
Alien: Return of Alien Technology to Classical Planning

Masataro Asai
guicho2.71828α©gmail.com

Abstract

Recently, a modern Classical Planning framework Fast
Downward (Helmert 2006) is the go-to framework in the
planning community. Despite its huge contribution, the
framework have several design problems: (1) code quality
and extensibility, (2) preprocessing speed, (3) low-level per-
formance. In this IPC submission, we present a new classi-
cal planning framework, Alien, with emphasis on preprocess-
ing and low-level performance. While we do not believe this
library will get as popular as Fast Downward (the only ex-
pected users of this framework are us), we believe some of the
design choices might influence future planners. Tl;dr: C/C++
is too slow.

1 Introduction
In recent years (post-2000), classical planning solvers are
written in languages such as C or C++, assuming that the
resulting binary automatically achieves almost-optimal low-
level performance thanks to the compiler improvement. This
is not true, mainly due to the limitations in these lan-
guages that they cannot optimize the low-level instruction
sequences for the problem instance at hand – They apply the
same, fixed instruction sequence that iterates/recurses over
data structures, to different data. This behavior is similar to
a byte-code interpreter, which is reading and interpreting a
data structure loaded on main memory instead of directly
running the assembly instructions that achieve the same be-
havior. The approach is slower than the native compilation
even if the interpreter itself is compiled by GCC or Clang.

The choice of these languages also carries a significant
burden on the extensibility & composability of the resulting
solver with external services such as web servers, debug-
gers, visualizers etc. While it is possible to connect a plan-
ner to these systems, it is typically done via a coarse-grained
API such as command line options and standard I/O, and
is not easily “pluggable”: It does not allow users to attach
knobs at every corners, unless a significant modification is
performed on the source code. While such flexibility might
be achieved by interpreted programming languages such as
Ruby or Python, we cannot sacrifice the low-level perfor-
mance for a computationally intensive task like Classical
Planning. To achieve flexibility and speed, one should use
a flexible compiled language.

Two examples of such lack of extensibility are the adap-
tation of Fast Downward for parallel processing (Jinnai and
Fukunaga 2017) or external memory search (Lin and Fuku-
naga 2018). In the former case, they had to implement
process-level parallelism via MPI because the open/closed
lists in Fast Downward are assuming single-threaded exe-
cution. In the latter case, not only the state database needs
to be rewritten, but also the interface to heuristic functions
and other pieces should be modified because they are tightly
coupled to the state database.

Finally, Fast Downward uses python-based grounding
process (PDDL-SAS+ translation) which becomes slow on
certain instances e.g. very large instances with repetitive
structures (Asai and Fukunaga 2014) or a problem instance
automatically generated from images using neural networks
(Asai and Fukunaga 2018). To even start solving the prob-
lem one should improve the performance of grounding pro-
cesses for actions and state variables.

Figure 1: A Lisp alien. “To most programmers, Lisp seems
like an entirely alien language at first- (...) this strangeness
is not an arbitrary obstacle, but a necessary adjustment that
imparts great power to programmers that would otherwise
be unattainable. The alien Lisp mascot and quirky logo de-
signs are designed to accentuate the awesome (and, to most
people, alien) power that Lisp languages have- At the same
time, they show how fun Lisp programming tends to be and
that Lisp has wide appeal far beyond the stuffy academia it
is sometimes wrongly associated with.” (Barski 2007)

We tackle these issues by using ANSI Common Lisp
programming language (Fig. 1) combined with B-Prolog
(Zhou 2012), a modern high-performance Prolog solver with
tabling predicates (Van Gelder, Ross, and Schlipf 1991) for
preprocessing / grounding process. Common Lisp addresses

the first two issues of low-level performance and extensibil-
ity. B-Prolog addresses the third issue by its heavily opti-
mized implementation.

2 PDDL Preprocessing
2.1 Prolog the Language
Prolog is a logic programming language that describes a pro-
gram with a set of horn clauses. In Prolog, a program con-
sists of rules and facts, both described in first-order logic
terms. A rule looks like <Head> :- <Body>., where
Head is a term, and Body consists of several subgoal terms
<sg>1, <sg>2 A fact is a rule without body, and can
be written as <Head>..

A term can be a number, an atom (e.g. cat), a vari-
able (e.g. X) including wildcards (_), or a compound
form predicate(arg1, arg2...) where each argi

is also a term.
To achieve a subgoal predicate(arg1,

arg2...), Prolog interpreter performs a process called
Unification. It first looks for a rule/fact in the program
whose head has the same predicate and has the same
instantiated arguments (arguments that are numbers/atoms)
as the subgoal. Next, it assigns a value to each unassigned
variable, using existing assignments as much as possible,
while it also enumerates all combinations when no existing
assignment is available. For each such combination of
value assignment, it tries to achieve every subgoals, hence
the Prolog interpreter performs a depth-first search on the
subgoals. When there is no matching rule in the program,
it backtracks and tries another combination of assignments.
There is a top-level clause called initialization and
Prolog tries to achieve this on launch.

Tabling While the default depth-first search method is
good for most querying purposes, it has a limitation that
sometimes the program does not halt, or good perfor-
mance is not achieved due to the many re-evaluation of the
same subgoal. To address this issue, an alternative seman-
tics called Well-Founded Semantics (Van Gelder, Ross, and
Schlipf 1991) was proposed, in which the program is al-
lowed to use tabled predicates. When the program declares a
certain predicate to be tabled, results of achieving compound
terms of the same predicate are memoized into a table and it
succeeds without recursion when the same subgoal is tested
next time.

A related subset of Prolog called Datalog is a much
smaller subset. Instead, Prolog + Tabling is an extension of
Prolog with Datalog-like efficiency.

High Performance Modern Prolog Prolog language is
standardized as ISO-Prolog (Covington 1993) and many
Prolog implementations (commercial / open sourced) with
various focuses are available. Prolog interpreters typically
process a program with a virtual machine called Warren’s
Abstract Machines (Warren 1985, WAM), which is heavily
tuned for optimized execution of unification. While the most
popular implementation is SWI-Prolog (Wielemaker et al.
2012), it’s focus is the large feature set rather than the perfor-
mance. In our project, we use B-Prolog (Zhou 2012) which

has shown the best performance in our internal testing. B-
Prolog is an originally commercial implementation which
is now in public domain, and it supports tabled predicates.
Typically, B-Prolog is faster than SWI by around x2, but for
some corner cases by up to x120 faster (transport agl14 p01,
SWI:242s, BProlog:4.4s, translate.py: 13s w/o invariant syn-
thesis).

2.2 Preprocessing
In our planner, we reused the formal definitions described in
Helmert (2009) for grounding facts/actions. We use binary
formalizm instead of SAS formalism for simplicity, and thus
does not perform mutex invariant synthesis, while this is fu-
ture work.

The program is entirely written in Common Lisp (CL).
After opening a PDDL input file, a parser written in CL
parses the PDDL input, then programatically constructs a
Prolog program using cl-prolog2 (Asai 2017) library
written by the author. The library makes it easy to use Pro-
log as a domain-specific solver by transpiling S-expressions
(the same format used in PDDL: parentheses and symbols)
into Prolog expressions, writes them to a file, runs a Prolog
interpreter, then extracts the output.

3 Search Component
In this section, we describe the search component and the
language used to implement the program, ANSI Common
Lisp. In the search component, we generally follow the ad-
vice from Burns et al. (2012).

3.1 ANSI Common Lisp
ANSI Common Lisp (ANSI CL) is a specification of Com-
mon Lisp language, similar to C++14 or C++17. Just as
C++14 has various implementations (GCC / Clang / MSVC),
so does CL (SBCL / CCL / ECL / ABCL). Just as C++14 does
not forbid implementing a C++ interpreter, ANSI CL does
not specify if it is interpreted or compiled. Due to historical
mishaps, many misunderstand that lisp implementations
are interpreters; In fact most CL implementations com-
pile programs to native instruction sequences. Alien uses
Steel Bank Common Lisp (sbcl), the current fastest Com-
mon Lisp compiler on x86_64 environment.

Objects in Common Lisp are strongly typed and functions
can be optionally statically typed via declaration. Typed
functions typically compiles to a native code that is as good
as code compiled by GCC. Similar to many other languages,
or like auto keyword in C++, there is type inference mech-
anism and programmers should declare only a subset of
variables. As typing is optional, programmers can choose
to neglect it for non-performance-sensitive code, sacrificing
speed for agile development.

A notable feature of ANSI CL is the inclusion of
compile function in the standard library. That is, program-
mers are allowed to compile a new code in runtime, which
allows us to generate code specifically optimized for the
given problem instance / successor function / state represen-
tation / heuristic function.

Compilation of Common Lisp Programs Compilation
of a Common Lisp program is quite different from those of
traditional programming languages, and it allows flexibility
and ultimate low-level performance.

In traditional programming languages, initially (1) there
is a textual representation of the program in a file, (2) the
compiler emits a compiled binary for a file, (3) the linker
links the object files to produce an executable, (4) which is
loaded onto main memory and the CPU runs the instruc-
tions. While it is possible to compile an additional source
code while the program is running and load the object file
from the running program, the process would be quite com-
plicated. Thus, most programs are compiled off-line and is
considered a fixed entity during execution.

Common Lisp has several differences from this paradigm.
First, it is inherently interactive: There is a process that is al-
ways running in the background, and the compilation, link-
ing, execution are all performed by this process.

Secondly, the compiler is separated into two controllable
phases. A textual program is first parsed into a nested single-
linked list structure, because the entire program is written in
S-expression (Fig. 2). The compiler then compiles the linked
list into an instruction sequence. Due to this separation, pro-
grammers can systematically create a linked-list represent-
ing a certain program and compile/execute it.

Common Lisp:
(defun factorial (x)
(declare ((unsigned-byte 64) x))
(if (= 0 x)

1
(* x (factorial (- x 1)))))

Equivalent C:
uint factorial(uint x){

if (0 == x){
return 1;

}else{
return x * factorial(1-x);

}
}

Figure 2: Comparison of factorial implementation with
Common Lisp and C.

3.2 Escaping GC for Close List
Common Lisp programs uses Garbage Collection (GC) for
memory management as its inherently interactive nature al-
lows the lifetime of certain objects to be unknown. How-
ever, GC is an expensive process: It should sweep over the
entire memory, collecting and freeing the unreferenced ob-
jects. While it is acceptable to have many dead objects in
performance-insensitive code such as preprocessing, object
allocation inside a core inner loop is problematic, as it in-
vokes GC and slows the entire program execution.

To completely avoid the problem of GC in inner loop, we
store Close List in a large, separate memory array indepen-
dently allocated by malloc and not managed by Lisp GC.
This design choice is acceptable because in forward state-

space search, close-list and other data structures are persis-
tent, and need to be freed only when the program exits.

3.3 States and Per State Information
Memory layout of the Close List is determined after prepro-
cessing and command line option parsing.

In Alien, states have binary representation. Unlike SAS
formalism, the representation itself is not densely com-
pressed. However, bit packing performed by FD is trivial in
our case. Also, when a state has N propositional variables, it
consumes exactly N bits in Close List, with a slight overhead
of shifting some bits after reading the data from the array.

Since the layout is computed after the option pars-
ing, per-state information such as heuristic cache or g-
value can be placed right after each packed state, i.e.
array-of-structures. This improves memory locality com-
pared to Fast Downward, which has a separate array
for each PerStateInformation<T>, i.e. structure-of-
arrays (SoA) representation.

The number of bits consumed for such data is also opti-
mized. For example, the maximum value of FF heuristics is
bounded by the number of operators (maximum depth of an
RPG), thus the cache takes exactly dlog |O|e bits where |O|
is the number of operators.

3.4 Successor Generator as Assembly Sequence
Fast Downward uses Successor Generator (SG) to represent
a successor function (Fig. 3). SG is a decision-tree whose
internal node represents a precondition of an action and each
node has multiple outgoing edges, one for each value in the
domain of SAS variable, as well as a single don’t-care edge.
When generating a successor, the program recurses over this
data structure, following the correct branch depending on the
value of the variable in the current state, as well as following
the don’t care edge afterwards.

v5=0

v5=1

v5=*

(1) Successor Generator node (2) Equivalent program

(if (= v5 0)
 (progn
 (if (= v8 0)...)
 (if ...)))
(if (= v5 1)
 ...)
(progn
 (if (= v7 0) ...)
 (if (= v7 1) ...))

v8

v10

v7
(3) Compilation result

L632: MOV ECX, [RAX+5]
 SHR ECX, 9
 AND ECX, 2
 CMP RCX, 2
 JEQ L648
L633: ...

Figure 3: Successor Generator and its corresponding pro-
gram and the compiled binary

While this achieves a better performance compared to a
naive method which checks applicability of an action one by
one, Alien improves it by converting a SG into a nested if-
else program that is subsequently compiled into an X86_64
instruction sequence.

This approach has two advantages over the recursion to
a SG. First, it creates a function that is loaded onto L1
instruction cache rather than a L1 data cache, minimiz-
ing the data cache usage. Second, it enables every built-in
CPU features including pipelining, out-of-order execution
and branch prediction. Thirdly, when building a program

for a SG, it could merge several preconditions into a sin-
gle if statement which compiles to a single word-size test
op, when their indices are within a 64bit boundary (Fig. 4).

if v[2] == 1
 if v[4] == 1
 if v[5] == 1
 ...

if (0B0010110.. && !v[0:63]) == 0

64bit word

↓

Figure 4: Packing nearby conditions into a single condition.

One issue with this compilation is that it takes time when
the SG is large, and that the function may not fit in instruc-
tion cache. In the internal testing, compilation time increases
quadratically to the number of branches. Therefore, we set
a limit on the number of compiled decision nodes, and from
the tip node that is not compiled, we process the remaining
variables with a standard SG. The limit is heuristically deter-
mined to be 1000 nodes, which roughly keeps the function
size within 20kB. For reference, Intel Haswell processor has
32kB of L1 instruction cache. Axiom evaluators and condi-
tional effects are compiled similarly.

3.5 Heuristics and Other Search Code
After preprocessing, Alien recompiles the heuristic func-
tions and search algorithms (e.g. eager best first search) be-
ing used. This optimizes the program by inlining the infor-
mation such as the state size / number of operators.

We did not have time to implement various heuristic func-
tions, and we have only FF (Hoffmann and Nebel 2001)
heuristics based on RPG, as well as the novelty metric
(Lipovetzky 2017). The planner which entered the compe-
tition is almost the same as BWFS presented in (Lipovetzky
2017).

3.6 Low-Level Performance
In our preliminary testing with blind search, Alien showed
a better low-level performance compared to Fast Downward
(Table 1).

In IPC2014 Agile track setting, Alien with eager FF
heuristics (54 instances solved) slightly outperforms Fast
Downward with FF heuristics with eager evaluation (44 in-
stances solved).

problem Fast Downward Alien
sokoban p01 180095 307500

cavediving p01 255159 410255
citycar p01 178950 200229

parkprinter p01 264629 273645

Table 1: Node generation per second for Fast Downward and
Alien on four easy problem instances.

4 Conclusion
We present Alien planner, which contains a new approach to
write a preprocessor and the base search algorithm. While

the framework is still immature, there are some notable de-
sign decisions that may also influence future planners. Fu-
ture work includes the implementation of more heuristic
functions, invariant synthesis, and connection to external
services such as web services, online notebook or machine
learning.

References
Asai, M., and Fukunaga, A. 2014. Fully Automated Cyclic
Planning for Large-Scale Manufacturing Domains. In Proc.
of the International Conference on Automated Planning and
Scheduling(ICAPS).
Asai, M., and Fukunaga, A. 2018. Classical Planning in Deep
Latent Space: Bridging the Subsymbolic-Symbolic Boundary.
In Proc. of AAAI Conference on Artificial Intelligence.
Asai, M. 2017. Cl-Prolog2 - Common Interface to the ISO
Prolog implementations from Common Lisp. github.com/
guicho271828/cl-prolog2.
Barski, C. 2007. Public domain lisp logo set. lisperati.
com/logo.html.
Burns, E. A.; Hatem, M.; Leighton, M. J.; and Ruml, W. 2012.
Implementing Fast Heuristic Search Code. In Proc. of Annual
Symposium on Combinatorial Search.
Covington, M. A. 1993. ISO Prolog: A Summary of the Draft
Proposed Standard. fsl.cs.illinois.edu/images/
9/9c/PrologStandard.pdf.
Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res.(JAIR) 26:191–246.
Helmert, M. 2009. Concise finite-domain representations for
pddl planning tasks. Artificial Intelligence 173(5-6):503–535.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation through Heuristic Search. J. Artif. Intell.
Res.(JAIR) 14:253–302.
Jinnai, Y., and Fukunaga, A. 2017. On hash-based work distri-
bution methods for parallel best-first search. Journal of Artifi-
cial Intelligence Research 60:491–548.
Lin, S., and Fukunaga, A. 2018. Revisiting Immediate Dupli-
cate Detection in External Memory Search. In Proc. of AAAI
Conference on Artificial Intelligence.
Lipovetzky, N. 2017. Best-First Width Search: Exploration and
Exploitation in Classical Planning . In Proc. of AAAI Confer-
ence on Artificial Intelligence.
Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The well-
founded semantics for general logic programs. Journal of the
ACM (JACM) 38(3):619–649.
Warren, D. 1985. An abstract Prolog instruction set. SRI Tech-
nical Note.
Wielemaker, J.; Schrijvers, T.; Triska, M.; and Lager, T. 2012.
SWI-Prolog. Theory and Practice of Logic Programming 12(1-
2):67–96.
Zhou, N.-F. 2012. The language features and architecture of
B-Prolog. Theory and Practice of Logic Programming 12(1-
2):189–218.

