
The New Version of CPT, an Optimal Temporal POCL Planner
based on Constraint Programming

Vincent Vidal
CRIL - Université d’Artois
rue de l’université - SP16

62307 Lens Cedex, FRANCE
vidal@cril.univ-artois.fr

Sébastien Tabary
CRIL - Université d’Artois
rue de l’université - SP16

62307 Lens Cedex, FRANCE
tabary@cril.univ-artois.fr

Overview
CPT is a domain-independent temporal planner that com-
bines a branching scheme based on Partial Order Causal
Link (POCL) Planning with powerful and sound pruning
rules implemented as constraints. Unlike other recent ap-
proaches that build on POCL planning (Nguyen & Kamb-
hampati 2001; Younes & Simmons 2003), CPT is an optimal
planner that minimizes makespan. The details of the plan-
ner and its underlying formulation are described in (Vidal &
Geffner 2004; Vidal & Geffner 2006). CPT competed in the
optimal track of IPC-4, where it got a second place.

The development of CPT is motivated by the limitation of
heuristic state approaches to parallel and temporal planning
that suffer from a high branching factor (Haslum & Geffner
2001) and thus have difficulties matching the performance of
planners built on SAT techniques such as Blackbox (Kautz
& Selman 1999). In CPT, all branching decisions (resolution
of open supports, support threats, and mutex threats), gen-
erate binary splits, and nodes σ in the search correspond to
‘partial plans’ very much as in POCL planning.

While ideally, one would like to have informative lower
bounds f(σ) on the makespan f∗(σ) of the best complete
plans that expand σ, so that the partial plan σ can be pruned
if f(σ) 6≤ B for a given bound B, such lower bounds are not
easy to come by in the POCL setting. CPT thus models the
planning domain as a temporal constraint satisfaction prob-
lem, adds the constraint f∗(σ) ≤ B for a suitable bound B
on the makespan, and performs limited form of constraint
propagation in every node σ of the search tree. The novelty
of CPT in relation to other temporal POCL planners such
as IXTET (Laborie & Ghallab 1995) and RAX (Jonsson et
al. 2000), that also rely on constraint propagation (and Dy-
namic CSP approaches such as (Joslin & Pollack 1996)), is
the formulation that enables CPT to reason about actions a
that are not yet in the plan. Often a lot can be inferred about
such actions including restrictions about their possible start-
ing times and supports. Some of this information can actu-
ally be inferred before any commitments are made; the lower
bounds on the starting times of all actions as computed in
GRAPHPLAN being one example (Blum & Furst 1995). CPT
thus reasons with CSP variables that involve all the actions
a in the domain and not only those present in the current
plan, and for each such action, it deals with two variables
S(p, a) and T (p, a) that stand for the possibly undetermined

action supporting precondition p of a, and the possibly un-
determined starting time of such an action. A causal link
a′[p]a thus becomes a constraint S(p, a) = a′, which in turn
implies that the supporter a′ of precondition p of a starts at
time T (p, a) = T (a′). A number of constraints enforce the
correspondences among these variables. At the same time,
the heuristic functions for estimating costs in a temporal set-
ting, as introduced in (Haslum & Geffner 2001), are used to
initialize variables domains and some ‘distances’ between
actions (Van Beek & Chen 1999).

Currently, the semantics of the optimal temporal plans
computed by CPT follows the one in (Smith & Weld 1999)
where interfering actions (actions that delete a precondition
or an effect of another one) are not allowed to overlap in
time. This condition has been relaxed in PDDL 2.1 where
interfering actions may overlap sometimes (e.g., when pre-
conditions do not have to be preserved throughout the exe-
cution of the action). This restriction can in some domains
produce slightly longer plans.

Additional pruning rules
CPT has been recently extended with several pruning rules.
The primary goal of these rules was to give CPT the ability to
solve planning problems in a suboptimal but backtrack-free
way. Indeed, while fixing an upper bound on the makespan
to a low value helps in pruning the search space, it has
been remarked many times that fixing the bound to a high
value (and thus, searching for a suboptimal plan) renders
constraint-based planners particularly inefficient. To over-
come this problem, we added many features to CPT, and
we got interesting results in many classical benchmarks:
BlocksWorld, Logistics, Gripper, Ferry, Satellite for ex-
ample can be solved suboptimally without any backtrack.
These results are reported in (Vidal & Geffner 2005). Some
of these additions to CPT turn out to also help for optimal
planning.

Impossible Supports
Many supports can be eliminated at preprocessing avoiding
some dead-ends during the search. For example, the action
a′ = putdown(b1) can never support the precondition p =
handempty of an action like a = unstack(b1, b3). This is
because action a has another precondition p′ = on(b1, b3)



which is e-deleted1 by a′ (false after a′) and which then
would have to be reestablished by another action b before
a. Yet it can be shown that in this domain, any such action
b e-deletes p and is thus incompatible with the causal link
a′[p]a.

More generally, let dist(a′, p, a) refer to a lower bound
on the slack between actions a′ and a in any valid plan in
which a′ is a supporter of precondition p of a. We show
that for some cases, at preprocessing time, it can be shown
that dist(a′, p, a) = ∞, and hence, that a′ can be safely
removed from the domain of the variable S(p, a) encoding
the support of precondition p of a.

This actually happens when some precondition p′ of a is
not reachable from the initial situation that includes all the
facts except those e-deleted by a′ and where the actions that
either add or delete p are excluded. The reason for this ex-
clusion is that if a′ supports the precondition p of a then it
can be assumed that no action adding or deleting p can occur
between a′ and a (the first part is the systematicity require-
ment (McAllester & Rosenblitt 1991)). By a proposition
being reachable we mean that it makes it into the so-called
relaxed planning graph; the planning graph with the delete
lists excluded (Hoffmann & Nebel 2001).

This simple test prunes the action putdown(b1) as a
possible support of the precondition handempty of action
unstack(b1, b3), the action stack(b1, b3) as a possible sup-
port of precondition clear(b1) of pickup(b1), etc.

Unique Supports
We say that an action consumes an atom p when it requires
and deletes p. For example, the actions unstack(b3, b1) and
pickup(b2) both consume the atom handempty. In such
cases, if the actions make it into the plan, it can be shown
that their common precondition p must have different sup-
ports. Indeed, if an action a deletes a precondition of a′,
and a′ deletes a precondition of a, a and a′ are incompatible
and cannot overlap in time according to the semantics. Then
either a must precede a′ or a′ must precede a, and in ei-
ther case, the precondition p needs to be established at least
twice: one for the first action, and one for the second. The
constraint S(p, a) 6= S(p, a′) for pairs of actions a and a′

that consume p, ensures this, and when one of the support
variables S(p, a) or S(p, a′) is instantiated to a value b, b is
immediately removed from the domain of the other variable.

Distance Boosting
The distances dist(a, a′) precomputed for all pairs of ac-
tions a and a′ provide a lower bound on the slack between
the end of a and the beginning of a′. In some cases, this
lower bound can be easily improved, leading to stronger
inferences. For example, the distance between the actions
putdown(b1) and pickup(b1) is 0, as it is actually possible
to do one action after the other. Yet the action putdown(b1)

1An action a is said to e-delete an atom p when either a deletes
p, a adds an atom q such that q and p are mutex, or a precondition r
of a is mutex with p and a does not add p. In all cases, if a e-deletes
p, p is false after doing a; see (Nguyen & Kambhampati 2001).

followed by pickup(b1) makes sense only if some other ac-
tion using the effects of the first, occurs between these two,
as when block b1 is on block b2 but needs to be moved on
top of the block beneath b2.

Let us say that an action a cancels an action a′ when 1) ev-
ery atom added by a′ is e-deleted by a, and 2) every atom
added by a is a precondition of a′. Thus, when a cancels
a′, the sequence a′, a does not add anything that was not
already true before a′. For example, pickup(b1) cancels the
action putdown(b1).

When an action a cancels a′, and there is a precondition p
of a that is made true by a′ (i.e., p is added by a′ and is mu-
tex with some precondition of a′), the distance dist(a′, p, a)
introduced above becomes ∞ if all the actions that use an
effect of a′ e-delete p. In such case, as before, the action
a′ can be excluded from the domain of the S(p, a) vari-
able. Otherwise, the distance dist(a′, a) can be increased
to minb[dist(a′, b) + dist(b, a)] with b ranging over the ac-
tions different than a and a′ that either use an effect of a′ but
do not e-delete p or do not use necessarily an effect of a′ but
add p (because a′ may be followed by an action c before a
that e-deletes p but only if there is another action b between
c and a that re-establishes p).

In this way, the distance between the actions putdown(a)
and pickup(a) in Blocks is increased by 2, the distance be-
tween sail(a, b) and sail(b, a) in Ferry is increased by 1,
etc. The net effect is similar to pruning cycles of size two
in standard heuristic search. Pruning cycles of larger sizes,
however, appears to be more difficult in the POCL setting,
although similar ideas can potentially be used for pruning
certain sequences of commutative actions.

Improvement of the search algorithm
The original version of CPT performs a very basic back-
tracking search: its relative efficiency mainly comes from
the look-ahead techniques encoded into the pruning rules,
and from heuristics adapted to temporal planning. But even
if an advanced look-ahead technique is used, one can be in-
terested by looking for the reason of an encountered dead-
end as finding the ideal ordering of variables is intractable
in practice. A dead-end corresponds to a conflict between
a subset of decisions (variable assignments) performed so
far. In fact, it is relevant to prevent thrashing2 to identify
the most recent decision (let us call it the culprit one) that
participates to the conflict. Indeed, once the culprit has been
identified, we know that it is possible to safely backtrack up
to it – this is the role of look-back techniques such as CBJ
(Conflict-directed BackJumping) (Prosser 1993) and DBT
(Dynamic Backtracking) (Ginsberg 1993).

A new approach as been recently proposed in (Lecoutre
et al. 2006) to (indirectly) backtrack to the culprit of the
last encountered dead-end. To achieve it, the leaf conflict
variable becomes in priority the next variable to be selected
as long as the successive assignments that involves it render

2Thrashing is the fact of repeatedly exploring the same subtrees.
This phenomenon deserves to be carefully studied as an algorithm
subject to thrashing can be very inefficient.



the network arc inconsistent. It then corresponds to check-
ing the singleton consistency of this variable from the leaf
towards the root of the search tree until a singleton value is
found. In other words, the variable ordering heuristic is vi-
olated, until a backtrack to the culprit variable occurs and a
singleton value is found. It is important to remark that, con-
trary to sophisticated backjump techniques, this technique
can be grafted in a very simple way to a tree search algo-
rithm without any additional data structure. This has been
implemented very easily into CPT, making it able to solve
difficult problems that were previously out of reach.

A note about the implementation
The first version of CPT planner was implemented using the
Choco CP library (Laburthe 2000) that operates on top of
Claire (Caseau, Josset, & Laburthe 1999), a high-level pro-
gramming language that compiles into C++. Due to a num-
ber of restrictions of this language, we made a completely
new implementation using the C language. This implemen-
tation is based on a minimal Constraint Programming engine
inspired by the Choco library, offering all the basic needs:
CP variables with enumerated and bounded domains, auto-
matic propagation on the change of the domains based on
events (instantiation, removal, lower bound increased, ...),
a complete backtrack mechanism for undoing the changes,
and a basic backtracking algorithm. The constraints of CPT
are implemented with propagation rules which are triggered
by the underlying CP engine. This implementation is by far
more efficient than the original one, also having very min-
imal memory requirements (except in some benchmark do-
mains such as ZenoTravel, where the formulation of the do-
main by itself leads to a high number of variables with very
large domains). This new version will soon be available on
the CPT web page3. We also plan to release the minimal CP
engine of CPT as a separate package, as it is completely inde-
pendent of CPT and could serve as a basis for many different
applications. As an example, CPT has been recently used in
an evolutionary based approach of multi-objective temporal
planning (Schoenauer, Savéant, & Vidal 2006).

Acknowledgments
Most of the work on CPT has been made with Héctor
Geffner, as well as some material of this abstract borrowed
from our common papers. Many thanks to him.

References
[Blum & Furst 1995] Blum, A., and Furst, M. 1995. Fast planning

through planning graph analysis. In Proceedings of IJCAI-95,
1636–1642.

[Caseau, Josset, & Laburthe 1999] Caseau, Y.; Josset, F. X.; and
Laburthe, F. 1999. CLAIRE: Combining sets, search and rules to
better express algorithms. In Proceedings of ICLP-99, 245–259.

[Ginsberg 1993] Ginsberg, M. 1993. Dynamic backtracking. Ar-
tificial Intelligence 1:25–46.

[Haslum & Geffner 2001] Haslum, P., and Geffner, H. 2001.
Heuristic planning with time and resources. In Proceedings of
European Conference of Planning (ECP-01), 121–132.

3http://www.cril.univ-artois.fr/∼vidal/index.en.html

[Hoffmann & Nebel 2001] Hoffmann, J., and Nebel, B. 2001.
The FF planning system: Fast plan generation through heuristic
search. JAIR 2001:253–302.

[Jonsson et al. 2000] Jonsson, A.; Morris, P.; Muscettola, N.; and
Rajan, K. 2000. Planning in interplanetary space: Theory and
practice. In Proceedings of AIPS-2000, 177–186.

[Joslin & Pollack 1996] Joslin, D., and Pollack, M. E. 1996. Is
”early commitment” in plan generation ever a good idea? In
Proceedings of AAAI-96, 1188–1193.

[Kautz & Selman 1999] Kautz, H., and Selman, B. 1999. Uni-
fying SAT-based and Graph-based planning. In Dean, T., ed.,
Proceedings of IJCAI-99, 318–327. Morgan Kaufmann.

[Laborie & Ghallab 1995] Laborie, P., and Ghallab, M. 1995.
Planning with sharable resources constraints. In Mellish, C., ed.,
Proceedings of IJCAI-95, 1643–1649. Morgan Kaufmann.

[Laburthe 2000] Laburthe, F. 2000. CHOCO: implementing a CP
kernel. In Proceedings of CP-00, Lecture Notes in CS, Vol 1894.
Springer.

[Lecoutre et al. 2006] Lecoutre, C.; Sais, L.; Tabary, S.; and Vi-
dal, V. 2006. Last conflict based reasoning. In Proceedings of
ECAI-2006 (to appear).

[McAllester & Rosenblitt 1991] McAllester, D., and Rosenblitt,
D. 1991. Systematic nonlinear planning. In Proceedings of AAAI-
91, 634–639. Anaheim, CA: AAAI Press.

[Nguyen & Kambhampati 2001] Nguyen, X. L., and Kambham-
pati, S. 2001. Reviving partial order planning. In Proceedings of
IJCAI-01, 459–466.

[Prosser 1993] Prosser, P. 1993. Hybrid algorithms for the
constraint satisfaction problems. Computational Intelligence
9(3):268–299.

[Schoenauer, Savéant, & Vidal 2006] Schoenauer, M.; Savéant,
P.; and Vidal, V. 2006. Divide-and-evolve: a new memetic
scheme for domain-independent temporal planning. In Proceed-
ings of EvoCOP-2006, 247–260.

[Smith & Weld 1999] Smith, D., and Weld, D. S. 1999. Tempo-
ral planning with mutual exclusion reasoning. In Proceedings of
IJCAI-99, 326–337.

[Van Beek & Chen 1999] Van Beek, P., and Chen, X. 1999.
CPlan: a constraint programming approach to planning. In Pro-
ceedings of AAAI-99, 585–590.

[Vidal & Geffner 2004] Vidal, V., and Geffner, H. 2004. Branch-
ing and pruning: An optimal temporal POCL planner based on
constraint programming. In Proceedings of AAAI-2004, 570–577.

[Vidal & Geffner 2005] Vidal, V., and Geffner, H. 2005. Solving
simple planning problems with more inference and no search. In
Proceedings of CP-2005, 682–696.

[Vidal & Geffner 2006] Vidal, V., and Geffner, H. 2006. Branch-
ing and pruning: An optimal temporal POCL planner based on
constraint programming. Artificial Intelligence 170(3):298–335.

[Younes & Simmons 2003] Younes, H. L. S., and Simmons, R. G.
2003. VHPOP: Versatile heuristic partial order planner. JAIR
20:405–430.


	Overview
	Additional pruning rules
	Impossible Supports
	Unique Supports
	Distance Boosting

	Improvement of the search algorithm
	A note about the implementation
	Acknowledgments

