-adl’, ’fsc-blocks’,
’fsc-grid-a1’, ’fsc-grid-a2’, ’fsc-grid-r’, ’fsc-hall’, ’fsc-visualmarker’,
’gedp-ds2ndp’, ’miconic-simpleadl’, ’t0-adder’, ’t0-coins’, ’t0-comm’,
’t0-grid-dispose’, ’t0-grid-push’, ’t0-grid-trash’, ’t0-sortnet’,
’t0-sortnet-alt’, ’t0-uts’, ’ss_briefcaseworld’, ’ss_cavediving’,
’ss_citycar’, ’ss_maintenance’, ’ss_maintenance_large’, ’ss_schedule’,]

Domain-wise Trainingset Performance

Portfolio Components Delfi Oracle

DKS OSS 1 2

blind lmc P1 P2 M1 M2 M3 M4 blind lmc P1 P2 M1 M2 M3 M4 Sym

airport (50) 27 29 31 28 27 2 27 27 27 29 31 28 27 2 27 27 27 27 29 32
barman-opt11-strips (20) 8 8 8 8 8 12 8 8 8 8 8 8 8 12 8 8 10 10 8 12
barman-opt14-strips (14) 3 3 3 3 3 6 3 3 3 3 3 3 3 6 3 3 6 6 3 6
blocks (35) 21 28 28 25 28 26 26 28 21 28 28 25 28 26 26 28 32 32 32 32
briefcaseworld (50) 8 9 8 8 9 8 8 9 8 9 8 8 8 8 8 8 8 9 8 9
cavediving-14-adl (20) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
childsnack-opt14-strips (20) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 6 6 6
citycar-opt14-adl (20) 18 18 18 18 18 10 18 18 18 18 18 18 17 10 17 18 18 18 18 18
depot (22) 6 9 12 8 9 12 11 10 6 9 12 8 9 12 9 10 7 12 9 12
driverlog (20) 8 14 13 13 13 14 13 14 7 14 14 13 13 14 13 14 14 15 14 15
elevators-opt08-strips (30) 17 22 22 20 19 19 19 12 17 22 22 20 19 19 19 5 25 25 25 25
elevators-opt11-strips (20) 15 18 18 17 16 16 16 10 15 18 18 17 16 16 16 3 19 19 19 19
floortile-opt11-strips (20) 8 14 8 8 9 10 12 8 8 14 8 8 9 10 10 8 14 12 14 14
floortile-opt14-strips (20) 8 20 8 8 9 11 14 8 8 20 8 8 9 11 11 8 20 17 20 20
freecell (80) 20 15 21 20 21 22 22 20 20 15 21 20 21 22 22 20 25 27 21 27
fsc-blocks (14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fsc-grid-a1 (16) 2 2 0 1 2 2 2 2 2 2 0 1 2 2 2 2 3 3 2 3
fsc-grid-a2 (2) 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
fsc-grid-r (16) 15 15 0 0 15 15 15 15 15 15 0 0 15 15 15 15 1 1 6 15
fsc-hall (2) 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1
fsc-visualmarker (7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ged-opt14-strips (20) 15 15 19 19 19 19 19 5 15 15 19 18 18 15 15 5 19 19 20 19
gedp-ds2ndp (24) 18 18 4 4 22 18 22 22 18 18 4 4 18 14 18 18 18 22 16 22
grid (5) 1 2 3 2 2 3 2 2 1 2 3 2 2 3 3 2 2 3 2 3
gripper (20) 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
hiking-opt14-strips (20) 17 13 19 19 19 19 19 18 17 13 19 19 19 19 19 17 19 18 19 20
logistics00 (28) 12 20 21 21 20 20 20 19 12 20 20 20 20 20 20 19 19 21 21 21
logistics98 (35) 2 6 5 5 5 5 5 5 2 7 5 6 5 5 5 5 6 7 6 7
miconic (150) 56 142 61 61 84 78 61 57 56 142 61 61 85 78 61 56 109 143 142 144
miconic-simpleadl (150) 80 144 81 82 87 87 86 80 80 144 80 81 87 87 86 80 149 149 144 150
movie (30) 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
mprime (35) 18 23 24 23 23 21 23 23 20 22 25 23 24 21 23 24 24 25 24 26
mystery (30) 15 18 17 17 17 16 16 17 15 18 18 17 17 16 17 17 15 18 15 19
nomystery-opt11-strips (20) 9 16 20 20 20 20 20 14 9 16 20 20 20 20 20 14 16 18 16 20
openstacks-opt08-strips (30) 24 23 24 24 24 24 23 9 24 23 24 24 24 24 23 9 30 30 30 30
openstacks-opt11-strips (20) 18 18 18 18 18 18 18 4 18 18 18 18 18 18 18 4 20 20 20 20
openstacks-opt14-strips (20) 5 3 5 5 5 5 3 0 5 3 5 5 5 5 3 0 20 20 20 20
openstacks-strips (30) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 20 19 7 20
parcprinter-08-strips (30) 30 30 29 30 27 9 26 30 30 30 29 30 22 9 24 30 22 28 30 30
parcprinter-opt11-strips (20) 20 20 20 20 20 5 19 20 20 20 20 20 17 5 17 20 17 20 20 20
parking-opt11-strips (20) 0 3 8 1 2 1 1 8 1 3 8 1 2 4 1 8 1 8 8 8
parking-opt14-strips (20) 0 4 7 0 5 4 1 7 0 3 8 0 4 4 3 8 3 8 8 8
pathways-noneg (30) 4 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5
pegsol-08-strips (30) 28 29 30 28 30 29 29 28 28 29 30 29 30 29 29 20 29 30 30 30
pegsol-opt11-strips (20) 18 19 20 18 20 19 19 18 18 19 20 19 20 19 19 10 19 20 20 20
pipesworld-notankage (50) 20 21 25 23 21 4 20 20 20 21 25 24 21 4 20 20 15 25 22 25
pipesworld-tankage (50) 17 17 20 17 17 16 17 21 17 16 21 17 17 17 19 20 16 21 17 22
psr-small (50) 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
rovers (40) 7 12 11 10 9 11 11 9 7 12 11 10 9 11 10 9 14 14 13 14
satellite (36) 7 14 9 9 9 9 9 9 7 14 9 9 9 9 9 9 10 14 11 14



scanalyzer-08-strips (30) 15 17 17 15 16 18 17 6 15 17 18 16 19 19 17 6 12 19 15 19
scanalyzer-opt11-strips (20) 11 14 13 11 12 14 13 3 11 14 14 12 15 15 13 3 9 15 12 15
sokoban-opt08-strips (30) 28 30 30 28 30 26 30 28 28 30 30 28 30 26 28 28 28 30 29 30
sokoban-opt11-strips (20) 20 20 20 20 20 16 20 19 20 20 20 20 20 16 20 19 20 20 20 20
ss barman (33) 10 8 12 10 11 10 13 10 10 8 14 11 11 10 11 10 24 23 24 24
ss briefcaseworld (110) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ss cavediving (100) 30 30 30 30 30 30 30 30 30 30 30 30 30 30 29 30 30 30 30 30
ss citycar (288) 15 22 16 16 12 0 11 14 15 20 15 15 12 0 11 14 24 26 28 31
ss ferry (132) 78 122 95 94 89 89 90 64 80 122 95 94 89 90 89 64 108 123 122 122
ss goldminer (144) 50 79 102 53 98 62 80 50 50 80 102 53 98 62 97 50 75 102 102 102
ss grid (108) 52 50 74 58 58 60 58 56 52 50 74 58 58 60 72 56 91 89 90 91
ss hanoi (30) 13 10 13 13 13 13 13 13 13 10 13 13 13 13 13 13 13 13 13 13
ss hiking (112) 74 56 85 82 79 84 78 76 74 56 86 84 81 85 81 78 90 93 92 96
ss maintenance (128) 0 45 65 0 10 26 11 11 0 44 65 0 9 24 8 2 0 64 64 67
ss maintenance large (100) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ss npuzzle (30) 6 6 12 12 6 6 6 12 6 6 12 12 6 6 6 12 9 12 12 12
ss schedule (168) 63 148 130 95 158 144 135 156 64 147 131 98 152 145 119 158 0 158 163 163
ss spanner (132) 86 89 95 86 95 95 132 95 82 85 92 82 92 92 89 92 132 132 132 132
storage (30e) 16 17 18 16 18 18 18 17 17 17 19 17 18 19 17 18 15 19 16 19
t0-adder (2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t0-coins (30) 10 15 0 9 10 10 10 10 10 15 0 9 10 10 10 10 15 15 16 16
t0-comm (25) 5 6 5 5 5 5 5 5 5 6 5 5 5 5 5 5 15 15 15 15
t0-grid-dispose (15) 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 1 3 3
t0-grid-push (5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t0-grid-trash (1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t0-sortnet (5) 2 2 0 0 2 0 2 2 2 2 0 0 2 0 2 2 0 1 2 2
t0-sortnet-alt (6) 4 4 1 1 4 4 4 4 4 4 1 1 4 4 4 4 2 2 4 4
t0-uts (29) 6 8 10 7 10 10 10 10 6 9 11 7 11 11 11 11 6 9 9 11
tetris-opt14-strips (17) 12 11 13 12 13 1 13 13 12 11 12 12 13 1 13 13 10 13 10 13
tidybot-opt11-strips (20) 10 17 15 13 11 1 11 10 10 17 15 13 11 1 10 10 14 17 17 17
tidybot-opt14-strips (20) 1 13 11 8 3 0 3 2 1 13 11 8 3 0 2 2 6 13 12 13
tpp (30) 7 8 7 7 9 12 8 7 7 8 7 8 9 11 8 7 8 11 11 12
transport-opt08-strips (30) 11 11 11 12 11 11 11 11 11 11 12 12 11 11 12 11 14 14 13 14
transport-opt11-strips (20) 6 7 7 8 6 7 6 6 6 7 8 8 7 7 8 7 10 9 10 10
transport-opt14-strips (20) 7 6 7 7 7 7 7 7 7 6 7 7 7 7 7 7 9 9 9 9
trucks-strips (30) 9 12 11 10 9 10 10 9 9 12 11 10 9 10 10 9 12 12 11 12
visitall-opt11-strips (20) 9 12 16 13 9 10 9 16 9 12 14 12 9 10 9 14 12 17 17 17
visitall-opt14-strips (20) 3 6 12 7 4 4 4 12 3 6 8 6 4 4 4 8 7 13 14 14
woodworking-opt08-strips (30) 22 30 23 22 30 30 30 28 22 30 23 22 30 30 22 28 28 30 30 30
woodworking-opt11-strips (20) 16 20 17 16 20 20 20 20 16 20 17 16 20 20 16 20 20 20 20 20
zenotravel (20) 8 13 12 11 12 12 11 11 8 13 12 11 12 13 11 11 11 12 12 13

Sum (3721) 1470 1956 1836 1602 1796 1645 1767 1615 1472 1948 1838 1606 1782 1643 1707 1568 1867 2282 2236 2350

Table 4: Coverage of the trainingset. Abbreviations: lmc: LM-cut; P1: HC-PDB; P2: GA-ZOPDB; M1: B-SCCdfp; M2: B-
MIASMdfp; M3: B-sbMIASM; M4: G-SCCdfp; Sym: SymBA∗ 2014; Orcl: oracle portfolio over all component planners.


