
PDDL | The Planning Domain De�nition LanguageVersion 1.2This manual was produced by the AIPS-98 Planning Competition Committee:Malik Ghallab, Ecole Nationale Superieure D'ingenieur desConstructions AeronautiquesAdele Howe (Colorado State University)Craig Knoblock, ISIDrew McDermott (chair) (Yale University)Ashwin Ram (Georgia Tech University)Manuela Veloso (Carnegie Mellon University)Daniel Weld (University of Washington)David Wilkins (SRI)It was based on the UCPOP language manual, written by the followingresearchers from the University of Washington:Anthony Barrett, Dave Christianson, Marc Friedman, Chung Kwok,Keith Golden, Scott Penberthy, David E Smith, Ying Sun,& Daniel WeldContact Drew McDermott (drew.mcdermott@yale.edu) with comments.
Yale Center for Computational Vision and ControlTech Report CVC TR-98-003/DCS TR-1165October, 1998

AbstractThis manual describes the syntax of PDDL, the Planning Domain De�nition Language,the problem-speci�cation language for the AIPS-98 planning competition. The languagehas roughly the the expressiveness of Pednault's ADL [10] for propositions, and roughlythe expressiveness of UMCP [6] for actions. Our hope is to encourage empirical evaluationof planner performance, and development of standard sets of problems all in comparablenotations.

1 IntroductionThis manual describes the syntax, and, less formally, the semantics, of the Planning DomainDe�nition Language (PDDL). The language supports the following syntactic features:� Basic STRIPS-style actions� Conditional e�ects� Universal quanti�cation over dynamic universes (i.e., object creation and destruction),� Domain axioms over strati�ed theories,� Speci�cation of safety constraints.� Speci�cation of hierarchical actions composed of subactions and subgoals.� Management of multiple problems in multiple domains using di�ering subsets of lan-guage features (to support sharing of domains across di�erent planners that handlevarying levels of expressiveness).PDDL is intended to express the \physics" of a domain, that is, what predicates thereare, what actions are possible, what the structure of compound actions is, and what thee�ects of actions are. Most planners require in addition some kind of \advice," that is,annotations about which actions to use in attaining which goals, or in carrying out whichcompound actions, under which circumstances. We have endeavored to provide no adviceat all as part of the PDDL notation; that explains the almost perverse aura of neutralitysurrounding the notation at various places. As a result of this neutrality, almost all plannerswill require extending the notation, but every planner will want to extend it in di�erentways.Even with advice left out, we anticipate that few planners will handle the entire PDDLlanguage. Hence we have factored the language into subsets of features, called requirements.Every domain de�ned using PDDL should declare which requirements it assumes. A plan-ner that does not handle a given requirement can then skip over all de�nitions connectedwith a domain that declares that requirement, and won't even have to cope with its syntax.PDDL is descended from several forebears:� ADL [10]� The SIPE-2 formalism [12]� The Prodigy-4.0 formalism [3]� The UMCP formalism [6]� The Unpop formalism [8]� and, most directly, the UCPOP formalism [2]Our hope is to encourage sharing of problems and algorithms, as well as to allow mean-ingful comparison of the performance of planners on di�erent problems. A particular goalis to provide a notation for problems to be used in the AIPS-98 planning contest.1

2 A Simple ExampleTo give a avor of the language, consider Pednault's famous example [9] involving trans-portation of objects between home and work using a briefcase whose e�ects involve bothuniversal quanti�cation (all objects are moved) and conditional e�ects (if they are insidethe briefcase when it is moved). The domain is described in terms of three action schemata(shown below). We encapsulate these schemata by de�ning the domain and listing itsrequirements.(define (domain briefcase-world)(:requirements :strips :equality :typing :conditional-effects)(:types location physob)(:constants (B - physob))(:predicates (at ?x - physob ?l - location)(in ?x ?y - physob))...A domain's set of requirements allow a planner to quickly tell if it is likely to be ableto handle the domain. For example, this version of the briefcase world requires conditionale�ects, so a straight STRIPS-representation planner would not be able to handle it. Akeyword (symbol starting with a colon) used in a :requirements �eld is called a requirementag; the domain is said to declare a requirement for that ag.All domains include a few built-in types, such as object (any object), and number.Most domains de�ne further types, such as location and physob (\physical object") inthis domain.A constant is a symbol that will have the same meaning in all problems in this domain.In this case B | the briefcase | is such a constant. (Although we could have a typebriefcase, we don't need it, because there's only one briefcase.)Inside the scope of a domain declaration, one speci�es the action schemata for thedomain.(:action mov-b:parameters (?m ?l - location):precondition (and (at B ?m) (not (= ?m ?l))):effect (and (at b ?l) (not (at B ?m))(forall (?z)(when (and (in ?z) (not (= ?z B)))(and (at ?z ?l) (not (at ?z ?m)))))))This speci�es that the briefcase can be moved from location ?m to location ?l, wherethe symbols starting with question marks denote variables. The preconditions dictate thatthe briefcase must initially be in the starting location for the action to be legal and that it isillegal to try to move the briefcase to the place where it is initially. The e�ect equation saysthat the briefcase moves to its destination, is no longer where it started, and everythinginside the briefcase is likewise moved. 2

(:action put-in:parameters (?x - physob ?l - location):precondition (not (= ?x B)):effect (when (and (at ?x ?l) (at B ?l))(in ?x)))This action de�nition speci�es the e�ect of putting something (not the briefcase (B)itself!) inside the briefcase. If the action is attempted when the object is not at the sameplace (?l) as the briefcase, then there is no e�ect.(:action take-out):parameters (?x - physob):precondition (not (= ?x B)):effect (not (in ?x)))The �nal action provides a way to remove something from the briefcase.Pednault's example problem supposed that at home one had a dictionary and a briefcasewith a paycheck inside it. Furthermore, suppose that we wished to have the dictionary andbriefcase at work, but wanted to keep the paycheck at home. We can specify the planningproblem as follows:(define (problem get-paid)(:domain briefcase-world)(:init (place home) (place office)(object p) (object d) (object b)(at B home) (at P home) (at D home) (in P))(:goal (and (at B office) (at D office) (at P home))))One could then invoke a planner by typing something like (graph-plan 'get-paid).The planner checks to see if it can handle the domain requirements and if so, plans.3 Syntactic NotationOur notation is an Extended BNF (EBNF) with the following conventions:� Each rule is of the form <syntactic element> ::= expansion.� Angle brackets delimit names of syntactic elements.� Square brackets ([and]) surround optional material. When a square bracket has asuperscripted requirement ag, such as:[(:types ...)](:typing)it means that the material is includable only if the domain being de�ned has declareda requirement for that ag. See Section 15.3

� Similarly, the symbol ::= may be superscripted with a requirement ag, indicatingthat the expansion is possible only if the domain has declared that ag.� An asterisk (*) means \zero or more of"; a plus (+) means \one or more of."� Some syntactic elements are parameterized. E.g., <list (symbol)> might denote alist of symbols, where there is an EBNF de�nition for <list x> and a de�nition for<symbol>. The former might look like<list x> ::= (x*)so that a list of symbols is just (<symbol>*).� Ordinary parenthesis are an essential part of the syntax we are de�ning and have nosemantics in the EBNF meta language.As we said in Section 1, PDDL is intended to express only the physics of a domain, andwill require extension to represent the search-control advice that most planners need. Werecommend that all such extensions obey the following convention: An extended PDDLexpression is an ordinary PDDL expression with some subexpressions of the form ("" ea), where e is an unextended PDDL expression and a is some advice. The \""" notationindicates that we are ascending to a \meta" level. The word \expression" here is interpretedas \any part of a PDDL expression that is either a single symbol or an expression of theform (...)." For instance, the de�nition of mov-b given above might be enhanced for aparticular planner thus:(:action mov-b:parameters (?m ?l - location):precondition (and (^^ (at B ?m)(goal-type: achievable))(^^ (not (= ?m ?l))(goal-type: filter))):effect (and (at b ?l) (not (at B ?m))(forall (?z)(when (and (in ?z) (not (= ?z B)))(and (^^ (at ?z ?l) :primary-effect)(^^ (not (at ?z ?m)) :side-effect))))))to indicate that1. (:primary-effect vs. :side-effect): when the planner encounters a goal of theform (at ?z ?l), it may introduce a mov-b action into a plan in order to achievethat goal, but a goal of the form (not (at ?z ?m)), while it may be achieved by anaction of this form introduced for another reason, should not cause a mov-b action tobe created;2. (di�erent goal-types): If an action such as (mov-b b1 place2 place2) arises, itshould be rejected immediately, rather than giving rise to a subgoal (not (= place2place2)). 4

Adopting this convention should improve the portability of plan-problem collections,because a planner using PDDL can be written to ignore all advice in unexpected contexts.In the future, we may introduce a more complex syntax for attaching advice to be used bydi�erent planners, but for now the only general principle is that an expression of the form("" e a) can occur anywhere, and will mean exactly the same thing as e, as far as domainphysics are concerned.Comments in PDDL begin with a semicolon (\;") and end with the next newline. Anysuch string behaves like a single space.4 DomainsWe now describe the language more formally. The EBNF for de�ning a domain structureis: <domain> ::= (define (domain <name>)[<extension-def>][<require-def>][<types-def>]:typing[<constants-def>][<domain-vars-def>]:expression�evaluation[<predicates-def>][<timeless-def>][<safety-def>]:safety�constraints<structure-def>�)<extension-def> ::= (:extends <domain name>+)<require-def> ::= (:requirements <require-key>+)<require-key> ::= See Section 15<types-def> ::= (:types <typed list (name)>)<constants-def> ::= (:constants <typed list (name)>)<domain-vars-def> ::= (:domain-variables<typed list(domain-var-declaration)>)<predicates-def> ::= (:predicates <atomic formula skeleton>+)<atomic formula skeleton>::= (<predicate> <typed list (variable)>)<predicate> ::= <name><variable> ::= ?<name><timeless-def> ::= (:timeless <literal (name)>+)<structure-def> ::= <action-def><structure-def> ::=:domain�axioms <axiom-def><structure-def> ::=:action�expansions <method-def>Although we have indicated the arguments in a particular order, they may come in anyorder, except for the (domain ...) itself.Proviso: For the convenience of some implementers, we de�ne a \strict subset" of PDDLthat imposes the following additional restrictions:5

1. All keyword arguments (for (define (domain ...)) and all similar constructs) mustappear in the order speci�ed in the manual. (An argument may be omitted.)2. Just one PDDL de�nition (of a domain, problem, etc.) may appear per �le.3. Addenda (see Section 11) are forbidden.Names of domains, like other occurrences of syntactic category <name>, are strings ofcharacters beginning with a letter and containing letters, digits, hyphens (\-"),and under-scores (\ "). Case is not signi�cant.If the :extends argument is present, then this domain inherits requirements, types,constants, actions, axioms, and timelessly true propositions from the named domains, whichare called the ancestors of this domain.The :requirements �eld is intended to formalize the fact that not all planners canhandle all problems statable in the PDDL notation. If the requirement is missing (and notinherited from any ancestor domain), then it defaults to :strips. In general, a domain istaken to declare every requirement that any ancestor declares. A description of all possiblerequirements is found in Section 15.The :types argument uses a syntax borrowed from Nisp [7] that is used elsewhere inPDDL (but only if :typing is handled by the planner.<typed list (x)> ::= x�<typed list (x)> ::=:typing x+- <type> <typed list(x)><type> ::= <name><type> ::= (either <type>+)<type> ::=:fluents (fluent <type>)A typed list is used to declare the types of a list of entities; the types are preceded bya minus sign (\-"), and every other element of the list is declared to be of the �rst typethat follows it, or object if there are no types that follow it. An example of a <typedlist(name)> is integer float - number physobIf this occurs as a :types argument to a domain, it declares three new types, integer,float, and physob. The �rst two are subclasses of number, the last a subclass of object(by default). That is, every integer is a number, every oat is a number, and every physicalobject is an object.An atomic type name is just a timeless unary predicate, and may be used wherever sucha predicate makes sense. In addition to atomic type names, there are two compound types.(either t1 ...tk) is the union of types t1 to tk. (fluent t) is the type of an object whosevalue varies from situation to situation, and is always of type t. (See Section 12.)The :domain-variables declaration is used for domains that declare the requirementag :expression-evaluation; this requirement, and the accompanying syntactic classdomain-var-declaration, are described in Section 12.The :constants �eld has the same syntax as the :types �eld, but the semantics isdi�erent. Now the names are taken as new constants in this domain, whose types are givenas described above. E.g., the declaration 6

(:constants sahara - theaterdivision1 division2 - division)indicates that in this domain there are three distinguished constants, sahara denoting atheater and two symbols denoting divisions.The :predicates �eld consists of a list of declarations of predicates, once again usingthe typed-list syntax to declare the arguments of each one.The :timeless �eld consists of a list of literals that are taken to be true at all timesin this domain. The syntax <literal(name)> will be de�ned in Section 6. It goes withoutsaying that the predicates used in the timeless propositions must be declared either here orin an ancestor domain. (Built-in predicates such as \=" behave as if they were inherited froman ancestor domain, although whether they actually are implemented this way depends onthe implementation.)The remaining �elds de�ne actions and rules in the domain, and will be given their ownsections.5 ActionsThe EBNF for an action de�nition is:<action-def> ::= (:action <action functor>:parameters (<typed list (variable)>)<action-def body>)<action functor> ::= <name><action-def body> ::= [:vars (<typed list(variable)>)] :existential-preconditions:conditional-effects[:precondition <GD>][:expansion<action spec>]:action�expansions[:expansion :methods]:action�expansions[:maintain <GD>]:action�expansions[:effect <effect>][:only-in-expansions <boolean>]:action�expansionsThe :parameters list is simply the list of variables on which the particular rule operates,i.e., its arguments, using the typing syntax described above. The :vars list are locallybound variables whose semantics are explained below.The :precondition is an optional goal description (GD) that must be satis�ed beforethe action is applied. As de�ned below (Section 6), PDDL goal descriptions are quiteexpressive: an arbitrary function-free �rst-order logical sentence is allowed. If no precondi-tions are speci�ed, then the action is always executable. E�ects list the changes which theaction imposes on the current state of the world. E�ects may be universally quanti�ed andconditional, but full �rst order sentences (e.g., disjunction and Skolem functions) are notallowed. Thus, it is important to realize that PDDL is asymmetric: action preconditionsare considerably more expressive than action e�ects.7

The :effect describes the e�ects of the action. See Section 7.If the domain declares requirement :action-expansions, then it is legitimate to includean :expansion �eld for an action, which speci�es all the ways the action may be carriedout in terms of (presumably simpler) actions. It is also meaningful to impose a constraintthat a <GD> be maintained throughout the execution of an action. See Section 8.An action de�nition must have an :effect or an :expansion, but not both.Free variables are not allowed. All variables in an action de�nition (i.e., in its precon-ditions, maintenance condition, expansion, or e�ects) must be included in the :parameteror :vars list, or explicitly introduced with a quanti�er.:vars is mainly a convenience. Variables appearing here behave as if bound existentiallyin preconditions and universally in e�ects, except that it is an error if more than one instancesatis�es the existential precondition. So, for example, in the following de�nition(:action spray-paint:parameters (?c - color):vars (?x - location):precondition (at robot ?x):effect (forall (?y - physob)(when (at ?y ?x)(color ?y ?c))))if the robot must be in at most one place to avoid an error.All the variables occurring free in the :effect or :action �eld must be bound in the:precondition �eld.The optional argument :only-in-expansions is described in Section 8.6 Goal DescriptionsA goal description is used to specify the desired goals in a planning problem and alsothe preconditions for an action. Function-free �rst-order predicate logic (including nestedquanti�ers) is allowed.<GD> ::= <atomic formula(term)><GD> ::= (and <GD>�)<GD> ::= <literal(term)><GD> ::=:disjunctive�preconditions (or <GD>�)<GD> ::=:disjunctive�preconditions (not <GD>)<GD> ::=:disjunctive�preconditions (imply <GD> <GD>)<GD> ::=:existential�preconditions(exists (<typed list(variable)>�) <GD>)<GD> ::=:universal�preconditions(forall (<typed list(variable)>�) <GD>)<literal(t)> ::= <atomic formula(t)><literal(t)> ::= (not <atomic formula(t)>)<atomic formula(t)> ::= (<predicate> t�)<term> ::= <name> 8

<term> ::= <variable>where, of course, an occurrence of a <predicate> should agree with its declaration in termsof number and, when applicable, types of arguments.Hopefully the semantics of these expresssions is obvious.7 E�ectsPDDL allows both conditional and universally quanti�ed e�ects. The description isstraightforward:<effect> ::= (and <effect>�)<effect> ::= (not <atomic formula(term)>)<effect> ::= <atomic formula(term)><effect> ::=:conditional�effects (forall (<variable>�) <effect>)<effect> ::=:conditional�effects (when <GD> <effect>)<effect> ::=:fluents(change <fluent> <expression>)We assume that all variables must be bound (either with a quanti�er or in the parameterssection of an action de�nition).As in strips, the truth value of predicates are assumed to persist forward in time.Unlike strips, PDDL has no delete list | instead of deleting (on a b) one simply asserts(not (on a b)). If an action's e�ects does not mention a predicate P then the truth ofthat predicate is assumed unchanged by an instance of the action.The semantics of (when P E) are as follows: If P is true before the action, then e�ectE occurs after. P is a secondary precondition [10]. The action is feasible even if P is false,but the e�ect E occurs only if P is true.Fluents are explained in Section 12.8 Action ExpansionsIn many classical hierarchical planners (such as Sipe [12], O-Plan [5], and UMCP [6]) goalsare speci�ed in terms of abstract actions to carry out as well as (or instead of) goals toachieve. A solution to a planning problems is a sequence of actions that jointly compose allthe abstract actions originally requested. PDDL allows for this style of planning by pro-viding an :expansion �eld in action de�nitions, provided the domain declares requirement:action-expansions. The �eld, as described above, is of the form :expansion <actionspec>, where <action spec> has the following syntax:<action spec> ::= <action-term><action spec> ::= (in-context <action spec><action-def body>)<action spec> ::= (choice <action spec>�)<action spec> ::= (forsome (<typed list(variable)>�)<action spec>)9

<action spec> ::= (series <action spec>�)<action spec> ::= (parallel <action spec>�)<action spec> ::= (tag <action-label term>�<action spec><action-label term>�)<action spec> ::=:foreach�expansions(foreach <typed list(variable)><GD> <action spec>)<action spec> ::=:dag�expansions(constrained (<action spec>+)<action constraint>�)<action constraint>::= (in-context <action constraint><action-def body>)<action constraint>::= (series <action constraint>�)<action constraint>::= (parallel <action constraint>�)<action-term> ::= (<action functor> <term>�)<action-label term>::= <action label>| (< <action label>)| (> <action label>)<action label> ::= <name>Extra choices may be added to an action expansion after the action is de�ned, by the useof :methods, as described in Section 11. An action with no expansion is called a primitiveaction, or just a primitive. It is always possible to tell by the action de�nition if the actionis primitive; if all its expansions are de�ned via methods, then the :expansion argumentshould be the symbol :methods.An action may be expanded into a structure of actions, either a series-parallel combi-nation, or, if the domain declares requirement :dag-expansions an arbitrary partial order(with steps labeled by tag). If there is a choice of expansions, it is indicated using choice.A forsome behaves like a choice among all its instances.The only built-in action term is (--), or no-op.Anywhere an action is allowed, the expansion may have an expression of the form(in-context <action spec>:precondition P:maintain M)This construct is used to declare preconditions and maintenance conditions of actions thatare due purely to their occurring in the context of this expansion. (It should not be used torepeat the preconditions associated with the de�nition of the action itself.) For example,to indicate a plan to evacuate an area of friendly forces and then shell it, one might write(series (clear ?area)(in-context (shell ?area):precondition (not (exists (?x - unit)(and (friendly ?x) (in ?x ?area))))))10

As syntactic sugar, PDDL allows you to write (achieve P) as an abbreviation for(in-context (--) :precondition P).The (constrained A C�) syntax allows fairly arbitrary further conditions to be im-posed on an action spec, with labels standing in for actions and their endpoints. The labelsare de�ned by the (tag labels action) construct. A label stands for the whole action (oc-currence) unless it is quali�ed by < or >, in which case it stands for the beginning or endof the action. Inside C, (series l1 l2 ...lk) imposes an additional ordering requirementon the time points tagged l1; : : : ; lk. (in-context (series l1 ...lk) -conditions-) can beused to impose extra conditions (or announce extra e�ects) of the interval corresponding tosuch an additional ordering.For example, to expand an action into four subactions (A), (B), (C), and (D), such that(A) precedes (B) and (D), and (C) precedes (D), with condition (P) maintained from theend of (A) until the end of (D), write:expansion (constrained ((series (tag A (> end-a)) (B))(series (C) (tag (< beg-d) (D) (> end-d))))(in-context (series end-a beg-d end-d):maintain (P)))As an illustration of all this, here is a fragment of the University of Maryland Translogdomain [1], specifying how to unload a atbed truck:(:action unload:parameters (?p - package ?v - vehicle ?l - location):expansion(choice... ; several choices elided(forsome (?c - crane)(in-context(constrained(series (tag (pick-up-package-vehicle?p ?c ?v ?l)(> end-n1))(tag (< beg-n2)(put-down-package-ground?p ?c ?l)))(in-context (series end-n1 beg-n2):maintain (and (at-package ?p ?c)(at-equipment ?c ?l)))):precondition (and (flatbed ?v)(empty ?c)(at-package ?p ?v)(at-vehicle ?v ?l)(at-equipment ?c ?l))))))
11

Note that PDDL does not allow you to specify whether it makes sense to insert steps toachieve an in-context precondition of a choice (as opposed to using it as a \�lter" condition).That falls into the category of advice, which is handled in a planner-speci�c way.The parallel construct imposes no constraints on the execution order of its arguments.However, a label associated with a parallel composition is associated with the �rst action ofthe composition to begin, in the case of a \<" label, or the last action to end, in the case ofa \>." E.g., to indicate that a condition be true from the end of act1 until a set of actionsperformed in parallel with act1 are �nished, write(constrained (tag (parallel (tag (act1) (> end-act1))(act2)...(actN))(> alldone))(in-context (series end-act1 alldone):maintain (condition)))If the domain declares requirement :foreach-expansions, then an action can have anexpansion of the form (foreach (v) P (v) A(v)), where v is a set of typed variables, P (v)is a precondition, and A(v) is an action spec. The idea is to expand the action into zero ormore occurrences of A(v), one for each instance of P (v) that is true before in the situationwhen the expanded action begins execution. (See Appendix A for a precise de�nition ofwhat it means for an action-spec to be satis�ed by an action sequence.)The syntax of the language permits labels to occur inside choice and foreach actionspecs. It is a consequence of the formal semantics of Appendix A that (a) a constraintmentioning a label inside a choice branch that doesn't occur doesn't constrain anything;(b) a constraint mentioning a reference to a label inside a foreach or forsome from outsidedoesn't constrain anything.In Section 5 we mentioned that an action de�nition may contain an argument:only-in-expansions.If this is t (default is nil), then a planner is not allowed to assume that instances of theaction are feasible if its preconditions are satis�ed. Instead, it can include an action ina plan only if it occurs as the expansion of some other action. The intended use of thisnotation is to indicate that we do not really know all the preconditions of the action, justsome standard contexts in which the preconditions are sure to be satis�ed.See Section 11 for a notation that allows cumbersome action expansions to be brokeninto more manageable pieces.9 AxiomsAxioms are logical formulas that assert relationships among propositions that hold withina situation (as opposed to action de�nitions, which de�ne relationships across successivesituations). To have axioms, a domain must declare requirement :domain-axioms.12

<axiom-def> ::= (:axiom <GD>):vars (<typed list (variable)>):context <GD>:implies <literal(term)>)The :vars �eld behaves like a universal quanti�er. All the variables that occur in the axiommust be declared here.For example, we might de�ne the classical blocks-world predicates above and clear asfollows:(:axiom:vars (?x ?y - physob):context (on ?x ?y):implies (above ?x ?y)))(:axiom:vars (?x ?y - physob):context (exists (?z - physob)(and (on ?x ?z) (above ?z ?y))):implies (above ?x ?y))(:axiom:vars (?x - physob):context (or (= ?x Table)(not (exists (?b - block)(on ?b ?x)))):implies (clear ?x))Unless a domain declares requirement :true-negation, not is treated using the tech-nique of \negation as failure" [4]. That means it makes no sense to conclude a negatedformula; they should occur only as deductive goals, when (not g) succeeds if and onlyif g fails. (If g contains variables, the results are unde�ned.) Hence axioms are treateddirectionally, always used to conclude the :implies �eld, and never to conclude a formulafrom the :context �eld. (Of course, whether an axiom is used forward or backward is amatter of advice, and PDDL is silent on this issue.)Another important reason for the directionality of axioms is to avoid overly complex in-teractions with action de�nitions. The rule is that action de�nitions are not allowed to havee�ects that mention predicates that occur in the :implies �eld of an axiom. The intentionis that action de�nitions mention \primitive" predicates like on, and that all changes intruth value of \derived" predicates like above occur through axioms. Without axioms, theaction de�nitions will have to describe changes in all predicates that might be a�ected by anaction, which leads to a complex software engineering (or \domain engineering") problem.If a domain declares requirement :true-negation (which implies :open-world), thenexactly how action de�nitions interact with axioms becomes hard to understand, and themanagement takes no responsibility for the outcome. (For example, if there is an axiom13

P ^Q � R, and an action causes (not R) when P and Q are true, does P become false orQ?)The domain requirement :subgoal-through-axioms indicates that a goal involvingderived predicates may have to be solved by �nding actions to change truth values ofrelated primitive predicates. For example, a goal (above A B) might be achieve by eitherachieving (on A B) or achieving (and (an A Z) (above Z B)) for some Z. A domainthat does not declare this requirement may still have axioms, but they will be used only fortimeless predicates.Note that a given predicate can be in the :implies �eld of more than one axiom.10 Safety ConstraintsA domain declaring requirement :safety-constraints is allowed to specify safety con-straints, de�ned as background goals that must be satis�ed throughout the planning pro-cess. A plan is allowed only if at its end none of these background goals is false. In otherwords, if one of the constraints is violated at some point in the plan, it must become trueagain by the end.<safety-def> ::= (:safety <GD>)For example, one could command a softbot (software robot) to avoid deleting �les thatare not backed up on tape with the following constraint:(:safety(forall (?f)(or (file ?f) (written-to-tape ?f))))As everywhere else in PDDL, free variables are not allowed.It is important to note that safety constraints do not require an agent to make themtrue; rather, the agent must avoid creating new violations of the constraints. For example,if a constraint speci�es that all of my �les be read protected, then the agent would avoidchanging any of my �les to be readable; but if my .plan �le is already readable in the initialstate, then the agent would not protect that �le.For details of safety constraints, please refer to [11].Safety constraints should not be confused with :timeless propositions. (See Section 4.)Timeless propositions are always true in all problems in the domain, and it should beimpossible for any action to change them. Hence no special measures are required to ensurethat they are not violated.11 Adding Axioms and Action Expansions ModularlyAlthough PDDL allows a domain to be de�ned as one gigantic define, it is often moreconvenient to break the de�nition into pieces. The following notation allows adding axiomsand action expansions to an existing domain:14

(define (addendum <name>)(:domain <name>)<extra-def>�)<extra-def> ::= <action-def><extra-def> ::=:domain�axioms <axiom-def><extra-def> ::=:action�expansions <method-def><extra-def> ::=:safety�constraints <safety-def><method-def> ::= (:method <action functor>[:name <name>]:parameters (<typed list (variable)>)<action-def body>Please remember that, as explained in Section 4, in the \strict subset" of PDDL addendaare not allowed.Inside a (define (addendum ...) ...) expression, :actions and :axioms behave asthough they had been included in the original (define (domain ...) ...) expressionfor the domain. :method declarations specify further choice points for the expansion of analready-declared action, almost as though the given <action-def body> included inside achoice in the original expansion of the action. (It doesn't work quite that neatly becausethe parameters may have new names, and because an <action-def body> is not exactlywhat's expected in a choice.)In a method de�nition, the <action-def body> may not have an :effect �eld or an:only-in-expansions �eld.Method names are an aid in describing problem solutions as structures of instantiatedaction schemas. Each action has its own space of method names; there is no need to makethem unique over a domain. If an action has a method supplied in its original de�nition,the name of that method is the same as the name of the action itself.Example:(define (addendum carry-methods):domain translog...(:method CARRY-VIA-HUB:name usual:parameters (?p - package ?tc ?tc - tcenter):expansion (forsome (?hub - hub)(in-context (series (carry-direct ?p ?tc1 ?hub)(carry-direct ?p ?hub ?tc2)):precondition (exists (?city1 ?city2 - city?reg1 ?reg2 - region)(and (in-city ?tc1 ?city1)(in-city ?tc2 ?city2)(in-region ?city1 ?reg1)(in-region ?city2 ?reg2)(serves ?hub ?reg1)15

(serves ?hub ?reg2)(available ?hub))))):precondition (not (hazardous ?p)))...)The reason to give addenda names is so the system will know when an addendum isbeing rede�ned instead of being added for the �rst time. When a (define (addendum N)...) expression is evaluated, all the material previously associated with N is erased beforethe de�nitions are added. The name of an addendum is local to its domain, so di�erentdomains can have addenda with the same name.12 Expression EvaluationIf a domain declares requirement :expression-evaluation, then it supports a built-inpredicate (eval E V) that succeeds if the value of expression E is V . E has Lisp-likesyntax for expressions, which should at least allow functions +, -, *, and /; this argumentposition is said to be an evaluation context. Evaluation contexts are the only places inPDDL where functions are allowed, except for terms denoting actions. E should notinclude any variables; if it does, the goal will fail in an implementation-dependent way.(Some implementations will distinguish between failure due to E's value being di�erentfrom V and failure due to the inability to generate all instances of E. Cf. equation,below.)Another evaluation context is the argument to (test E). Here E is an expressionwhose main functor is one of =, >, <, >=, or <=. The expression is evaluated, and the goalsucceeds if it evaluates to T.The goal (bounded-int I L H) succeeds if I is an integer in the interval [L;H]. Land H are evaluation contexts.The goal (equation L R) tries to bind variables so that L and R are equal. Both Land R are evaluation contexts, but if there is an unbound variable, it is bound to whatevervalue would make L and R evaluate to the same thing. E.g., if ?y has been bound to 6,and ?x is unbound, then (equation (+ ?x 2) (- ?y 3)) will bind ?x to 1. Don't expectan implementation to do anything fancy here; every implementation should at least handlethe case where there is a single occurrence of an unbound variable, buried at most insidean expression of the form (+ ...).The domain-vars de�ned in (define (domain...) ...) expressions are evaluated inevaluation contexts. The syntax is<domain-vars-def> ::= (:domain-variables<typed list(domain-var-declaration)><domain-var-declaration>::= <name> | (<name> <constant>)E.g.:(define (domain cat-in-the-hat)(:types thing)(:domain-variables (numthings 2) - integer)16

...(:axiom:vars (?i - integer):context (bounded-int ?i 1 numthings):implies (thing ?i)))A variable like this is scoped over the entire domain, and is inherited by domains thatextend this one. If the variable is redeclared in an extending theory, it shadows the originalbinding.If a domain declares requirement :fluents, then it supports the type (fluent <type>),plus some new predicates. A uent is a term with time-varying value (i.e., a value that canchange as a result of performing an action). The proposition (current-value F V) is truein a situation if V is the current value of F in that situation. Further, if a planner handlesthe :fluents requirement, then there must be a built-in predicate (fluent-eval E V),which succeeds if V is the value of E, using the current value of any uent that occurs inE (and otherwise behaving like eval). Similarly, there is a predicate fluent-test thatis to test as fluent-eval is to eval. In addition, there is an e�ect (change F E) thatchanges the value of uent F to E. E is an evaluation context, and its value is computedwith respect to the situation obtaining before the action (cf. when).(:action pour:parameters (?source ?dest - container):vars (?sfl ?dfl - (fluent number) ?dcap - number):precondition (and (contents ?source ?sfl)(contents ?dest ?dfl)(capacity ?dest ?dcap)(fluent-test (<= (+ ?sfl ?dfl) ?dcap))):effect (when (and (contents ?source ?sfl)(contents ?dest ?dfl))(and (change ?sfl 0)(change ?dfl (+ ?dfl ?sfl)))))One of the additional built-in functions that comes with requirement :fluents is (sumv p e). This is a uent whose value in a situation isX� such that �(p) is true �(e)v declares all the variables of p that aren't already bound. e is a uent-evaluation context.For example,(fluent-eval (sum (?p - person ?w - number)(and (aboard ?p ?elevator)(weight ?p ?w))?w))succeeds if ?w is the total weight of all the people on a ?elevator (a variable which mustbe bound somewhere else). Note that the value of this uent depends on who is on the17

elevator, not on what their mass is, because in this formulation it's assumed not to change.If dieting is to be taken into account, then we would write(fluent-eval (sum (?p - person ?w - (fluent number))(and (aboard ?p ?elevator)(weight ?p ?w))?w))where now ?w is a uent itself.13 ProblemsA problem is what a planner tries to solve. It is de�ned with respect to a domain. A problemspeci�es two things: an initial situation, and a goal to be achieved. Because many problemsmay share an initial situation, there is a facility for de�ning named initial situations.<problem> ::= (define (problem <name>)(:domain <name>)[<require-def>][<situation>][<object declaration>][<init>]<goal>+[<length-spec>]<situation> ::= (:situation <initsit name>)<object declaration> ::= (:objects <typed list (name)>)<init> ::= (:init <literal(name)>+)<initsit name> ::= <name><goal> ::= (:goal <GD>)<goal> ::=:action�expansions(:expansion <action spec(action-term)>)<length-spec> ::= (:length [(:serial <integer>)] [(:parallel <integer>)])Initial situations are de�ned thus:<initsit def> ::= (define (situation <initsit name>)(:domain <name>)[<object declaration>][<init>])A problem de�nition must specify either an initial situation by name, or a list of initiallytrue literals, or both. If it speci�es both, then the literals are treated as e�ects (adds anddeletes) to the named situation. The <initsit name> must be a name de�ned either bya prior situation de�nition or a prior problem de�nition. The :objects �eld, if present,describes objects that exist in this problem or initial situation but are not declared in the:constants �eld of its domain or any superdomain. Objects do not need to be declared ifthey occur in the :init list in a way that makes their type unambiguous.18

All predicates which are not explicitly said to be true in the initial conditions are assumedby PDDL to be false, unless the domain declares requirement :open-world.For example,(define (situation briefcase-init)(:domain briefcase-world)(:objects P D)(:init (place home) (place office)))(define (problem get-paid)(:domain briefcase-world)(:situation briefcase-init)(:init (at B home) (at P home) (at D home) (in P))(:goal (and (at B office) (at D office) (at P home))))The :goal of a problem de�nition may include a goal description or (if the domainhas declare the requirement :action-expansions) an expansion, or both. A solution to aproblem is a series of actions such that (a) the action sequence is feasible starting in thegiven inital situation situation; (b) the :goal, if any, is true in the situation resulting fromexecuting the action sequence; (c) the :expansion, if any, is satis�ed by the series of actions(in the sense explained in Appendix A).For instance, in the transportation domain, one might have the problem(define (problem transport-beans)(:domain transport)(:situation standard-network)(:init (beans beans27)(at beans27 chicago))(:expansion (constrained (tag (carry-in-trainbeans27 chicago newyork)(> end))(in-context end:precondition (not (spoiled beans27))))))The :requirements �eld of a problem de�nition is for the rare case in which the goalor initial conditions speci�ed in a problem require some kind of expressiveness that is notfound in the problem's domain.The :length �eld of a problem de�nition declares that there is known to be a solutionof a given length; this may be useful to planners that look for solutions by length.Unlike addendum names (see Section 11), problem names are global. Exactly how theyare passed to a planner is implementation-dependent.14 Scope of NamesHere is a table showing the di�erent kinds of names and over what scope they are bound19

Name type ScopeReserved word PDDL languageDomain name GlobalType Domain, inheritedConstant Domain, inheritedDomain variable Domain, inheritedPredicate Domain, inheritedAction functor Domain, inheritedAddendum Domain, localSituation name Domain, inheritedProblem name GlobalMethod name Per action functorNames with scope \domain, inherited" are visible in a domain and all its descendants.Names with scope \domain, local" are visible within a domain but are not visible in descen-dant domains. Method names are a documentation convenience, and need have no scopeexcept that of the functor of which they are methods.There is limited possibility of overloading names in PDDL. The same name may beused for a global-scope entity (e.g., a problem) and a domain-scope entity (e.g., a predicate).But the same domain-scoped name cannot be used for two di�erent kinds of entity. Forinstance, the same name cannot be used for a type and an action.The rules for method names are looser, because they are not true names. The onlyrestriction is that two distinct methods for the same action may not have the same name.15 Current Requirement FlagsHere is a table of all requirements in PDDL 0.0. Some requirements imply others; someare abbreviations for common sets of requirements. If a domain stipulates no requirements,it is assumed to declare a requirement for :strips.

20

Requirement Description:strips Basic STRIPS-style adds and deletes:typing Allow type names in declarations of variables:disjunctive-preconditions Allow or in goal descriptions:equality Support = as built-in predicate:existential-preconditions Allow exists in goal descriptions:universal-preconditions Allow forall in goal descriptions:quantified-preconditions = :existential-preconditions+ :universal-preconditions:conditional-effects Allow when in action e�ects:action-expansions Allow actions to have :expansions:foreach-expansions Allow actions expansions to use foreach(implies :action-expansions):dag-expansions Allow labeled subactions(implies :action-expansions):domain-axioms Allow domains to have :axioms:subgoal-through-axioms Given axioms p � q and goal q, generate subgoal p:safety-constraints Allow :safety conditions for a domain:expression-evaluation Support eval predicate in axioms(implies :domain-axioms):fluents Support type (fluent t).Implies :expression-evaluation:open-world Don't make the \closed-world assumption" for allpredicates | i.e., if an atomic formula is notknown to be true, it is not necessarily assumed false:true-negation Don't handle not using negation as failure,but treat it as in �rst-order logic(implies :open-world):adl = :strips + :typing+ :disjunctive-preconditions+ :equality+ :quantified-preconditions+ :conditional-effects:ucpop = :adl + :domain-axioms+ :safety-constraints16 The Syntax CheckerThis section describes how to run the PDDL syntax checker once you have downloaded thetar distribution �le.The �le pddl.system contains a Kantrowitz-defsystem de�nition of pddl-syntax-checkand pddl-solution-check, which are the syntax checker and solution checker, respectively.Adjust the directory names in the calls to MK:DEFSYSTEM, then load in pddl.system, and do(MK:COMPILE-SYSTEM 'PDDL-SYNTAX-CHECK)21

If you compile and load a �le full of PDDL de�nitions, then the domain will be de�nedas you expect. However, this works only if the �le contains no syntactic errors. To �nd andeliminate errors, use the function(PDDL-FILE-SYNCHECK <file>)This will create a new �le with extension \.chk" which is a pretty-printed version ofthe input, with all syntactic errors agged thus:<< error-description: thing>>where "thing" is a subexpression and "error-description" says what's wrong with it.The idea is that the \.chk" �le plays the role of the \.log" �le in LaTeX. Instead of linenumbers the system just prints the entire input with errors agged. How well this worksdepends partly on the quality of the pretty-printer.If the global variable STRICT* is set to T, the syntax checker will ag violations of\strictness" as de�ned in Section 4.The syntax checker does a pretty thorough job, although there are a few gaps. In orderto check for correct number of arguments to predicates and such, it's necessary to storeinformation about domains as they are checked, so we have gone all the way, and writtenthe syntax checker in such a way that it stores all the information about a domain invarious data structures, whether the checker itself needs the information or not. Hence agood way to implement a planner that uses the PDDL notation is to start with the internaldata structures containing the information about a domain, and add whatever indexes theplanner needs for e�ciency.To avoid collisions with users' code, these data structures are not stored in any placethat is visible by accident (such as symbol property lists). There is a global hash tablePDDL-SYMBOL-TABLE* that contains all global bindings. Domains are stored in this ta-ble, and then symbols with domain scope are stored in binding tables associated with thedomain.17 The Solution CheckerThe solution checker is another Lisp program. To compile and load it, follow the instructionsfor the syntax checker, but do (MK:COMPILE-SYSTEM 'PDDL-SOLUTION-CHECK) at the end.A solution to a PDDL problem is a pair of items:1. A primitive action sequence, i.e., a list of actions that have no expansions.2. A list of nonprimitive actions, called expansion hints.The second component may be absent. The �rst may, of course, be empty, but only if theproblem is trivial.Suppose problem P has initial situation S, :goal G, and :expansion E. A solutionwith action sequence A and hints H solves P if and only if all of the following are true:1. A is feasible starting in situation S, and in the situation resulting from executing A,G is true. 22

2. E, and, if present, H are executed by some (not necessarily contiguous) subsequenceof A.3. Every action in A that is declared :only-in-expansions occurs in one of the subse-quences instantiating E or H.To run the solution checker, �rst load the domain of the problem in (using PDDL-FILE-SYNCHECK),then call (SOLUTION-CHECK A H P)where A is the action sequence, H are the hints, and P is a problem (or problem name). Itreturns T if it can verify the solution, NIL if it can't. It may print some helpful messages aswell.As of Release 1.0, the solution checker does not actually check for the presence of actionexpansions. So the H argument is ignored.If the problem de�nition occurs in a �le by itself (p�le), and a solution occurs in a �leby itself (s�le), then the procedure(SOLUTION-FILE-CHECK s�le p�le)will read the �les, de�ne the problem, and run SOLUTION-CHECK on the solution in s�le,which must be in the form(step1step2...stepk)A Formal De�nition of Action ExpansionsAn anchored action sequence is a sequence hS0; q1; : : : ; qki, where S0 is a situation, q1; : : : ; qkare ground action terms, and qi+1 is feasible in the situation resulting from executingq1; : : : ; qi starting in S0. We call this situation resultdom (S0; hq1; : : : ; qii), and de�ne itin the usual way. The subscript dom refers to the domain with respect to which result isde�ned. In what follows, we will abbreviate resultdom (S0; hq1; : : : ; qii) as Si.A realization within domain dom of an action spec A in the anchored action sequencehS0; q1; : : : ; qki is a mapping R whose domain is the set of ordered pairs hE; �i, where E is asubexpression of A (de�ned by position, so two di�erent occurrences of the same expressioncount as di�erent) or an action tag, and � is a substitution; and whose range is a set ofunions of closed intervals of the real interval [0; k]. (Not the integer interval!)A realization R of A in hS0; q1; : : : ; qki satis�es subexpression E of A with respect tosubstitution �, if and only if one of the following is true:1. E is an action-label term.2. E is an occurrence of the term (--), and there is some i; 0 � i � k such thatR(E; �) = [i; i]. 23

3. E is a primitive action term other than (--), and there is some i; 1 � i � k such that�(E) = qi, and R(E; �) = [i� 1; i].4. E is a nonprimitive action term, with �(E) variable-free, and there is an expansion A0in dom of �(E) (that is, an :expansion from the :action de�ning E or a :method forE), and a realization R0 within dom of �(E) in hS0; q1; : : : ; qki, such that R(E; �) =R0(�(E); ;).5. E =(series E1 : : : Em), and for all i, 1 � i � m� 1, R satis�es Ei with respect to�, and for all i; j; 1 � i < j �m, and for all xi 2 R(Ei; �); xj 2 R(Ej ; �); xi � xj; andR(E; �) = [1�i�mR(Ei; �).6. E =(parallel E1 : : : Em), and for all 1 � i; j � m, R satis�es Ei with respect to�; and R(E; �) = [1�i�mR(Ei; �).7. E =(in-context E1 a1 : : : al), and R satis�es E1 with respect to �, with R(E; �) =R(E1; �) and, for each ai:� If ai = :precondition C, then C is true in SL.� If ai = :maintain C, then C is true in Ss for all integer s 2 [L;H].where L = min(R(E1; �)) and H = max(R(E1; �)).8. E =(choice E1 : : : Em), and for some i, 1 � i � m, R satis�es Ei with respect to�, and R(E; �) = R(Ei; �).9. E =(forsome vars E1), and there is a substitution �0 extending � by binding vars,such that R satis�es E1 with respect to �0, and R(E; �) = R(E1; �0).10. E =(foreach vars P E1), and there is a set X of extensions to � such that for all�0 2 X, �0(P) is ground, such that if [L;H] = R(E; �), thenL = [1�i�mR(Ei; �0)andX = f�0 : �0 extends � by binding vars to make �0(P) ground and true in SLg11. E =(tag l1 : : : ll E1 ll+1 : : : lm), and R satis�es E1 with respect to �, with R(E; �) =R(E1; �), and for all i; 1 � i � m,� If li = (< l), then R(l; �) = [L;L].� If li = (> l), then R(l; �) = [H;H].� Otherwise, R(l; �) = [L;H].where L = min(R(E1; �)) and H = max(R(E1; �)).12. E =(constrained E0 E1 : : : Em), and for all i; 0 � i � m, R satis�es Ei withrespect to � and R(Ei; �) � R(E0; �); and R(E; �) = R(E0; �).24

If R(E; �) is not given a value by repeated application of the rules in the list, then R(E; �) =;. Finally, an anchored action sequence satis�es an action spec if the action spec has arealization into the action sequence that satis�es the entire action spec.Note that the formal de�nition makes R(E; �) = ; if there is no occurrence of E insidea foreach or forsome yielding substitution �, or if no action corresponding to E occurs inthe action sequence. Hence if an action spec has references to tags from contexts that makeno sense, they will be interpreted as the empty set, and be ignored if used in constraints.(Implementators may not want to implement these semantics.)

25

References[1] Scott Andrews, Brian Kettler, Kutluhan Erol, and James Hendler. Um Translog: APlanning Domain for the Development and Benchmarking of Planning Systems. 1995.[2] A. Barrett, D. Christianson, M. Friedman, K. Golden, C. Kwok, J.S. Penberthy, Y. Sun,and D. Weld. UCPOP user's manual, (version 4.0). Technical Report 93-09-06d, Uni-versity of Washington, Department of Computer Science and Engineering, November1995. Available via FTP from pub/ai/ at ftp.cs.washington.edu.[3] Jim Blythe, Oren Etzioni, Yolanda Gil, Robert Joseph, Dan Kahn, Craig Knoblock,Steven Minton, Alicia P�erez, Scott Reilly, Manuela Veloso, and Xuemei Wang. Prodigy4.0: The manual and tutorial. Technical Report CMU-CS-92-150, Carnegie MellonUniversity, 1992.[4] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and DataBases, pages 293{322. Plenum Publishing Corporation, New York, NY, 1978.[5] K. Currie and A. Tate. O-Plan: the open planning architecture. Arti�cial Intelligence,52(1):49{86, November 1991.[6] K. Erol, J. Hendler, and D. Nau. UMCP: A sound and complete procedure for hierar-chical task-network planning. In Proc. 2nd Intl. Conf. on AI Planning Systems, pages249{254, June 1994.[7] Drew McDermott. Revised Nisp Manual. Technical Report 642, Yale Computer ScienceDepartment, 1988.[8] Drew McDermott. A Heuristic Estimator for Means-ends Analysis in Planning. InProc. International Conference on AI Planning Systems 3, pages 142{149, 1996.[9] E. Pednault. Synthesizing plans that contain actions with context-dependent e�ects.Computational Intelligence, 4(4):356{372, 1988.[10] E. Pednault. ADL: Exploring the middle ground between STRIPS and the situationcalculus. In Proc. 1st Int. Conf. on Principles of Knowledge Representation and Rea-soning, pages 324{332, 1989.[11] Dan Weld and Oren Etzioni. The �rst law of robotics (a call to arms). In Proc. 12thNat. Conf. on AI, pages 1042{1047, 1994.[12] David Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm.Morgan Kaufmann Publishers, Inc, 1988.
26

