
The 2014 International Planning Competition

Description of Participating Planners

Deterministic Track

i

ii

The Eighth International Planning Competition
Description of Participant Planners of the Deterministic Track
June, 2014

Mauro Vallati m.vallati@hud.ac.uk
Lukáš Chrpa l.chrpa@hud.ac.uk
Thomas L. McCluskey t.l.mccluskey@hud.ac.uk

Planning, Autonomy and Representation of Knowledge group (PARK)
University of Huddersfield
Queensgate, Huddersfield
HD1 3DH, West Yorkshire
United Kingdom

iii

iv

Preface

This booklet summarizes the participants on the Deterministic Track of the International
Planning Competition (IPC) 2014. Papers describing all the participating planners are
included.
After a 3 years gap, the 2014 edition of the IPC involved a total of 67 planners, some of
them versions of the same planner, distributed among four tracks: the sequential
satisficing track (20 planners submitted out of 43 registered), the sequential multicore
track (9 planners submitted out of 17 registered), the sequential optimal track (17
planners submitted out of 34 registered), the sequential agile track (15 planners
submitted out of 21 registered) and the temporal satisficing track (6 planners submitted
out of 9 registered). Three more tracks were open to participation: temporal optimal,
preferences satisficing and preferences optimal. Unfortunately the number of submitted
planners (at most 2 planners in each track) did not allow these tracks to be finally
included in the competition.
A total of 66 people were participating, grouped in 31 teams. Participants came from
Australia, Canada, Czech Republic, Finland, France, Germany, Iran, Israel, New
Zealand, Spain, Switzerland, United Kingdom, Venezuela, USA.
For the sequential tracks 14 domains, with 20 problems each, were selected, while the
temporal one had 10 domains, also with 20 problems each. Both new and past domains
were included. As in previous competitions, domains and problems were unknown for
participants and all the experimentation was carried out by the organizers.
To run the competition a cluster of 256 cores (AMD 2.39 Ghz QuadCore) using Linux
was set up. Up to 1800 seconds, 4 GB of RAM memory and 200 GB of hard disk were
available for each planner to solve a problem.
This resulted in 7400 computing hours (about 309 days), plus a high number of hours
devoted to preliminary experimentation with new domains, reruns and bugs fixing.
The detailed results of the competition, the software used for automating most tasks, the
source code of all the participating planners and the description of domains and
problems can be found at the competition’s web page:

http://helios.hud.ac.uk/scommv/IPC-14

Huddersfield, United Kingdom, June 2014

Mauro Vallati, Lukáš Chrpa, Thomas L. McCluskey
The IPC 2014, deterministic track, organisers

v

http://helios.hud.ac.uk/scommv/IPC-14

vi

Acknowledgement

We want to thank all the people that submitted a planner to the deterministic track of the
Eighth International Planning Competition.
Also, to all of you that suggested a domain to be included in the tracks, even if some
were not accepted: Patrik Haslum submitted the GED domain; Tomàs de la Rosa and
Raquel Fuentetaja sent us the Pizza and Childsnack domains; Jörg Hoffmann
provided the Crisp domain; Jussi Rintanen is behind the Maintenance domain; Jaanus
Piip and Juhan Ernits submitted the Nurse Rostering domain; Héctor Luis Palacios
prepared a large number of conformant domains, such as Grid, Cube, Emptyroom and
Bomb; Nathan Robinson, Christian Muise and Charles Gretton sent us the Cave
Diving domain; William Westerman for the Airport domain and, last but not least,
Simon Parkinson provided the domains Calibration and Uncertainity.
We do also want to thank Daniel L. Kovacs for making available a couple of
manuscripts with a formal specification of PDDL 3.1.
We do feel in debt with Ibad Kureshi, John Brennan and, in general, to the High
Performance Computing Research Group (HPC) of the University of Huddersfield for
their assistance in configuring and making available the DES system and, moreover, for
their continuous support during the testing phase.
Very importantly as well, to the IPC council for providing extensive comments and
offering a lot of helpful suggestions.
Our most sincere thanks to Carlos Linares López and Sergio Jimenez Celorrio for
inviting us to their university, their assistance with so much insight and all the material
produced at the previous IPC.
We also thank the Sportsman Pub in Huddersfield, which supported us with good beer
and a comfortable place for taking important decisions.
Finally, we have to acknowledge the sponsorship of the University of Huddersfield.

Huddersfield, United Kingdom, June 2014

Mauro Vallati, Lukáš Chrpa, Thomas L. McCluskey
The IPC 2014, deterministic track, organisers

vii

viii

Index

1. Sequential Satisficing track

ArvandHerd ... 1
BFS(f) .. 6
BiFD .. 8
DAE-YAHSP ... 10
DPMPlan ... 13
Fast Downward Cedalion .. 17
Fast Downward Stone Soup 2014 ... 28
Fast Downward Uniform ….. 32
Freelunch ... 33
IBACOP .. 35
IBACOP2 .. 35
Jasper ... 39
Mercury ... 43
MIPlan ... 13
NUCELAR .. 48
Planets ... 52
RPT …... 55
USE …... 61
YAHSP3 ….. 64
YAHSP3-MT …... 64

2. Sequential Agile track

ArvandHerd ... 1
BFS(f) .. 6
Fast Downward Cedalion .. 17
Freelunch ... 33
IBACOP .. 35
IBACOP2 .. 35
Jasper ... 39
Madagascar …... 66
Madagascar-pC …... 66
Mercury ... 43
PROBE …... 6
SIW …... 6
USE …... 61
YAHSP3 ….. 64
YAHSP3-MT …... 64

ix

3. Sequential Optimal track

AllPACA ….. 71
cGamer ….. 74
DPMPlan ... 13
Dynamic-Gamer ….. 77
Fast Downward Cedalion .. 17
Gamer ….. 77
hflow …... 85
h++ ….. 87
h++

ce ….. 87
Metis ….. 88
MIPlan ... 13
NUCELAR .. 48
RIDA …... 93
Rational Lazy A* ….. 97
SPM&S …... 101
SymBA*-1 ….. 105
SymBA*-2 ….. 105

4. Sequential Multicore track

ArvandHerd ... 1
DAE-YAHSP ... 10
IBACOP .. 35
IBACOP2 .. 35
MIPlan ... 13
NUCELAR .. 48
Planets ... 52
USE …... 61
YAHSP3-MT …... 64

5. Temporal Satisficing track

DAE-YAHSP ... 10
ITSAT ….. 110
tBurton …... 118
Temporal Fast Downward …... 121
YAHSP3 ….. 64
YAHSP3-MT …... 64

x

ArvandHerd 2014
Richard Valenzano, Hootan Nakhost*, Martin Müller, Jonathan Schaeffer

University of Alberta
{valenzan, nakhost, mmueller, jonathan}@ualberta.ca

Nathan R. Sturtevant
University of Denver
sturtevant@cs.du.edu

Abstract

ArvandHerd is a sequential satisficing planner that uses a
portfolio consisting of LAMA and Arvand. This planner won
the multi-core track of the 2011 International Planning Com-
petition. In this paper, we describe the various components of
ArvandHerd, the updates made for the 2014 competition,
and the modifications that allow ArvandHerd to compete
in the single-core sequential satisficing tracks.

1 Introduction
In the 2011 International Planning Competition, the winner
of the multi-core track was a planner called ArvandHerd.
This planner uses a portfolio-based approach to combine the
strengths of the complementary approaches of random-walk
and best-first search based planning. This is accomplished
by simultaneously using the LAMA (Richter and Westphal
2010) and Arvand (Nakhost and Müller 2009) planners.

An updated version of this planner has been submitted to
the 2014 competition. ArvandHerd 2014 is very similar
to the planner which competed in 2011 and uses the same
code base. However, it has been updated in several ways.
These updates include the addition of techniques to LAMA
including ε-greedy node selection, aggressive restarting, and
diverse any-time search. We have also modified the planner
so that it could compete in the single-core sequential sat-
isficing tracks. In this paper, we will briefly consider the
various components of ArvandHerd, describe the newly
added techniques, and look at how the standard multi-core
version of this planner has been modified so that it can com-
pete in the single-core tracks.

2 The Components of ArvandHerd
ArvandHerd is a portfolio-based planner that uses a va-
riety of planning techniques. In this section, we will briefly
describe those components that have remained mostly the
same from the 2011 version of this planner.

2.1 The ArvandHerd Code Base
The version of ArvandHerd submitted to the 2011 compe-
tition ran multiple threads from a single C++ binary. This is
because ArvandHerd used both Arvand and LAMA, and

* Now at Google.

Arvand had been built on top of LAMA 2008. Though there
have been updates to each of these planners in LAMA 2011
(Richter, Westphal, and Helmert 2011) and Arvand 2013
(Nakhost and Müller 2013), the version of ArvandHerd
submitted to the 2014 competition is still based on the LAMA
2008 code base.

The only component of this code base which was updated
is the PDDL to SAS+ (Bäckström and Nebel 1995) transla-
tor, and the knowledge compilation step needed for the land-
mark count heuristic (Richter, Westphal, and Helmert 2011)
used in LAMA. In the 2011 competition, ArvandHerd used
the translator and knowledge compilation code in LAMA
2008. These pieces crashed on some of the problems in the
2011 competition, and so we have used the translator and
knowledge compilation code from the version of Fast Down-
ward used in IPC 2011. For details on how this translation
is performed see (Helmert 2009). Details on the knowledge
compilation step can be found in (Helmert 2006).

2.2 LAMA

LAMA is the winner of both the 2008 and 2011 IPC compe-
titions, and is therefore a natural candidate for use as the
greedy best-first search planner included in the portfolio.
This planner uses a number of different techniques includ-
ing multiple heuristics, preferred operators, deferred heuris-
tic evaluation, and Restarting Weighted A* (RWA*). For a
more complete description of this planner, see (Richter and
Westphal 2010).

For the 2011 competition, a few additions were made to
LAMA for its use in ArvandHerd. In particular, the plan-
ner was set to use random operator ordering, to cache the
heuristic values of states in between iterations of the RWA*
search, and the planner was modified so that a single call for
the computation of the FF heuristic could be used to return
both the action-cost aware or action-cost unaware versions
of this heuristic. ArvandHerd also added a memory usage
estimator to LAMA. This system estimates how much mem-
ory LAMA is using, and it allows the search to be restarted
whenever a given memory limit is reached so that another
parameterization of LAMA can be tried. These additions were
also used in the 2014 version of ArvandHerd. For more
information regarding how LAMA is used in ArvandHerd
see (Valenzano et al. 2012) and (Valenzano et al. 2011).

1

2.3 Arvand
Arvand is a random-walk based planner that has been
shown to be effective in certain domains that are difficult for
best-first search based planners (Nakhost and Müller 2009).
The execution of Arvand consists of a series of search
episodes. Each episode starts by performing a set of ran-
dom walks from the initial state and using the heuristic func-
tion to evaluate the endpoint of each of these random walks.
Once a state with a low heuristic value is found, or after a
certain number of such walks, the search jumps to the end of
the walk on which the best heuristic value was found. The
search episode then continues with a set of random walks
from this state. This process then repeats until either a goal is
found, or enough jumps are made without heuristic progress,
in which case the search starts with a new search episode
from the initial state. For a more thorough description of
Arvand see (Nakhost 2013), (Nakhost and Müller 2009),
(Nakhost and Müller 2013), and (Nakhost, Hoffmann, and
Müller 2012).
Arvand has a number of parameters that allow the user

to control the length of the random walks, the frequency with
which the algorithm jumps during a search episode, and the
frequency with which a search episode is terminated and the
algorithm restarts. Since different parameterizations of the
algorithm are best for different problems, Arvand has been
designed so that a single instance of this planner can use
different configurations in different search episodes. In the
version of Arvand used in the 2011 competition, a config-
uration selection system was used to determine the param-
eterization to use on the next search episode. This system,
which is based on the idea of a multi-armed bandit algorithm
and is also used in ArvandHerd 2014, biases Arvand
to more frequently use those parameterizations which have
previously made the most heuristic progress.
Arvand also uses a second technique for sharing in-

formation across search episodes. This feature, which is
called a walk pool (Nakhost, Hoffmann, and Müller 2012),
stores those search trajectories which made the most search
progress. When starting a new search episode, these trajec-
tories are used to suggest an alternative starting point for
the episode that is deeper into the state-space than the initial
state. For a more in-depth description of how Arvand uses
these features in ArvandHerd see (Valenzano et al. 2012).

2.4 Plan Improvement
In the sequential satisficing and sequential multi-core tracks,
planner evaluation is based on the quality of solutions found.
As such, when competing in these tracks it is critical to use
the time remaining after a first solution is found to find bet-
ter solutions. ArvandHerd uses multiple techniques for
improving solution quality, and in this section we describe
those which remain mostly the same from the version of this
planner that was submitted to IPC 2011.

Aras. ArvandHerd uses a plan post-processing system
called Aras (Nakhost and Müller 2010). The execution of
this system consists of two phases. The first is a linear scan
of a given solution path that looks for actions that can be re-
moved such that the remaining plan is still valid. The second

phase involves the construction of a neighbourhood graph
around the solution path using a combination of forward
search and a backwards, regression-based search. This graph
is built until the number of nodes it contains reaches a given
node limit. A search is then performed which finds the short-
est path in this neighbourhood graph from the initial state to
a goal state.
Aras runs by iterating between these two phases until

some time or memory limit is reached, such that the limit on
the nodes in the neighbourhood graph is increased each time
the neighbourhood graph phase begins. All solutions found
by ArvandHerd using either LAMA or Arvand are fed to
Aras in an effort to improve solution quality.

Restarting Weighted A* (RWA*). RWA* was a feature
introduced in the original version of LAMA that was later
analyzed in (Richter, Thayer, and Ruml 2010). When us-
ing this technique, LAMA restarts and begins a less greedy
search from scratch each time a solution is found. For exam-
ple, on the first iteration of LAMA, the planner uses a greedy
best-first search for finding the first solution. On the second
iteration, LAMA then runs WA* with a weight of 10. If a
second solution is found, WA* is run again but with an even
smaller weight. This process then repeats until the time limit
is reached.

In the standard version of RWA*, no information is shared
between the iterations of RWA* except for the best solu-
tion found thus far, and the heuristic values of nodes that
have already been expanded. This means that the search
will not consider any nodes whose g-cost is as large as the
best solution found thus far. This was the approach taken
by ArvandHerd in 2011, though we used a different tech-
nique in ArvandHerd 2014 as described in Section 3.3.

Any-Time Arvand. Arvand was also set to continu-
ously look for solutions even after a first solution is found.
This simply means that Arvand continues to perform
search episodes. As in LAMA, the cost of previously found
solutions were also used to bound the search. This means
that episodes with a g-cost that is larger than the bound are
forced to restart. However, unlike how LAMA was used in
ArvandHerd 2011, the bound used for the search episodes
is only based on the best solution found by Arvand. As a re-
sult, the solutions found by LAMA or Aras are not factored
into how search episodes are bound. This type of bounding
was employed because Arvand is often unable to find any
new solutions if the bound is too tight. By restricting the
bound to only consider solutions found by Arvand means
that the bound is looser than it would be if the other solutions
were also factored in. This often allows Arvand to produce
more plans, thereby increasing the chance that a plan will be
found that will be greatly improved by Aras.

While this would suggest that perhaps no bounding
should be used, experimentation with this system did indi-
cate that some bounding was useful in certain domains in
which Aras was ineffective at improving the solution qual-
ity. Using the best solution found by Aras was experimen-
tally found to be an effective compromise between finding
enough solutions for Aras while still adding useful bound-
ing for domains in which Aras was not as successful. Note

2

that similar behaviour has been seen when using LAMA (Xie,
Valenzano, and Müller 2013), and so we consider bounding
in LAMA in Section 3.3.

3 Additions to ArvandHerd 2014
In this section, we describe the main changes that have been
made to ArvandHerd for its submission to IPC 2014. Note
that several of these techniques require parameters to be set,
and we will describe the parameter values used in each track
in Section 4.

3.1 ε-Greedy Node Selection
ε-greedy node selection is a simple technique that effectively
introduces random exploration into the search (Valenzano et
al. 2014). This technique, which requires the user to set a
parameter ε in the range from 0 to 1, works as follows. With
probability 1 − ε, the search acts exactly as the search al-
gorithm ordinarily would. For example, if the search being
used is GBFS, then with probability 1 − ε the search will
select the node from the open list with the smallest heuristic
value as the next node to be expanded. However, with proba-
bility ε, the search is forced to use a different policy. Specif-
ically, the search with select a node uniformly at random
from amongst those in the open list. ε therefore determines
how often the algorithm exploits heuristic information, and
how often it explores.

Despite its simplicity, ε-greedy node selection has been
shown to improve the coverage of planners like LAMA, even
though this planner is already using multiple techniques for
introducing variation into its search (Valenzano et al. 2014).
However, we use ε-greedy node selection slightly differently
in LAMA than as explained above. This is because LAMA
uses 2k open lists where there are k heuristics in use, with
k of the open lists holding all open nodes (each ordered by
a different heuristic), and k open lists holding only those
nodes achieved with a preferred operator (again, with each
ordered by a different heuristic). For each node expansion,
LAMA must first select one of the 2k open lists, and then
using the corresponding heuristic to select a node from that
open list. In our implementation of ε-greedy node selection
for LAMA, we have left the open list selection mechanism the
same, but have modified each open list to return a randomly
selected node from that open list with probability ε. For ex-
ample, if LAMA selects one of the preferred operator open
lists as the next to be used and ε = 0.3, then there is a 70%
chance that the next node to be expanded will correspond to
the node achieved using a preferred operator which has the
lowest heuristic value and a 30% chance that the node will
be randomly selected from the set of all nodes achieved us-
ing a preferred operator. This approach was taken due to the
known effectiveness of the LAMA open list selection policy.

3.2 Aggressive Restarting
While the version of LAMA used in ArvandHerd in the
2011 competition would restart and use a different param-
eterization whenever the memory estimator indicated that a
given memory limit was reached, an investigation that was
performed after the competition suggested that this was not

an effective restarting policy (Valenzano et al. 2012). In par-
ticular, if the search does not use up the memory quickly
enough, it may spend all its time using an ineffective planner
parameterization or an unlucky operator ordering. Moreover,
if it does quickly use up the memory, the fact that it caches
the heuristic values may mean that the other parameteriza-
tions do not have much memory to work with.

To remedy these problems, the restarting policy was mod-
ified in the 2014 version of ArvandHerd in two ways. In
the first, we made the policy perform restarts much more of-
ten. This policy requires the user to set two parameters: an
initial node expansion limit Li and a limit factor Lf . The ex-
ecution of LAMA in ArvandHerd 2014 begins with a node
expansion limit of Li. When this limit (or a memory limit)
is hit, LAMA will restart and use a different configuration.
Once the limit is reached with all of the configurations, the
expansion limit is increased by a factor of Lf . This process
then repeats until the time limit is reached.

So as to avoid the problem by which the additional param-
eterizations do not have enough memory for their search, we
have set LAMA to clear its heuristic value cache if it reaches
the memory limit too many times.

3.3 Diverse Any-Time Search
As mentioned above, if Arvand is set to bound its search
episodes using the best solution found thus far including
those from Aras, the bound often makes it too difficult to
find any further plans. In that case, it was experimentally
found to be better to use a looser bound so that Arvand
finds more solutions and thus there is a greater chance that
Aras will greatly improve at least one of them.

In (Xie, Valenzano, and Müller 2013) it was shown that
similar behaviour was found when using Aras along with
RWA* in LAMA. To remedy this situation, a new technique
was developed called Diverse Any-time Search (DAS). When
using this approach, the planner runs RWA* as it typically
does, but once a given time limit is hit, it starts a new RWA*
search that begins again with the greediest of the configu-
rations. This new RWA* search also ignores the cost of all
previous solutions found. For example, if the time limit is
five minutes, then a new RWA* search will begin again with
GBFS every five minutes, and the bound used at any time
is given by the best solution found during the current five
minute RWA* phase. While Aras is also used on all so-
lutions found, the cost of the solutions found by Aras are
never used for bounding so as not to make it too difficult for
LAMA to find new plans.

DAS was added to the RWA* search of LAMA in the ver-
sion of ArvandHerd submitted to IPC 2014. The main
difference with how it is described in (Xie, Valenzano,
and Müller 2013) is how the RWA* time limit is set. In
ArvandHerd 2014, we simply use the restarting policy
described in the previous section to determine when a new
DAS phase should begin. This means that a new DAS phase
will begin once each configuration being used finds a solu-
tion or hits the current node expansion limit. The bound used
during a DAS phase is given by the best solution found of
all configurations tried with the same node expansion limit.
Once all configurations have been tried with a particular

3

node expansion limit, the limit is increased according to the
node limit factor, and a new RWA* search is started with a
higher limit but no bound. Note that when a solution is found
for a first time, we delay the increase of the expansion limit
for one more RWA* phase.

4 Multi-Core and Single-Core ArvandHerd
While the version of ArvandHerd submitted in 2011 was
solely a multi-core planner, the current version has been
modified so that it can also compete in the sequential sat-
isficing and the sequential agile tracks. In this section, we
describe the differences between the versions used in these
tracks including the parameterizations used.

4.1 Multi-Core ArvandHerd
The multi-core version of ArvandHerd runs almost iden-
tically to the way it did in 2011. From the single binary,
ArvandHerd runs four threads. One of these threads runs
LAMA while the other three run a parellelized version of
Arvand. This parallel Arvand essentially has each thread
run an independent search episode, although the threads
share a single walk pool and a single configuration selector.
For more information on this architecture, see the descrip-
tion of ArvandHerd given in (Valenzano et al. 2012). The
only difference between the 2011 and 2014 versions of this
system is that the Arvand threads no longer share the best
solution they have found thus far with the thread running
LAMA in the 2014 system. This is because, as described in
Section 3.3, LAMA does not use the best solution found for
bounding the search.

Multi-Core Parameters. In the multi-core version of
ArvandHerd, there are four configurations made available
for the configuration selector of Arvand. Two of these con-
figurations bias the random walks to avoid using actions that
have previously lead to dead-end states, while the other two
bias the random walks to use helpful actions (Hoffmann and
Nebel 2001) suggested by the heuristic. All configurations
use a version of the FF heuristic (Hoffmann and Nebel 2001)
which is not aware of action costs, but the configurations
differ slightly in the initial length of the random walks, and
how quickly the random walk length is increased. Multi-core
ArvandHerd also uses a walk pool which holds a maxi-
mum of 100 search trajectories.
LAMA’s RWA* has been set to run GBFS, then WA* with

weights of 5 and 1. During the GBFS search, it uses a ver-
sion of the FF heuristic that ignores action costs, while it
uses a version which is aware of action costs when perform-
ing WA*. Both types of search also use the landmark count
heuristic (Richter and Westphal 2010) and ε-greedy node se-
lection with ε = 0.3. Regarding the restart policy, the initial
expansion limit is set at 100 while the node limit factor is set
at 10.

4.2 Single-Core ArvandHerd
ArvandHerd did not compete in any single-core tracks in
2011, though it has been submitted to the sequential satis-
ficing and sequential agile tracks in the 2014 competition.
The single-core version of this planner does not use multiple

threads. Instead, it runs Arvand first until a time limit is hit,
and then it switches to LAMA. This is similar to the approach
taken by Fast Downward Stone Soup (Helmert and Röger
2011), which also runs different planners in sequence.

Sequential Satisficing Parameters. In the sequential sat-
isficing track, ArvandHerd runs Arvand for the first 15
minutes of the available runtime. The remaining time is then
used by LAMA. The rest of the parameters are set just as they
were for the multi-core track, except for the size of the walk
pool which has been decreased to hold only a maximum of
50 trajectories.

Agile Satisficing Parameters. In the agile satisficing
track, ArvandHerd runs Arvand for the first 3 minutes
and LAMA for the remaining time. The parameters used are
the same as in the sequential satisficing track, except that the
walk pool size is decreased to hold a maximum of 20 tra-
jectories, ε-greedy node selection is used with ε = 0.2, and
there is no weight 1 WA* configuration included in the set of
LAMA configurations. Since solution quality is not counted
in measuring performance in this track, Aras is not used,
and ArvandHerd terminates once a first solution is found.

5 Conclusion
In this paper we have described the ArvandHerd planner
submitted to the 2014 International Planning Competition.
In particular, we have described the various components of
this planner, the new techniques added since the 2011 com-
petition, and how the planner has been made sequential for
use in the single-core sequential satisficing tracks.

Acknowledgments
We would like to thank Fan Xie for the helpful dis-
cussions regarding techniques for improving plan quality
in ArvandHerd 2014. This research was supported by
GRAND and the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).

References
Bäckström, C., and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11:625–656.
Garcı́a-Olaya, A.; Jiménez, S.; and López, C. L. 2011.
The 2011 International Planning Competition. Technical
report, Universidad Carlos III de Madrid, Madrid, Spain.
http://hdl.handle.net/10016/11710.
Helmert, M., and Röger, G. 2011. Fast Downward Stone
Soup: A Baseline for Building Planner Portfolios. In The
Proceedings of the 2011 ICAPS Workshop on Planning and
Learning, 28–35.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5-
6):503–535.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14:253–302.

4

Nakhost, H., and Müller, M. 2009. Monte-Carlo Exploration
for Deterministic Planning. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, 1766–
1771.
Nakhost, H., and Müller, M. 2010. Action Elimination and
Plan Neighborhood Graph Search: Two Algorithms for Plan
Improvement. In Proceedings of the 20th International Con-
ference on Automated Planning and Scheduling, 121–128.
Nakhost, H., and Müller, M. 2013. Towards a Second Gener-
ation Random Walk Planner: An Experimental Exploration.
In Proceedings of the 23rd International Joint Conference
on Artificial Intelligence.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
Constrained Planning: A Monte Carlo Random Walk Ap-
proach. In Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling.
Nakhost, H. 2013. Random Walk Planning: Theory, Prac-
tice, and Application. Ph.D. Dissertation, University of Al-
berta. http://hdl.handle.net/10402/era.31939.
Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research 39:127–177.
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The Joy
of Forgetting: Faster Anytime Search via Restarting. In Pro-
ceedings of the 20th International Conference on Automated
Planning and Scheduling, 137–144.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011. In The 2011 International Planning Com-
petition (2011) 50–54. http://hdl.handle.net/10016/11710.
Valenzano, R. A.; Nakhost, H.; Müller, M.; Schaeffer, J.; and
Sturtevant, N. R. 2011. ArvandHerd: Parallel Planning with
a Portfolio. In The 2011 International Planning Competition
(2011) 113–116. http://hdl.handle.net/10016/11710.
Valenzano, R. A.; Nakhost, H.; Müller, M.; Schaeffer, J.; and
Sturtevant, N. R. 2012. ArvandHerd: Parallel Planning with
a Portfolio. In 20th European Conference on Artificial Intel-
ligence, 786–791.
Valenzano, R. A.; Sturtevant, N. R.; Schaeffer, J.; and Xie, F.
2014. A Comparison of Knowledge-Based GBFS Enhance-
ments and Knowledge-Free Exploration. In Proceedings of
the Twenty-Fourth International Conference on Automated
Planning and Scheduling.
Xie, F.; Valenzano, R.; and Müller, M. 2013. Better Time
Constrained Search via Randomization and Postprocessing.
In Proceedings of the Twenty-Third International Confer-
ence on Automated Planning and Scheduling, 269–277.

5

Width and Inference Based Planners: SIW, BFS(f), and PROBE

Nir Lipovetzky
University of Melbourne

Melbourne, Australia
@unimelb.edu.au

Miquel Ramirez
RMIT University

Melbourne, Australia
@rmit.edu.au

Christian Muise
University of Melbourne

Melbourne, Australia
@unimelb.edu.au

Hector Geffner
ICREA & U. Pompeu Fabra

Barcelona, SPAIN
@upf.edu∗

Introduction
We entered the planners SIW, BFS(f), and PROBE to
the agile-track of the 2014 International Planning Compe-
tition, and an anytime planner for the satisficing track that
runs both SIW and BFS(f). SIW and BFS(f) are classi-
cal planners that make use of the notion of width (Lipovet-
zky and Geffner 2012), while PROBE is a standard best-
first search planner that augments the expansion of a node
by throwing an “intelligent” probe which either reaches the
goal or terminates quickly in low polynomial time (Lipovet-
zky and Geffner 2011). The basic building block of SIW is
the Iterative Width Procedure (IW) for achieving one atomic
goal at a time. IW runs in time exponential in the prob-
lem width by performing a sequence of pruned breadth first
searches. The planner BFS(f) integrates a novelty mea-
sure from IW with helpful-actions, landmarks and delete-
relaxation heuristics in a Greedy Best-Fist search.

In the following sections we introduce the basic notions
of the algorithms and the implementation.

SIW: Iterated Width Search
The algorithm Iterated Width, or IW, consists of a sequence
of calls IW(i) for i = 0, 1, . . . , |F | until the problem is
solved. Each iteration IW(i) is a breadth-first search that
prunes right away states that do not pass a novelty test;
namely, for a state s in IW(i) not to be pruned there must
be a tuple t of at most i atoms such that s is the first state
generated in the search that makes t true. The time com-
plexities of IW(i) and IW are O(ni) and O(nw) respectively
where n is |F | and w is the problem width. The width of
existing domains is low for atomic goals, and indeed, 89%
of the benchmarks can be solved by IW(2) when the goal
is set to any one of the atoms in the goal (Lipovetzky and
Geffner 2012). The width of the benchmark domains with
conjunctive goals, however, is not low in general, yet such
problems can be serialized.

The algorithm Serialized Iterative Width, or SIW, uses IW
for serializing a problem into subproblems and for solving
the subproblems. SIW uses IW to greedily achieve one
atomic goal at a time until all atomic goals are achieved

∗firstname.lastname
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

jointly. In between, atomic goals may be undone, but after
each invocation of IW, each of the previously achieved goals
must hold. SIW will thus never call IW more than |G| times
where |G| is the number of atomic goals. SIW compares
surprisingly well to a baseline heuristic search planner based
on greedy best-first search and the hadd heuristic (Bonet and
Geffner 2001), but does not approach the performance of
the most recent planners. Nonetheless, SIW competes well
in domains with no dead-ends and simple serializations.

BFS(f): Novelty Best-First Search

While the blind-search SIW procedure competes well with a
greedy best-first planner using the additive heuristic, neither
planner is state-of-the-art. For this, we developed a stan-
dard forward-search best-first planner guided by an eval-
uation function that combines the notions of novelty and
helpful actions (Lipovetzky and Geffner 2012; Hoffmann
and Nebel 2001). In this planner, called BFS(f) (Lipovetzky
and Geffner 2012), ties are broken lexicographically by two
other measures: (1) the number of subgoals not yet achieved
up to a node in the search, and (2) the additive heuristic,
hadd. The additive heuristic is delayed for non-helpful ac-
tions.

PROBE

PROBE is a complete, standard greedy best first search
(GBFS) STRIPS planner using the standard additive heuris-
tic (Bonet and Geffner 2001), with just one change: when a
state is selected for expansion, it first launches a probe from
the state to the goal (Lipovetzky and Geffner 2011). If the
probe reaches the goal, the problem is solved and the solu-
tion is returned. Otherwise, the states expanded by probe are
added to the open list, and control returns to the GBFS loop.
The crucial and only novel part in the planning algorithm is
the definition and computation of the probes.

PROBE is built using an early-version of an automated
planning toolkit that supports the implementation details of
the width-based algorithms. The only difference with re-
spect to PROBE-IPC7 is that the anytime procedure is dis-
abled, as we are only concerned with the first solution.

6

Implementation Notes
The planners SIW, BFS(f) have been implemented using
the automated planning toolkit lwaptk1. The toolkit is an
extensible C++ framework that decouples search and heuris-
tic algorithms from PDDL parsing and grounding modules,
by relying on planner ”agnostic” data structures to repre-
sent (ground) fluents and actions. We consider lwaptk to
be a valuable contribution in itself since it allows to de-
velop, relying on a collection of readily available imple-
mentations of search algorithms and planning heuristics,
planners which are independent from specific parsing mod-
ules and grounding algorithms. If the planner is to be ac-
quiring descriptions of planning tasks from PDDL speci-
fications, the toolkit provides the means to plug into the
planner either FF (Hoffmann and Nebel 2001) or FAST-
DOWNWARD (Helmert 2006) parsers. Alternatively, and
more interestingly, the planner can be embedded into com-
plex applications, directly, if the “host” application is writ-
ten in C++, or indirectly when the host is written in an inter-
preted language, such as PYTHON, by wrapping the planner
with suitably generated marshalling code.

Acknowledgments This work was partly supported by
Australian Research Council Linkage grant LP11010015,
and Discovery Projects DP120100332 and DP130102825.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129:5–33.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Lipovetzky, N., and Geffner, H. 2011. Searching for
plans with carefully designed probes. In Proceedings of the
Twenty-First International Conference on Automated Plan-
ning and Scheduling (ICAPS 2011), 154–161.
Lipovetzky, N., and Geffner, H. 2012. Width and seri-
alization of classical planning problems. In Proceedings
of the Twentieth European Conference on Artificial Intelli-
gence (ECAI 2012), 540–545.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Proceedings
of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS 2009).
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI 2008), 975–982.

1Source code available from https://github.com/
miquelramirez/lwaptk.

7

BiFD: Bidirectional Fast Downward

Vidal Alcázar, Susana Fernández, Daniel Borrajo
Universidad Carlos III de Madrid

Av. Universidad, 30
28911 Leganés, Spain

valcazar@inf.uc3m.es;sfarregu@inf.uc3m.es;dborrajo@ia.uc3m.es

Abstract

Most domains used as benchmarks in automated plan-
ning are asymmetrical. In general, it is unclear whether
searching forward or backward is the best option a pri-
ori. Furthermore, planners that search backward have
important differences (both advantageous and disadvan-
tageous) with those that search forward. Here we pro-
pose BiFD, which combines Fast Downward with FDr
(Fast Downward Regression) in a portfolio. This aims
to exploit the advantages of searching in both directions
while trying to minimize their disadvantages.

Motivation and Implementation
Since heuristic search in planning was proposed (Bonet and
Geffner 2001), the option of searching forward and back-
ward in the space of states is possible. The version that
searched forward was called HSP; the version that searched
backward was called HSPr. HSP proved experimentally that
on average it’s better to search forward, and that heuristic
search in the state space is an efficient approach in satisfic-
ing planning. Because of this, most researchers that worked
on satisficing planning focused on forward state-space tech-
niques, forgoing the path opened by HSPr.

After almost 15 years there’s a much better understand-
ing of heuristic search in satisficing planning. Very suc-
cessful planning systems based on forward heuristic state-
space search have been implemented, like FF (Hoffmann
and Nebel 2001) and Fast Downward (Helmert 2006), and
a big number of papers on the matter have been published.
However, the set of domains used as benchmarks has also
grown in size and diversity, and experimentation has shown
that forward heuristic state-space search, while good, does
not dominate other approaches.

Some domains are known to be hard for forward search.
For example, in the last International Planning Competition
the hardest domain overall was Floortile. This was to be
expected, as most planners performed forward search and
Floortile is a trap domain specifically tailored to be diffi-
cult for them. Floortile’s trap consists in the occurrence of
numerous dead ends that are undetectable by a reachability
analysis when exploring the state space forward (see Fig-
ure 1). However, other planners may not be affected - and in-
deed aren’t. Newer versions of Madagascar (Rintanen 2012),
which (kind of) perform regression after compiling the task

Figure 1: The goal in this instance of Floortile is to paint the
dotted cells. The robot can only paint up and down; if, as in
the example, the robot paints a cell before the cells above it
are painted, the robot won’t be able to paint at least one cell
on that column. When this happens there is no way to solve
the problem, which means that the depicted state is a dead
end. This kind of dead ends are undetectable for reachability
hueristics, but never happen in regression.

into a SAT instance, are able to easily solve the whole set of
problems, and good ol’ HSPr solves 18 out of 20 problems
too. Other domains like Storage and Matching-BW were de-
signed with the same intention in mind, and are in fact harder
for planners like LAMA (Richter and Westphal 2010) than
for Madagascar.

This was the main motivation for revisiting backward
search in planning (Alcázar et al. 2013). In this paper several
techniques initially proposed for progression were analyzed
for their use in regression, which lead to the implementa-
tion of Fast Downward Regression (FDr), a spiritual succes-
sor of HSPr implemented on top of Fast Downward. While
still worse on average than Fast Downward, results change
if they are analyzed on a per domain basis.

This means that, instead of searching only in one di-
rection, maybe it’s better to search in both. The Madagas-
car+LAMA portfolio does perform really well (Rintanen
2012), so maybe this is the case too for a combination of
Fast Downward and FDr. This way, BiFD performs a sin-
gle preprocessing phase - which includes the computation
of h2 forward and backward (Haslum 2008) and getting rid
of spurious operators (Alcázar et al. 2013), something that
Fast Downward doesn’t do - and then searches in both di-
rections, expanding in the direction that has spent the least
amount of time so far.

8

Since expanding and evaluating individual nodes is quite
fast, BiFD will end up allocating half of the time to each
direction. Although more elaborated strategies are possible,
this should be good enough: the time needed to solve a plan-
ning task usually grows exponentially, so allocating half of
the time means that only a few problems should be lost for
that direction while getting most of the problems that can be
solved by the opposite direction.

The settings of both planners are the following:
• Fast Downward uses Greedy Best-First Search with de-

layed evaluation, the FF heuristic and preferred operators.
• FDr uses Greedy Best-First Search with regular evalua-

tion, the cached FF heuristic and disambiguation per state,
but no preferred operators.

• The maximum time for computing h2 and disambiguating
operators is 300 seconds.
Note that we could have used other techniques forward

too. For example, the configuration for forward search could
have been LAMA’s, but we preferred to use a simpler set of
techniques (probably the closest thing to a good state-of-the-
art baseline) to get a clearer picture.

Wait, This Isn’t Bidirectional Search!
You’re right, BiFD is a portfolio whose only synergy is the
common preprocessing phase. For BiFD to be a proper bidi-
rectional planner it should detect collision of frontiers and
return the first solution when that happens. This requires
dealing with subsumption of states, which has been recently
analyzed (Alcázar, Fernández, and Borrajo 2014). However,
results show that doing so in satisficing planning is just
not worth it; many domains have plenty of symmetries and
transpositions, and this affects greedy search algorithms in
bidirectional search a lot, because they commit strongly to
a subtree that is likely to be quite different from the subtree
explored in the opposite direction. This means that collisions
occur close to the goal in either direction in most problems
and consequently there is little benefit in detecting the colli-
sion.

Note that this conclusion doesn’t apply to the optimal
case, as state-space search algorithms that can prove opti-
mality must try all the permutations and symmetries below a
given f threshold. For example, the newest bidirectional ver-
sions of Gamer (Kissmann and Edelkamp 2011), an optimal
symbolic search planner, obtain overall good results (Tor-
ralba and Alcázar 2013).

Anytime Phase
Since quality matters in the competition, we have enabled
an anytime phase that begins right after the first solution
is found. It searches forward iteratively using the follow-
ing configurations: Greedy Best First Search with delayed
evaluation, a cost-sensitive version of the FF heuristic and
preferred operators; Weighted A? with regular evaluation, a
cost-sensitive version of the FF heuristic, preferred opera-
tors and w = 5, 3, 1 sequentially; A? with a cost-sensitive
version of the FF heuristic and no preferred operators; and
blind search.

These settings haven’t been thoroughly tested, they were
mainly just a combination of those of LAMA and our intu-
ition.

Acknowledgements
This work has been partially supported by a FPI grant from
the Spanish government associated to the MICINN project
TIN2008-06701-C03-03, and it has also been supported by
the project TIN2011-27652-C03-02.

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting regression in planning. In International
Joint Conference on Artificial Intelligence, 2254–2260.
Alcázar, V.; Fernández, S.; and Borrajo, D. 2014. Analyzing
the impact of partial states on duplicate detection and colli-
sion of frontiers. In International Conference on Automated
Planning and Scheduling.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Haslum, P. 2008. Additive and reversed relaxed reachabil-
ity heuristics revisited. Proceedings of the 6th International
Planning Competition.
Helmert, M. 2006. The Fast Downward planning system. J.
Artif. Intell. Res. (JAIR) 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. J. Artif. Intell.
Res. (JAIR) 14:253–302.
Kissmann, P., and Edelkamp, S. 2011. Improving cost-
optimal domain-independent symbolic planning. In AAAI
Conference on Artificial Intelligence (AAAI), 992–997.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Intell. Res. (JAIR) 39:127–177.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Ar-
tificial Intelligence 193:45–86.
Torralba, Á., and Alcázar, V. 2013. Constrained symbolic
search: On mutexes, BDD minimization and more. In Sym-
posium on Combinatorial Search (SoCS), 175–183.

9

Divide-and-Evolve: the Marriage of Descartes and Darwin

Johann Dreo Pierre Savéant
Thales Research & Technology

Palaiseau, France
first.last@thalesgroup.com

Marc Schoenauer
INRIA Saclay & LRI

Orsay, France
marc.schoenauer@inria.fr

Vincent Vidal
ONERA – DCSD
Toulouse, France

Vincent.Vidal@onera.fr

Abstract

DAEX, the concrete implementation of the Divide-and-
Evolve paradigm, is a domain-independent satisficing plan-
ning system based on Evolutionary Computation. The basic
principle is to carry out a Divide-and-Conquer strategy driven
by an evolutionary algorithm. The key components of DAEX
are a state-based decomposition principle, an evolutionary al-
gorithm to drive the optimization process, and an embedded
planner X to solve the sub-problems. The release that has
been submitted to the competition is DAEYAHSP, the instan-
tiation of DAEX with the heuristic forward search YAHSP
planner. The marriage of DAE and YAHSP matches a clean
role separation: YAHSP gets a few tries to find a solution
quickly whereas DAE controls the optimization process.

Introduction
This section introduces the main principles of the satisfic-
ing planner DAE, referring to (Bibaı̈ et al. 2010c) for a
comprehensive presentation. DAEX, the concrete imple-
mentation of the Divide-and-Evolve paradigm, is a domain-
independent satisficing planning system based on Evolution-
ary Computation (Schoenauer, Savéant, and Vidal 2006).
The basic principle is to carry out a Divide-and-Conquer
strategy driven by an evolutionary algorithm. The algorithm
is detailed in (Bibaı̈ et al. 2010a) and compared with state-
of-the-art planners.

Given a planning problem P = 〈A,O, I,G〉, whereA de-
notes the set of atoms,O the set of actions, I the initial state,
and G the goal state, DAEX searches the space of sequences
of partial states (si)i∈[0,n+1], with s0 = I and sn+1 = G:
DAEX looks for the sequence such that the plan σ ob-
tained by compressing subplans σi found by some embed-
ded planner X as solutions of Pi = 〈A,O, ŝi, si+1〉i∈[0,n]
has the best possible quality (with ŝi denoting the final state
reached by applying σi−1 from ŝi−1). Each intermediate
state (si)i∈[1,n] is first seen as a set of goals and then com-
pleted as a new initial state for the next step by simply apply-
ing the plan found to reach it. In order to reduce the number
of atoms used to describe these states, DAE relies on the ad-
missible heuristic function h1 (Haslum and Geffner 2000a):
only the ones that are possibly true according to h1 are con-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sidered. A diagram of the decomposition approach in DAE
is depicted on figure 1.

O4

O3

O2

O1

O0

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A0

A1

A2

A3

A4

A0

A1

A2

A3

A5

A7

A8

A6

A4

A0

A1

A2

A3

A5

A7

A8

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8h :

1
time

I G1 G2 G{ },decomposition:

Goal's atom

Atom
True atom A0

False atomA0

Action

Legend

GoalG0

Figure 1: The decomposition approach used in DAE.

Furthermore, mutually exclusive atoms, which can be
computed at low cost, are also forbidden in intermediate
states si. These two rules are strictly imposed during the
random initialization phase, and progressively relaxed dur-
ing the search phase. The compression of subplans is re-
quired by temporal planning where actions can run concur-
rently: a simple concatenation would obviously not produce
the minimal makespan.

Due to the weak structure of the search space (variable-
length sequences of variable-length lists of atoms), Evolu-
tionary Algorithms (EAs) have been chosen as the method
of choice: EAs are metaheuristics that are flexible enough to
explore such spaces, as long as they are provided with some
stochastic variation operators (aka move operators in the
heuristic search community) – and of course some objective
function to optimize.

Variation operators in DAE are (i) a crossover opera-
tor, a straightforward adaptation of the standard one-point
crossover to variable-length sequences; and (ii) different
mutation operators, that modify the sequence at hand either
at the sequence level, or at the state level, randomly adding
or removing one item (state or atom).

10

The objective value is obtained by running the embed-
ded planner on the successive subproblems. When the goal
state is reached, a feasibility fitness is computed based on
the compression of solution subplans, favoring quality; oth-
erwise, an unfeasibility fitness is computed, implementing
a gradient towards satisfiability (see (Bibaı̈ et al. 2010c) for
details).

DAE can embed any existing planner, and has to-date
been successful with both the optimal planner CPT (Vidal
and Geffner 2004) and the lookahead heuristic-based satis-
ficing planner YAHSP (Vidal 2004). The latter has been
demonstrated to outperform the former when used within
DAE (Bibaı̈ et al. 2010d), so only DAEYAHSP has been con-
sidered in this work.

The target is thus temporal satificing planning with con-
servative semantics, cost planning and classical STRIPS
planning. The marriage of DAE and YAHSP matches a
clean role separation: YAHSP gets a few tries to find a solu-
tion quickly whereas DAE controls the optimization process.
In the current release we have introduced an initial estima-
tion processing of the maximum number of tries allowed to
YAHSP for all individual evaluations. This parameter is cru-
cial for the time consumption of the algorithm.

Algorithms
DAEX is an evolutionary algorithm, which basically mimics
a biological evolution as a stochastic process (i.e. using bi-
ased random search in an iterative manner). Figure 2 depicts
the main components of the evolution engine of DAEYAHSP.

Bes
t solut

ion

Paren
ts

Genitors

O
ffs
pr

ing
s

Stop criteria?

Evaluation

DAE
YAHSP

A4

A5

A7

A8

A0

A1

A2

A3

G1

A6

A4

A0

A1

A2

A3

A5

A7

A8

G2{ },

A9

A6

A4

A0

A1

A2

A3

A5

A7

A8

G3,

Variation

Crossover

Mutations

Add Atom Del Atom

Add Goal Del Goal

Replacement

Weak Elitism

Comma

Selection

Tournament

Initialization

Random goals subset

Random atoms subset

A4

A5

A7

A8

A0

A1

A2

A3

G1

A6

A4

A0

A1

A2

A3

A5

A7

A8

G2{ },

A9

A6

A4

A0

A1

A2

A3

A5

A7

A8

G3,

Steady Fitness

Multi-start

YAHSPYAHSPYAHSPYAHSP

Figure 2: The evolution engine used in DAEYAHSP. Yellow
boxes indicates problem-dependent operators, green ones
problem-independent operators and red boxes indicates the
planner-dependent fitness evaluation. The output of the evo-
lutionary algorithm is a decomposition of the problem.

The fitness implements a gradient towards feasibility for
unfeasible individuals and a gradient towards optimality for
feasible individuals. Feasible individuals are always pre-
ferred to unfeasible ones. Population initialization as well as
variation operators are driven by the critical path h1 heuristic
(Haslum and Geffner 2000b) in order to discard inconsistent

state orderings, and atom mutual exclusivity inference in or-
der to discard inconsistent states. These two computations
are done by YAHSP in an initial phase.

Beside a standard one-point crossover for variable length
representations, four mutations have been defined: addition
(resp. removal) of a goal in a sequence, addition (resp. re-
moval) of an atom in a goal.

Variation operators relax the strictly h1 ordering of atoms
within individuals, since it is only a heuristic estimate.

The selection is a comparison-based deterministic tourna-
ment of size 5.

For the sequential release, Darwinian-related parameters
of DAEX have been fixed after some early experiments
(Schoenauer, Savéant, and Vidal 2006) whereas parameters
related to the variation operators have been tuned using the
Racing method (Bibaı̈ et al. 2010b). It should be noted that,
due to the conditions of the competition, the parameter set-
ting is global to all domains. In (Bibaı̈ et al. 2010b) we
showed that a specific tuning for an instance provides better
results as expected and that what we would do for a real-life
planning task.

We added two novelties to the version described in (Bibaı̈
et al. 2010a). One important parameter is the maximum
number of expanded nodes allowed to the YAHSP sub-
solver which defines empirically what is considered as an
easy problem for YAHSP. As a matter of fact, the minimum
number of required nodes varies from few nodes to thou-
sands depending of the planning task. In the current release
this number is estimated during the population initialization
stage. An incremental loop is performed until the ratio of
feasible individuals is over a given threshold or a maximum
boundary has been reached. By default this number is dou-
bled at each iteration until at least one feasible individual is
produced or 100,000 has been reached.

Furthermore we add the capability to perform restarts
within a time contract in order to increase solution quality.

The fitness used for the competition differs from the one
described in (Bibaı̈ et al. 2010a). The fitness for bad indi-
viduals has been simplified by withdrawing the Hamming
distance to the goal. The new fitness depends only on the
“decomposition distance”: the number of intermediate goals
reached and more specifically the one that are “useful”. A
useful intermediate goal is a goal that require a non-empty
plan to be reached.

Implementation
The implementation of DAEX has been made with the
ParadisEO framework1 which provides an abstract control
structure to develop any kind of evolutionary algorithm in
C++. YAHSP is written in the C language. The source
code is available under an open-source license and the ver-
sion used for the competition has the hash 9a46716 in the
official repository2.

In order to speed up search, a memoization mechanism
has been introduced in YAHSP and carefully controlled to

1http://paradiseo.gforge.inria.fr/
2https://gforge.inria.fr/git/paradiseo/

paradiseo.git

11

leave memory space for DAE. Indeed, most of the time dur-
ing a run of YAHSP, and as a consequence during a run of
DAEYAHSP, is spent in computing the hadd heuristic for each
encountered state (see (Vidal 2011) for more details about
the algorithms of the new version of the YAHSP planner).
During a single run of YAHSP, duplicate states are dis-
carded; but during a run of DAEYAHSP, the same state can be
encountered multiple times. We therefore keep track of the
hadd costs of all atoms in the problem for each state, in order
to avoid recomputing these values each time a duplicate state
is reached. This generally leads to a speedup comprised be-
tween 2 and 4. When DAEYAHSP runs out of memory, which
obviously happens much faster with the memoization strat-
egy, all stored states and associated costs are flushed. More
sophisticated strategies may be implemented, e.g. flushing
the oldest or less often encountered states; but we found that
the simplest solution of completely freeing the memoized
information was efficient enough.

Several biases have been introduced in YAHSP, in or-
der to help DAEYAHSP finding better solutions. The main
one is that actions of lower duration are preferred to break
ties between several actions of same hadd cost, when com-
puting relaxed plans and performing the relaxed plan repair
strategy. Another bias is that the cost incrementation made
during hadd, which is usually equal to 1 for each applied ac-
tion, is made equal to either the duration or the cost of the
action. Although these biases do not change a lot the quality
of the plans produced by YAHSP alone, we found that they
are of better help to DAEYAHSP. However, introducing such
biases is not very satisfactorily; it would be better to exactly
use the version described in (Vidal 2011). We still have to
better investigate the relationships between the evolutionary
engine and the embedded planner, in order to determine how
to manage such kind of biases and other tie-breaking strate-
gies.

The version submitted to the sequential multi-core track
use a parallelized evaluation operator that dispatch the fit-
ness computation across multiple processes using message
passing. No change is made to the DAEYAHSP algorithm, the
implementation uses parallel operators wrappers available in
the ParadisEO framework, with a static assignment of jobs.
Note that while the source code permits a parallelization at
the multi-starts level, it is not used in the competition.

Acknowledgments
This work is being partially funded by the French Na-
tional Research Agency (ANR) through the COSINUS pro-
gramme, under the research contract DESCARWIN (ANR-
09-COSI-002).

References
Bibaı̈, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010a.
An Evolutionary Metaheuristic Based on State Decompo-
sition for Domain-Independent Satisficing Planning. In
20th International Conference on Automated Planning and
Scheduling (ICAPS-2010), 18–25. AAAI Press.
Bibaı̈, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010b.
On the Generality of Parameter Tuning in Evolutionary

Planning. In 20th Genetic and Evolutionary Computation
Conference (GECCO’10), 241–248. ACM Press.
Bibaı̈, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010c.
An Evolutionary Metaheuristic Based on State Decompo-
sition for Domain-Independent Satisficing Planning. In R.
Brafman et al., ed., 20th International Conference on Auto-
mated Planning and Scheduling (ICAPS-10), 18–25. AAAI
Press.
Bibaı̈, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010d.
On the Benefit of Sub-Optimality within the Divide-and-
Evolve Scheme. In Cowling, P., and Merz, P., eds., Proc.
10th EvoCOP, 23–34. LNCS 6022, Springer Verlag.
Haslum, P., and Geffner, H. 2000a. Admissible Heuristics
for Optimal Planning. In 5th Int. Conf. on AI Planning and
Scheduling (AIPS 2000), 140–149.
Haslum, P., and Geffner, H. 2000b. Admissible Heuristics
for Optimal Planning. In AIPS-2000, 70–82.
Schoenauer, M.; Savéant, P.; and Vidal, V. 2006.
Divide-and-Evolve: a New Memetic Scheme for Domain-
Independent Temporal Planning. In Gottlieb, J., and
Raidl, G., eds., 6th European Conference on Evolutionary
Computation in Combinatorial Optimization (EvoCOP’06).
Springer Verlag.
Vidal, V., and Geffner, H. 2004. Branching and Pruning: An
Optimal Temporal POCL Planner Based on Constraint Pro-
gramming. In Nineteenth National Conference on Artificial
Intelligence (AAAI-04), 570–577. AAAI Press.
Vidal, V. 2004. A Lookahead Strategy for Heuristic Search
Planning. In 14th International Conference on Planning and
Scheduling (ICAPS-04), 150–159. AAAI Press.
Vidal, V. 2011. YAHSP2: Keep It Simple, Stupid. In 7th

International Planning Competition (IPC-2011), Determin-
istic Part.

12

MIPLAN and DPMPLAN

Sergio Núñez and Daniel Borrajo and Carlos Linares López
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. 28911 Leganes (Madrid). Spain
sergio.nunez@uc3m.es, dborrajo@ia.uc3m.es, clinares@inf.uc3m.es

Abstract

In this document we describe the techniques used to
configure the sequential portfolios submitted to the de-
terministic tracks of the International Planning Com-
petition 2014. We have submitted four portfolios to
sequential (optimal and satisficing) tracks and one to
the multi-core track accounting for five different port-
folios in total. All submitted portfolios have been con-
figured using techniques based on Mixed-Integer Pro-
gramming, which derive the best achievable perfor-
mance with a linear combination of planners.

MIPLAN

MIPLAN portfolios have been generated using Mixed-
Integer Programming (MIP), which computes the portfolio
with the best achievable performance with respect to a selec-
tion of training planning tasks (Núñez, Borrajo, and Linares
López 2012). The resulting portfolio is a linear combination
of candidate planners defined as a sorted set of pairs <plan-
ner, time>. Our MIP model considers an objective function
that maximizes a weighted sum of different parameters in-
cluding overall running time and quality.

Since we consider two different criteria (time and qual-
ity), it could be viewed and solved as a multi-objective max-
imization problem. Instead, we solve two MIP tasks in se-
quence while preserving the cost of the objective function
from the solution of the first MIP. Specifically, we first run
the MIP task to optimize only quality —i. e., sum of the
plan quality of each solved problem for the satisficing track
and the total number of solved planning tasks for the opti-
mal track. If a solution exists, then a second execution of
the MIP model is performed to find the combination of can-
didate planners that achieves the same quality (denoted as
Q) while minimizing the overall running time. To enforce
a solution with the same quality an additional constraint is
added:

∑n
i=0 qualityi ≥ Q − ε, where ε is just any small

real value used to avoid floating-point errors. Clearly, a so-
lution is guaranteed to exist here, since a first solution was
already found in the previous step. Pseudocode 1 shows the
steps followed to generate all the submitted portfolios where
quality was maximized first, and then running time was min-
imized among the combinations that achieved the optimal
quality. In our experiments, ε = 0.001.

Algorithm 1 Build a portfolio optimizing quality and time
set weights to optimize only quality
portfolio1 := solve the MIP task
Q := the resulting value of the objective function
if a solution exists then

add constraint
∑n

i=0 qualityi ≥ Q− 0.001
set weights to optimize only overall running time
portfolio2 := solve the MIP task
return portfolio2

else
exit with no solution

end if

The MIP task used in this work does not result in any par-
ticular order to execute the planners. It only assigns an exe-
cution time to each planner, which is either zero or a positive
amount of time. The definition of the execution sequence is
arbitrary and it is based just on the order in which the plan-
ners were initially specified.

As a matter of fact, it was empirically found that the MIP
solver usually distributes all the available time among the
candidate planners selected to be part of the portfolio. Run-
ning the procedure depicted in Pseudocode 1, the solution of
the second MIP step could result in a sum of the times as-
signed to each planner that is less than the available time in
the competition. Thus, it is possible to have some slack time
which could be distributed uniformly among the selected
planners. Besides, we can use this slack time to scripting
tasks like checking if the current planner has solved the cur-
rent problem and if so, validating the solution found by that
component planner.

DPMPLAN

The technique used to configure MIPLAN portfolios is fo-
cused on maximizing the objective function at the last in-
stant (measured in seconds) within the available time. For
instance, if the available time is equal to 1800 seconds, the
MIP task generates the portfolio with the best achievable
performance in the instant equal to 1800 seconds.

The idea behind DPMPLAN is to modify the objective
function used to configure MIPLAN in a temporal objective
function. Thereby, the MIP task will maximize the objective

13

function for each instant (measured in seconds). However,
this problem is too hard to solve. Therefore, instead of max-
imizing the objective function for each instant, we have only
selected a few values: 1, 5, 10, 25, 50, 100, 200, 450, 900
and 1800 (time limit).

Implementation of the Portfolio
Every submitted portfolio runs a fixed portfolio configura-
tion. However, the runtime assigned to each component
planner can change in unexpected ways during its execution
when the component planner finishes prematurely: planner
bugs, terminating cleanly without solving the instance, run-
ning out of memory, etc. Therefore, the total runtime of the
submitted portfolio can be lower than the available time. In
this case, the submitted portfolio will run a default planner
using the remaining time (RT). This default planner is picked
up among the set of candidate planners which have not been
selected to be part in the portfolio and had a remarkable per-
formance in the IPC 2011.

Sequential Optimization Track
In this section, we briefly describe the experiments per-
formed to configure MIPLAN and DPMPLAN for the se-
quential optimization track. We have applied both tech-
niques over all the optimal planning tasks defined for the
IPC 2011. Also, we have used all the planners considered in
the design of FDSS (Helmert, Röger, and Karpas 2011) and
all the participant planners in the IPC 2011, removing port-
folios and adding their solvers instead. We have discarded
FORKINIT, IFORKINIT and LMFORK because the organizers
of the IPC 2014 had problems with the license of the Mosek
LP solver.

Tables 1 and 2 show the configurations of the submitted
portfolios. We have selected SELMAX as default planner for
both MIPLAN and DPMPLAN portfolios.

Planner Allotted time (s)
CPT4 20
BJOLP 70
LM-CUT 80
M&S-BISIM 1 160
M&S-BISIM 2 195
GAMER 1275
SELMAX RT

Table 1: Configuration of MIPLAN for the sequential opti-
mization track.

As we mentioned before, the MIP task does not specify
the execution sequence of the generated portfolios. How-
ever, we have sorted the execution sequence of the submitted
portfolios in increasing order of the allotted time.

Sequential Satisficing Track
Similarly to the previous track, we have applied both tech-
niques over all the satisficing planning tasks chosen at the
IPC 2011. However, the set of candidate planners is dif-
ferent for both portfolios. In the design of MIPLAN, we

Planner Allotted time (s)
CPT4 10
FD AUTOTUNE 25
RHW LANDMARKS 40
BJOLP 59
LM-CUT 65
M&S-BISIM 1 145
M&S-BISIM 2 180
GAMER 1276
SELMAX RT

Table 2: Configuration of DPMPLAN for the sequential op-
timization track.

have considered all the participant planners in the IPC 2011
removing portfolios and adding their component solvers in-
stead. The resulting portfolio is shown in Table 3, which
shows that the default planner is ROAMER.

The implementation of the portfolio developed by the
Fast-Downward planning system (Helmert 2006) allows the
component planners to communicate information among
them. However, their component planners must be defined
using the Fast-Downward planning system. Therefore, given
that we have considered the component planners of FDSS-
1 and FDSS-2, we have built an auxiliary portfolio with
the component planners of both FDSS portfolios selected by
the MIP task using the implementation of Fast-Downward.
Thereby, the component planners of this portfolio can com-
municate information among them. The configuration of
this auxiliary portfolio, denoted as FD PORTFOLIO, is shown
in Table 4.

Planner Allotted time (s)
MADAGASCAR P 1
FD AUTOTUNE 1 5
YAHSP2 MT 5
YAHSP2 6
LAMAR 20
DAE YAHSP 29
LAMA 2008 40
ARVAND 49
PROBE 51
LAMA-2011 357
FD PORTFOLIO 585
FD AUTOTUNE 2 652
ROAMER RT

Table 3: Configuration of MIPLAN for the sequential satis-
ficing track.

In the design of DPMPLAN, we have considered all the
participant planners in the IPC 2011. Table 5 shows the port-
folio configuration of the submitted portfolio. The planner
selected as default planner is LAMAR.

14

Planner Allotted
Search Evaluation Heuristics Time (s)
Greedy best-first Eager FF 48
Greedy best-first Eager FF, CG 59
Weighted-A∗ w=3 Eager ADD 105
Greedy best-first Eager CG 142
Weighted-A∗ w=3 Lazy CG 227
Greedy best-first Lazy CG 4

Table 4: FD PORTFOLIO of the MIPLAN portfolio for the
sequential satisficing track.

Planner Allotted time (s)
YAHSP2 5
CPT 4 6
MADAGASCAR P 10
YAHSP2 MT 10
DAE YAHSP 20
ARVAND 28
FDSS 2 63
FORKUNIFORM 66
LAMA 2008 78
LAMA 2011 90
FD AUTOTUNE 1 140
PROBE 160
ROAMER 472
FD AUTOTUNE 2 652
LAMAR RT

Table 5: Configuration of DPMPLAN for the sequential sat-
isficing track.

Sequential Multi-core Track
We have submitted one portfolio (MIPLAN) for the multi-
core track. We have added the concept of core processor to
the MIP model. Thus, the MIP task generates one portfolio
configuration using the four cores available and respecting
the wall-clock time limit set up in the competition.

We have used all the problems considered in the sequen-
tial satisficing track of the IPC 2011. Also, we have consid-
ered all the participant planners of this competition and the
component solvers of the participant portfolios. The FDSS
planners are defined by a search algorithm, an evaluation
method and a set of heuristics. Specifically, FDSS only con-
sidered weighted-A∗ w=3 (WA∗) and greedy best-first search
(GBFS), with EAGER (standard) and LAZY (deferred evalu-
ation) variants of both search algorithms. Also, only four
heuristics were considered: additive heuristic ADD (Bonet
and Geffner 2001), FF/additive heuristic FF (Hoffmann
and Nebel 2001; Keyder and Geffner 2008), causal graph
heuristic CG (Helmert 2004), and context-enhanced additive
heuristic CEA (Helmert and Geffner 2008).

The configuration of the submitted portfolio is shown in
Table 6, which shows for each component planner, its allot-
ted time and the core id where the planner shall be executed.
We have only selected two default planners with the pur-
pose of using the memory available between two planners

instead of four planners. In this case, the default planners are
LAMAR and LAMA 2011. Although LAMA 2011 is a com-
ponent planner of the submitted portfolio, we have selected
it because as default planner has more available memory.

Planner Core Allotted Time
GBFS - LAZY - CG 0 25
WA∗ - EAGER - FF 1 612
FDSS 2 2 220
GBFS - EAGER - FF, CG 3 543
YAHSP2 0 25
YAHSP2 MT 0 25
MADAGASCAR-P 0 36
GBFS - EAGER - FF 0 40
GBFS - EAGER - CEA 0 42
GBFS - EAGER - ADD, FF, CEA 0 55
FD AUTOTUNE 2 2 1525
DAE YAHSP 0 79
WA∗ - EAGER - ADD 0 125
WA∗ - LAZY - FF 0 220
FORKUNIFORM 3 1232
ROAMER 1 618
LAMA 2011 0 320
GBFS - EAGER - ADD, FF, CG 0 222
LAMA 2008 0 225
WA∗ - LAZY - CG 1 570
PROBE 0 359
LAMAR 0 RT
LAMA 2011 1 RT

Table 6: Configuration of the MIPLAN portfolio for the
multi-core track.

Acknowledgments
We automatically generated sequential portfolios of exist-
ing planners by means of a MIP task to be submitted to the
International Planning Competition 2014. Thus, we would
like to acknowledge and thank the authors of the individual
planners for their contribution and hard work.

This work has been partially supported by the Planinter-
action project TIN2011-27652-C03-02.

References
Bonet, B., and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence 129(1-2):5–33.
Helmert, M., and Geffner, H. 2008. Unifying the Causal
Graph and Additive Heuristics. In Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2008), 140–147.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A Baseline for Building Planner Portfo-
lios. In ICAPS 2011 Workshop on Planning and Learning
28–35.
Helmert, M. 2004. A Planning Heuristic Based on Causal
Graph Analysis. In Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), 161–170. AAAI Press.

15

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Keyder, E., and Geffner, H. 2008. Heuristics for Planning
with Action Costs Revisited. In Proceedings of the 18th Eu-
ropean Conference on Artificial Intelligence (ECAI 2008),
588–592.
Núñez, S.; Borrajo, D.; and Linares López, C. 2012. Per-
formance Analysis of Planning Portfolios. In Proceedings
of the Fifth Annual Symposium on Combinatorial Search,
SOCS, Niagara Falls, Ontario, Canada, July 19-21, 2012.
AAAI Press.

16

Fast Downward Cedalion

Jendrik Seipp and Silvan Sievers
Universität Basel

Basel, Switzerland
{jendrik.seipp,silvan.sievers}@unibas.ch

Frank Hutter
Universität Freiburg
Freiburg, Germany

fh@informatik.uni-freiburg.de

To avoid duplication of content we only give a high-level
overview of our algorithm here and refer to a technical report
for details on our methodology (Seipp, Sievers, and Hutter
2013). An extended version of that report is forthcoming.
The paper at hand focuses mostly on the configuration setup
we used for generating portfolios for IPC 2014.

Portfolio Configuration
Cedalion is our algorithm for automatically configuring se-
quential planning portfolios. Given a parametrized planner
and a set of training instances, it iteratively selects the pair of
planner configuration and time slice that improves the cur-
rent portfolio the most per time spent. At the end of each it-
eration all instances for which the current portfolio finds the
best solution are removed from the training set. The algo-
rithm stops when the the total runtime of the added configu-
rations reaches the portfolio time limit (usually 30 minutes)
or if the training set becomes empty.

Conceptually, Cedalion is similar to Hydra (Xu, Hoos,
and Leyton-Brown 2010) in that both use an algorithm con-
figuration procedure (Hutter 2009) to add the most improv-
ing configuration to the existing portfolio in each itera-
tion. However, Hydra uses the algorithm selection system
SATzilla (Xu et al. 2008) to select a configuration based
on the characteristics of a given test instance, and therefore
does not have a notion of time slices. In contrast, Cedalion
runs all found configurations sequentially regardless of the
instance at hand and makes the length of the time slices part
of the configuration space.

Cedalion is also very similar to the greedy algorithm pre-
sented by Streeter, Golovin, and Smith (2007). Given a fi-
nite set of solvers and their runtimes on the training set, that
algorithm iteratively adds the (solver, time slice) pair that
most improves the current portfolio per time spent. In con-
trast, Cedalion does not rely on a priori runtime data and
supports infinite sets of solver configurations by using an
algorithm configuration procedure to adaptively gather this
data for promising configurations only.

In principle, Cedalion could employ any algorithm con-
figuration procedure to select the next (configuration, time
slice) pair. Here, we use the model-based configurator
SMAC (Hutter, Hoos, and Leyton-Brown 2011) for this task.
As a simple standard parallelization method (Hutter, Hoos,
and Leyton-Brown 2012), we performed 10 SMAC runs in

parallel in every iteration of Cedalion and used the best of
the 10 identified (configuration, time slice) pairs.

We could have included planners other than Fast Down-
ward in our Cedalion portfolios (even other parameterized
planning frameworks, by configuring on the union of all pa-
rameter spaces). This would have almost certainly improved
performance, due to the fact that portfolios can exploit the
complementary strengths of diverse approaches. Neverthe-
less, we chose to limit ourselves to Fast Downward in order
to quantify the performance gain possible within this frame-
work.

Original Optimization Function
Formally, Cedalion uses the following metric mP to eval-
uate 〈configuration, time slice〉 pairs 〈θ, t〉 on task π given
the current Portfolio P :

mP (〈θ, t〉, π) =
q(P ⊕ 〈θ, t〉, π)− q(P, π)

t
, (1)

where P ⊕ 〈θ, t〉 denotes the portfolio P with 〈θ, t〉 ap-
pended and q is a performance metric. Following IPC eval-
uation criteria, we define q(P, π) as the solution quality
achieved by portfolio P for task π, i. e., as the minimum
known cost for task π divided by the cost achieved by P .
Note that the quality is either 1 or 0 for optimal planning
depending on whether P solves π.

Configuration Setup
Our Fast Downward Cedalion portfolios are the result of us-
ing Cedalion to find sequential portfolios of Fast Downward
(Helmert 2006) configurations. In this section we describe
how we used Cedalion to find portfolios for the IPC 2014
sequential satisficing, optimal and agile planning tracks.

Benchmarks
Our set of benchmarks consists of almost all domains from
previous IPCs (IPC-1998 – IPC-2011) plus the following ad-
ditional domains that we included in order to be able to learn
on more domains with conditional effects:

• Briefcaseworld from the FF/IPP domain collection
(http://fai.cs.uni-saarland.de/hoffmann/ff-domains.html)

17

• Alarm processing for power networks (Haslum and
Grastien 2011)

• Various formulations of the genome edit distance problem
(Haslum 2011)

• Synthesis of finite-state controllers (Bonet, Palacios, and
Geffner 2009)

• Compilations of conformant planning problems (Palacios
and Geffner 2009)

Since the number of tasks per domain varies greatly in this
benchmark set, we ran some baseline configurations on the
set of instances and only chose the 20 hardest tasks per do-
main. To this end, for each domain we ignored all unsolved
tasks and repeatedly added the task that is solved by the least
number of configurations. We broke ties by the runtimes the
configurations needed to solve a task. Our hope was that this
procedure would yield a benchmark set that focuses training
on all domains equally and respects the fact that over time
IPC benchmark tasks become more difficult to solve.

Modified Optimization Function
Since Cedalion’s optimization function leads to many con-
figurations being added with very small time slices, the num-
ber of Cedalion iterations can be quite high, especially for
satisficing planning. For the IPC, we therefore adapted the
function in a way that makes it focus more on additional
quality and less on the time that is needed to achieve it. We
achieved this behavior by dividing by (1+ log10(t)) instead
of t in Equation 1. In our experiments, this modification led
to much fewer iterations while the total quality achieved on
the training set did not suffer much.

Satisficing planning
For satisficing planning, the set of Fast Downward configu-
rations Cedalion could choose from was the same as the one
used by Fawcett et al. (2011), the only exception being that
we also included an implementation of the YAHSP looka-
head strategy (Vidal 2004). We used a time budget of 5 hours
on 10 machines for every iteration of our portfolio construc-
tion process (running 10 parallel independent SMAC runs)
and always added the pair of configuration and time slice to
the current portfolio that maximized the additional quality
score per log time spent.

Optimal planning
For a detailed description of the configuration space for op-
timal planning, we again refer to Fawcett et al. (2011). In
addition to the heuristics mentioned there, we also included
incremental LM-cut (Pommerening and Helmert 2013) and
the additive CEGAR heuristic (Seipp and Helmert 2014) and
allowed the search to reduce partial orders with various in-
stantiations of strong stubborn sets as defined by Wehrle and
Helmert (2014).

At the time of the construction of our portfolios the blind
and hmax heuristics (Bonet and Geffner 2001) were the only
admissible Fast Downward heuristics with conditional ef-
fect support. Since planners are required to support this fea-
ture in the IPC 2014, we added basic conditional-effect sup-

port for the LM-cut (Helmert and Domshlak 2009) and in-
cremental LM-cut and merge-and-shrink (Helmert, Haslum,
and Hoffmann 2007) heuristics. In order to also include
other heuristics which have no support for conditional ef-
fects, we decided to learn two portfolios. The first one
was trained on all domains from our benchmark set that
do not use conditional effects and Cedalion was allowed to
choose from all heuristics. The second one was trained on
the domains that require conditional effect support, allowing
Cedalion to only choose from the heuristics that support this
feature. At runtime our planner checks whether the given
task uses conditional effects and selects the appropriate port-
folio.

We used 10 SMAC runs of 6 hours each in each Cedalion
training iteration and always added the pair of configuration
and time slice to the current portfolio that maximizes the
number of additional tasks solved per log time spent.

Agile planning
We used the same configuration space and set of benchmarks
as for satisficing planning. As mandated by the rules for the
IPC 2014 sequential agile planning track we limited the total
portfolio time to 300 seconds.

In this setting we used 10 SMAC runs of 10 hours each
for each Cedalion training iteration. Due to the evaluation
function employed in this track we had to change the opti-
mization function Cedalion uses to find the next pair of con-
figuration and time slice. Instead of preferring the pair that
maximizes additional quality per log time spent, we chose
the one maximizing the agile score (as defined by the IPC
2014 organizers) per log time spent. Formally, we replace
the additional quality q by the additional time quality qtime:

qtime(P, π) =
1

1 + log10(t(P, π)/t
?(π))

,

where t(P, π) is the time portfolio P requires to solve task
π (note that t(P, π) = ∞ if P fails to solve π) and t?(π) is
the minimum time any planner needs (approximated by a set
of baseline planners). We set qtime(P, π) = 1 if t(P, π) <
t?(π) or t(P, π) < 1.

Acknowledgments
First, we would like to thank all Fast Downward contribu-
tors. Portfolios crucially rely on their base algorithms, and
as such a strong portfolio is ultimately due to the work of
the developers of these base algorithms. We therefore wish
to thank Malte Helmert, Jörg Hoffmann, Erez Karpas, Emil
Keyder, Raz Nissim, Florian Pommerening, Silvia Richter,
Gabriele Röger and Matthias Westphal for their contribu-
tions to the Fast Downward codebase.

The portfolios also use code that is as of yet not merged
into the main Fast Downward repository. Our thanks
go to Yusra Alkhazraji, Malte Helmert, Manuel Heusner,
Robert Mattmüller, Manuela Ortlieb, Florian Pommerening,
Gabriele Röger and Martin Wehrle for allowing us to include
their work in the Cedalion portfolios.

We are also grateful to Patrik Haslum and Héctor Palacios
for providing the PDDL tasks.

18

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Auto-
matic derivation of memoryless policies and finite-state con-
trollers using classical planners. In Gerevini, A.; Howe, A.;
Cesta, A.; and Refanidis, I., eds., Proceedings of the Nine-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2009), 34–41. AAAI Press.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. FD-Autotune: Domain-specific config-
uration using Fast Downward. In ICAPS 2011 Workshop on
Planning and Learning, 13–17.
Haslum, P., and Grastien, A. 2011. Diagnosis as planning:
Two case studies. In ICAPS 2011 Scheduling and Planning
Applications woRKshop, 37–44.
Haslum, P. 2011. Computing genome edit distances using
domain-independent planning. In ICAPS 2011 Scheduling
and Planning Applications woRKshop, 45–51.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), 176–183. AAAI
Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2011. Sequen-
tial model-based optimization for general algorithm con-
figuration. In Coello, C. A. C., ed., Proceedings of the
Fifth Conference on Learning and Intelligent OptimizatioN
(LION 2011), 507–523. Springer.
Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2012. Parallel
algorithm configuration. In Proceedings of the Sixth Con-
ference on Learning and Intelligent OptimizatioN (LION
2012), 55–70. Springer.
Hutter, F. 2009. Automated Configuration of Algorithms for
Solving Hard Computational Problems. Ph.D. Dissertation,
University of British Columbia.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of Artificial Intelligence Research 35:623–675.
Pommerening, F., and Helmert, M. 2013. Incremental
LM-cut. In Borrajo, D.; Kambhampati, S.; Oddi, A.; and
Fratini, S., eds., Proceedings of the Twenty-Third Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2013), 162–170. AAAI Press.
Seipp, J., and Helmert, M. 2014. Diverse and additive carte-
sian abstraction heuristics. In Proceedings of the Twenty-

Fourth International Conference on Automated Planning
and Scheduling (ICAPS 2014). AAAI Press.
Seipp, J.; Sievers, S.; and Hutter, F. 2013. Automatic con-
figuration of sequential planning portfolios. Technical Re-
port 5, Universität Basel, Fachbereich Informatik.
Streeter, M. J.; Golovin, D.; and Smith, S. F. 2007. Combin-
ing multiple heuristics online. In Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence (AAAI
2007), 1197–1203. AAAI Press.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Zilberstein, S.; Koehler, J.; and Koenig, S., eds.,
Proceedings of the Fourteenth International Conference on
Automated Planning and Scheduling (ICAPS 2004), 150–
159. AAAI Press.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Proceed-
ings of the Twenty-Fourth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2014). AAAI Press.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: portfolio-based algorithm selection for SAT. Jour-
nal of Artificial Intelligence Research 32:565–606.
Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2010. Hy-
dra: Automatically configuring algorithms for portfolio-
based selection. In Fox, M., and Poole, D., eds., Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence (AAAI 2010), 210–216. AAAI Press.

19

Appendix – Fast Downward Cedalion Portfolios
We list the configurations found during the configuration processes of our Fast Downward Cedalion portfolios. Our portfolio
components have the form of pairs (time slice, configuration), with the first entry reflecting the time slice allowed for the
configuration, which is in turn shown in the second component. Note that if the summed up time slices of the configurations of
a portfolio is below the overall time limit, the time slices will be stretched at runtime to match the allowed maximal time, i. e.
every time slice is multiplied with the same factor such that the portfolio runs for exactly the overall time limit.

Satisficing Planning
1,
--heuristic hGoalCount=goalcount(cost_type=2)
--heuristic hFF=ff(cost_type=0)
--search lazy(alt([single(sum([g(),weight(hFF,10)])),

single(sum([g(),weight(hFF,10)]),pref_only=true),
single(sum([g(),weight(hGoalCount,10)])),
single(sum([g(),weight(hGoalCount,10)]),pref_only=true)],
boost=2000),

preferred=[hFF,hGoalCount],reopen_closed=false,cost_type=1)

142,
--landmarks lmg=lm_rhw(reasonable_orders=false,only_causal_landmarks=false,

disjunctive_landmarks=false,conjunctive_landmarks=true,
no_orders=false,lm_cost_type=2,cost_type=1)

--heuristic hLM,hFF=lm_ff_syn(lmg,admissible=false)
--heuristic hBlind=blind()
--search lazy(alt([single(sum([g(),weight(hBlind,2)])),

single(sum([g(),weight(hBlind,2)]),pref_only=true),
single(sum([g(),weight(hLM,2)])),
single(sum([g(),weight(hLM,2)]),pref_only=true),
single(sum([g(),weight(hFF,2)])),
single(sum([g(),weight(hFF,2)]),pref_only=true)],
boost=4419),

preferred=[hLM],reopen_closed=true,cost_type=1)

60,
--heuristic hFF=ff(cost_type=1)
--search lazy(alt([single(sum([g(),weight(hFF,10)])),

single(sum([g(),weight(hFF,10)]),pref_only=true)],
boost=2000),

preferred=[hFF],reopen_closed=false,cost_type=1)

121,
--heuristic hAdd=add(cost_type=2)
--heuristic hFF=ff(cost_type=0)
--search lazy(alt([tiebreaking([sum([weight(g(),4),weight(hFF,5)]),hFF]),

tiebreaking([sum([weight(g(),4),weight(hFF,5)]),hFF],
pref_only=true),

tiebreaking([sum([weight(g(),4),weight(hAdd,5)]),hAdd]),
tiebreaking([sum([weight(g(),4),weight(hAdd,5)]),hAdd],

pref_only=true)],
boost=2537),

preferred=[hFF,hAdd],reopen_closed=true,cost_type=0)

403,
--heuristic hBlind=blind()
--heuristic hAdd=add(cost_type=0)
--heuristic hCg=cg(cost_type=1)
--heuristic hHMax=hmax()
--search eager(alt([tiebreaking([sum([g(),weight(hBlind,7)]),hBlind]),

tiebreaking([sum([g(),weight(hHMax,7)]),hHMax]),

20

tiebreaking([sum([g(),weight(hAdd,7)]),hAdd]),
tiebreaking([sum([g(),weight(hCg,7)]),hCg])],

boost=2142),
preferred=[],reopen_closed=true,pathmax=true,lookahead=false,
cost_type=0)

1,
--heuristic hCea=cea(cost_type=1)
--heuristic hFF=ff(cost_type=2)
--heuristic hBlind=blind()
--search eager(alt([single(sum([g(),weight(hBlind,10)])),

single(sum([g(),weight(hBlind,10)]),pref_only=true),
single(sum([g(),weight(hFF,10)])),
single(sum([g(),weight(hFF,10)]),pref_only=true),
single(sum([g(),weight(hCea,10)])),
single(sum([g(),weight(hCea,10)]),pref_only=true)],

boost=536),
preferred=[hFF],reopen_closed=false,pathmax=false,
lookahead=true,la_greedy=false,la_repair=true,cost_type=0)

563,
--landmarks lmg=lm_zg(reasonable_orders=true,only_causal_landmarks=false,

disjunctive_landmarks=true,conjunctive_landmarks=true,
no_orders=true,cost_type=1)

--heuristic hHMax=hmax()
--heuristic hLM=lmcount(lmg,admissible=false,pref=true,cost_type=1)
--heuristic hCea=cea(cost_type=2)
--heuristic hFF=ff(cost_type=1)
--heuristic hCg=cg(cost_type=2)
--search lazy(alt([tiebreaking([sum([g(),weight(hFF,10)]),hFF]),

tiebreaking([sum([g(),weight(hFF,10)]),hFF],pref_only=true),
tiebreaking([sum([g(),weight(hLM,10)]),hLM]),
tiebreaking([sum([g(),weight(hLM,10)]),hLM],pref_only=true),
tiebreaking([sum([g(),weight(hHMax,10)]),hHMax]),
tiebreaking([sum([g(),weight(hHMax,10)]),hHMax],pref_only=true),
tiebreaking([sum([g(),weight(hCg,10)]),hCg]),
tiebreaking([sum([g(),weight(hCg,10)]),hCg],pref_only=true),
tiebreaking([sum([g(),weight(hCea,10)]),hCea]),
tiebreaking([sum([g(),weight(hCea,10)]),hCea],pref_only=true)],
boost=4817),

preferred=[hFF,hCg],reopen_closed=false,cost_type=1)

1,
--landmarks lmg=lm_rhw(reasonable_orders=false,only_causal_landmarks=false,

disjunctive_landmarks=true,conjunctive_landmarks=true,
no_orders=true,cost_type=1)

--heuristic hHMax=hmax()
--heuristic hLM=lmcount(lmg,admissible=false,pref=false,cost_type=1)
--heuristic hAdd=add(cost_type=0)
--search lazy(alt([tiebreaking([sum([weight(g(),2),weight(hLM,3)]),hLM]),

tiebreaking([sum([weight(g(),2),weight(hHMax,3)]),hHMax]),
tiebreaking([sum([weight(g(),2),weight(hAdd,3)]),hAdd])],
boost=3002),

preferred=[],reopen_closed=true,cost_type=0)

62,
--landmarks lmg=lm_zg(reasonable_orders=false,only_causal_landmarks=false,

disjunctive_landmarks=true,conjunctive_landmarks=true,
no_orders=true,cost_type=0)

21

--heuristic hLM=lmcount(lmg,admissible=true,pref=false,cost_type=0)
--search eager(single(sum([g(),weight(hLM,3)])),preferred=[],

reopen_closed=true,pathmax=false,lookahead=false,cost_type=1)

50,
--landmarks lmg=lm_rhw(reasonable_orders=true,only_causal_landmarks=true,

disjunctive_landmarks=true,conjunctive_landmarks=true,
no_orders=false,cost_type=2)

--heuristic hBlind=blind()
--heuristic hAdd=add(cost_type=0)
--heuristic hLM=lmcount(lmg,admissible=false,pref=true,cost_type=2)
--heuristic hFF=ff(cost_type=0)
--search lazy(alt([single(sum([weight(g(),2),weight(hBlind,3)])),

single(sum([weight(g(),2),weight(hBlind,3)]),pref_only=true),
single(sum([weight(g(),2),weight(hFF,3)])),
single(sum([weight(g(),2),weight(hFF,3)]),pref_only=true),
single(sum([weight(g(),2),weight(hLM,3)])),
single(sum([weight(g(),2),weight(hLM,3)]),pref_only=true),
single(sum([weight(g(),2),weight(hAdd,3)])),
single(sum([weight(g(),2),weight(hAdd,3)]),pref_only=true)],
boost=2474),

preferred=[hAdd],reopen_closed=false,cost_type=1)

188,
--heuristic hCg=cg(cost_type=1)
--heuristic hHMax=hmax()
--heuristic hBlind=blind()
--heuristic hGoalCount=goalcount(cost_type=1)
--search eager(alt([tiebreaking([sum([weight(g(),4),weight(hBlind,5)]),hBlind]),

tiebreaking([sum([weight(g(),4),weight(hHMax,5)]),hHMax]),
tiebreaking([sum([weight(g(),4),weight(hCg,5)]),hCg]),
tiebreaking([sum([weight(g(),4),weight(hGoalCount,5)]),

hGoalCount])],
boost=1284),

preferred=[],reopen_closed=false,pathmax=true,lookahead=false,
cost_type=1)

2,
--landmarks lmg=lm_exhaust(reasonable_orders=false,only_causal_landmarks=false,

disjunctive_landmarks=true,conjunctive_landmarks=true,
no_orders=false,lm_cost_type=1,cost_type=0)

--heuristic hGoalCount=goalcount(cost_type=2)
--heuristic hLM,hFF=lm_ff_syn(lmg,admissible=false)
--heuristic hBlind=blind()
--search eager(alt([tiebreaking([sum([weight(g(),8),weight(hBlind,9)]),hBlind]),

tiebreaking([sum([weight(g(),8),weight(hLM,9)]),hLM]),
tiebreaking([sum([weight(g(),8),weight(hFF,9)]),hFF]),
tiebreaking([sum([weight(g(),8),weight(hGoalCount,9)]),

hGoalCount])],
boost=2005),

preferred=[],reopen_closed=true,pathmax=true,lookahead=false,
cost_type=0)

78,
--heuristic hBlind=blind()
--heuristic hFF=ff(cost_type=1)
--search eager(alt([single(sum([g(),weight(hBlind,2)])),

single(sum([g(),weight(hFF,2)]))],boost=4480),
preferred=[],reopen_closed=true,pathmax=true,

22

lookahead=true,la_greedy=true,la_repair=true,cost_type=0)

60,
--heuristic hCea=cea(cost_type=1)
--heuristic hFF=ff(cost_type=2)
--heuristic hGoalCount=goalcount(cost_type=2)
--heuristic hBlind=blind()
--search lazy(alt([tiebreaking([sum([g(),weight(hBlind,10)]),hBlind]),

tiebreaking([sum([g(),weight(hBlind,10)]),hBlind],pref_only=true),
tiebreaking([sum([g(),weight(hFF,10)]),hFF]),
tiebreaking([sum([g(),weight(hFF,10)]),hFF],pref_only=true),
tiebreaking([sum([g(),weight(hCea,10)]),hCea]),
tiebreaking([sum([g(),weight(hCea,10)]),hCea],pref_only=true),
tiebreaking([sum([g(),weight(hGoalCount,10)]),hGoalCount]),
tiebreaking([sum([g(),weight(hGoalCount,10)]),hGoalCount],

pref_only=true)],
boost=2222),

preferred=[hCea,hGoalCount],reopen_closed=false,cost_type=1)

3,
--heuristic hFF=ff(cost_type=2)
--search lazy(alt([tiebreaking([sum([g(),hFF]),hFF]),

tiebreaking([sum([g(),hFF]),hFF],pref_only=true)],
boost=432),

preferred=[hFF],reopen_closed=true,cost_type=1)

50,
--heuristic hGoalCount=goalcount(cost_type=1)
--heuristic hFF=ff(cost_type=2)
--heuristic hBlind=blind()
--heuristic hCg=cg(cost_type=0)
--search lazy(alt([single(sum([weight(g(),2),weight(hBlind,3)])),

single(sum([weight(g(),2),weight(hBlind,3)]),pref_only=true),
single(sum([weight(g(),2),weight(hFF,3)])),
single(sum([weight(g(),2),weight(hFF,3)]),pref_only=true),
single(sum([weight(g(),2),weight(hCg,3)])),
single(sum([weight(g(),2),weight(hCg,3)]),pref_only=true),
single(sum([weight(g(),2),weight(hGoalCount,3)])),
single(sum([weight(g(),2),weight(hGoalCount,3)]),pref_only=true)],

boost=3662),
preferred=[hFF],reopen_closed=true,cost_type=0)

14,
--landmarks lmg=lm_zg(reasonable_orders=true,only_causal_landmarks=false,

disjunctive_landmarks=true,conjunctive_landmarks=true,
no_orders=false,cost_type=1)

--heuristic hCg=cg(cost_type=1)
--heuristic hGoalCount=goalcount(cost_type=0)
--heuristic hHMax=hmax()
--heuristic hCea=cea(cost_type=0)
--heuristic hLM=lmcount(lmg,admissible=false,pref=true,cost_type=1)
--search lazy(alt([single(sum([weight(g(),2),weight(hLM,3)])),

single(sum([weight(g(),2),weight(hLM,3)]),pref_only=true),
single(sum([weight(g(),2),weight(hHMax,3)])),
single(sum([weight(g(),2),weight(hHMax,3)]),pref_only=true),
single(sum([weight(g(),2),weight(hCg,3)])),
single(sum([weight(g(),2),weight(hCg,3)]),pref_only=true),
single(sum([weight(g(),2),weight(hCea,3)])),
single(sum([weight(g(),2),weight(hCea,3)]),pref_only=true),

23

single(sum([weight(g(),2),weight(hGoalCount,3)])),
single(sum([weight(g(),2),weight(hGoalCount,3)]),pref_only=true)],
boost=2508),

preferred=[hCea,hGoalCount],reopen_closed=false,cost_type=0)

1,
--landmarks lmg=lm_exhaust(reasonable_orders=false,only_causal_landmarks=false,

disjunctive_landmarks=true,conjunctive_landmarks=true,
no_orders=false,cost_type=1)

--heuristic hFF=ff(cost_type=2)
--heuristic hHMax=hmax()
--heuristic hBlind=blind()
--heuristic hLM=lmcount(lmg,admissible=true,pref=false,cost_type=1)
--search lazy(alt([single(sum([g(),weight(hBlind,3)])),

single(sum([g(),weight(hBlind,3)]),pref_only=true),
single(sum([g(),weight(hFF,3)])),
single(sum([g(),weight(hFF,3)]),pref_only=true),
single(sum([g(),weight(hLM,3)])),
single(sum([g(),weight(hLM,3)]),pref_only=true),
single(sum([g(),weight(hHMax,3)])),
single(sum([g(),weight(hHMax,3)]),pref_only=true)],
boost=3052),

referred=[hFF],reopen_closed=true,cost_type=0)

Optimal Planning
• Configurations supporting conditional effects:

1,
--heuristic hBlind=blind()
--heuristic hcond_eff_incremental_lmcut=

cond_eff_incremental_lmcut(local=false,memory_limit=46,
keep_frontier=false,reevaluate_parent=false,
min_cache_hits=4385)

--heuristic hCombinedMax=max([hBlind,hcond_eff_incremental_lmcut])
--search astar(hCombinedMax,mpd=false,pathmax=true,cost_type=0)

99
--heuristic hMas=

merge_and_shrink(reduce_labels=true,
merge_strategy=MERGE_LINEAR_GOAL_CG_LEVEL,
shrink_strategy=

shrink_bisimulation(max_states=731,
max_states_before_merge=-1,
greedy=true,
threshold=329,
group_by_h=true,
at_limit=RETURN))

--heuristic hHMax=hmax()
--heuristic hCombinedMax=max([hMas,hHMax])
--search astar(hCombinedMax,mpd=false,pathmax=false,cost_type=0)

38,
--heuristic hcond_eff_incremental_lmcut=

cond_eff_incremental_lmcut(local=false,memory_limit=94,
keep_frontier=false,reevaluate_parent=false,
min_cache_hits=9175)

--heuristic hHMax=hmax()
--heuristic hCombinedMax=max([hcond_eff_incremental_lmcut,hHMax])
--search astar(hCombinedMax,mpd=false,pathmax=false,cost_type=0)

24

463,
--heuristic hcond_eff_incremental_lmcut=

cond_eff_incremental_lmcut(local=false,memory_limit=36,
keep_frontier=true,reevaluate_parent=false,
min_cache_hits=9943)

--search astar(hcond_eff_incremental_lmcut,mpd=false,pathmax=true,cost_type=0)

• Configurations not supporting conditional effects:

1,
--heuristic hincremental_lmcut=

incremental_lmcut(local=false,memory_limit=1000,
keep_frontier=false,reevaluate_parent=true,
min_cache_hits=4294967295)

--heuristic hcpdbs=cpdbs()
--heuristic hCombinedMax=max([hcpdbs,hincremental_lmcut])
--search astar(hCombinedMax,

partial_order_reduction=
sss_expansion_core(active_ops=false,mutexes=none),

mpd=false,
pathmax=false,
cost_type=0)

538,
--landmarks lmg=lm_zg(only_causal_landmarks=false,disjunctive_landmarks=true,

conjunctive_landmarks=true,no_orders=true)
--heuristic hincremental_lmcut=

incremental_lmcut(local=false,memory_limit=200,keep_frontier=false,
reevaluate_parent=true,min_cache_hits=4294967295)

--heuristic hLMCut=lmcut()
--heuristic hipdb=ipdb(pdb_max_size=87443270,collection_max_size=182173479,

num_samples=94,min_improvement=7,max_time=48)
--heuristic hLM=lmcount(lmg,admissible=true)
--heuristic hCombinedMax=max([hipdb,hLM,hLMCut,hincremental_lmcut])
--search astar(hCombinedMax,mpd=false,pathmax=true,cost_type=0)

338,
--heuristic hHMax=hmax()
--heuristic hCegar=cegar(max_states=6072054,max_time=74,

pick=max_constrained,fact_order=original,
decomposition=goal_leaves,max_abstractions=5143)

--heuristic hpdb=pdb(max_states=88665)
--heuristic hincremental_lmcut=

incremental_lmcut(local=false,memory_limit=100,keep_frontier=true,
reevaluate_parent=true,min_cache_hits=4294967295)

--heuristic hLMCut=lmcut()
--heuristic hCombinedMax=max([hCegar,hpdb,hLMCut,hincremental_lmcut,hHMax])
--search astar(hCombinedMax,

partial_order_reduction=
small_stubborn_sets(active_ops=false,

precond_choice=minimize_global_var_ordering,
mutexes=fd),mpd=false,
pathmax=true,cost_type=0)

340,
--heuristic hBlind=blind()
--heuristic hpdb=pdb(max_states=61783637)
--heuristic hCegar=cegar(max_states=1052487,max_time=289,

pick=max_constrained,fact_order=hadd_down,

25

decomposition=goal_leaves,max_abstractions=6563)
--heuristic hCombinedMax=max([hCegar,hpdb,hBlind])
--search astar(hCombinedMax,mpd=false,pathmax=false,cost_type=0)

392,
--landmarks lmg=lm_rhw(only_causal_landmarks=false,disjunctive_landmarks=true,

conjunctive_landmarks=true,no_orders=false)
--heuristic hMas=

merge_and_shrink(reduce_labels=true,
merge_strategy=MERGE_LINEAR_REVERSE_LEVEL,
shrink_strategy=

shrink_fh(max_states=10188,max_states_before_merge=-1,
shrink_f=HIGH,shrink_h=HIGH))

--heuristic hpdb=pdb(max_states=958787)
--heuristic hincremental_lmcut=

incremental_lmcut(local=false,memory_limit=2000,keep_frontier=false,
reevaluate_parent=true,min_cache_hits=100)

--heuristic hCegar=cegar(max_states=2970840,max_time=361,pick=max_hadd,
fact_order=original,decomposition=landmarks,
max_abstractions=473)

--heuristic hcpdbs=cpdbs()
--heuristic hLM=lmcount(lmg,admissible=true)
--heuristic hzopdbs=zopdbs()
--heuristic hCombinedMax=max([hMas,hCegar,hzopdbs,hcpdbs,hpdb,

hLM,hincremental_lmcut])
--search astar(hCombinedMax,

partial_order_reduction=sss_expansion_core(active_ops=true,mutexes=fd),
mpd=false,pathmax=false,cost_type=0)

113,
--heuristic hcpdbs=cpdbs()
--heuristic hpdb=pdb(max_states=282621)
--heuristic hMas=

merge_and_shrink(reduce_labels=true,
merge_strategy=MERGE_LINEAR_REVERSE_LEVEL,
shrink_strategy=

shrink_bisimulation(max_states=6447701,
max_states_before_merge=-1,
greedy=false,threshold=4577868,
group_by_h=false,at_limit=RETURN))

--heuristic hLMCut=lmcut()
--heuristic hincremental_lmcut=incremental_lmcut(local=true)
--heuristic hBlind=blind()
--heuristic hipdb=ipdb(pdb_max_size=494641,collection_max_size=2355433,

num_samples=1135,min_improvement=11,max_time=21)
--heuristic hCombinedMax=max([hMas,hipdb,hcpdbs,hpdb,hBlind,hLMCut,

hincremental_lmcut])
--search astar(hCombinedMax,

partial_order_reduction=
small_stubborn_sets(active_ops=true,

precond_choice=forward,
mutexes=fd),

mpd=false,pathmax=true,cost_type=0)

11,
--landmarks lmg=lm_rhw(only_causal_landmarks=false,disjunctive_landmarks=true,

conjunctive_landmarks=true,no_orders=false)
--heuristic hLM=lmcount(lmg,admissible=true)
--heuristic hLMCut=lmcut()

26

--heuristic hcpdbs=cpdbs()
--heuristic hCegar=cegar(max_states=8603232,max_time=6,pick=max_refined,

fact_order=hadd_up,decomposition=none,max_abstractions=4284)
--heuristic hHm=hm(m=1)
--heuristic hBlind=blind()
--heuristic hMas=

merge_and_shrink(reduce_labels=true,
merge_strategy=MERGE_LINEAR_GOAL_CG_LEVEL,
shrink_strategy=

shrink_bisimulation(max_states=3766,
max_states_before_merge=-1,
greedy=false,threshold=2900,
group_by_h=true,at_limit=RETURN))

--heuristic hCombinedMax=max([hMas,hCegar,hcpdbs,hBlind,hHm,hLM,hLMCut])
--search astar(hCombinedMax,mpd=false,pathmax=true,cost_type=0)

Agile Planning
1,
--heuristic hFF=ff(cost_type=1)
--search eager(alt([single(sum([g(),weight(hFF,10)])),

single(sum([g(),weight(hFF,10)]),pref_only=true)],boost=3025),
preferred=[hFF],reopen_closed=true,pathmax=false,lookahead=true,
la_greedy=true,la_repair=false,cost_type=1)

49,
--landmarks lmg=lm_rhw(reasonable_orders=true,only_causal_landmarks=false,

disjunctive_landmarks=true,conjunctive_landmarks=true,
no_orders=false,lm_cost_type=2,cost_type=1)

--heuristic hLM,hFF=lm_ff_syn(lmg,admissible=false)
--search lazy(alt([single(sum([g(),weight(hLM,10)])),

single(sum([g(),weight(hLM,10)]),pref_only=true),
single(sum([g(),weight(hFF,10)])),
single(sum([g(),weight(hFF,10)]),pref_only=true)],boost=2000),

preferred=[hLM,hFF],reopen_closed=false,cost_type=1)

92,
--heuristic hFF=ff(cost_type=1)
--heuristic hCg=cg(cost_type=1)
--heuristic hBlind=blind()
--search eager(alt([single(sum([g(),weight(hBlind,2)])),

single(sum([g(),weight(hFF,2)])),
single(sum([g(),weight(hCg,2)]))],boost=4480),

preferred=[],reopen_closed=true,pathmax=true,lookahead=true,
la_greedy=true,la_repair=true,cost_type=0)

60,
--landmarks lmg=lm_merged([lm_rhw(),lm_hm(m=1)],reasonable_orders=false,

only_causal_landmarks=false,disjunctive_landmarks=true,
conjunctive_landmarks=true,no_orders=true,cost_type=2)

--heuristic hLM=lmcount(lmg,admissible=false,pref=false,cost_type=2)
--search lazy(single(hLM),preferred=[],reopen_closed=false,cost_type=0)

60,
--heuristic hAdd=add(cost_type=2)
--search lazy(alt([single(sum([g(),weight(hAdd,10)])),

single(sum([g(),weight(hAdd,10)]),pref_only=true)],boost=2000),
preferred=[hAdd],reopen_closed=false,cost_type=1)

27

Fast Downward Stone Soup 2014

Gabriele Röger and Florian Pommerening and Jendrik Seipp
University of Basel, Switzerland

{gabriele.roeger,florian.pommerening,jendrik.seipp}@unibas.ch

Abstract

Fast Downward Stone Soup is a sequential portfolio planner
that uses various heuristics and search algorithms that have
been implemented in the Fast Downward planning system.
We present the variant participating in the sequential satisfic-
ing track of IPC 2014.

Introduction
Fast Downward Stone Soup (Helmert, Röger, and Karpas
2011) is a portfolio planner, based on the Fast Downward
planning system (Helmert 2006; 2009), and has first partici-
pated in the International Planning Competition in 2011.

In this paper we present the variant for the sequential sat-
isficing track of IPC 2014. It is built on slightly different
components than the 2011 variant but uses the same selec-
tion method for building the portfolio. Therefore we only
briefly recapitulate this procedure and present the resulting
portfolio. For a discussion of the algorithm we refer the
reader to the planner description paper of Fast Downward
Stone Soup 2011 (Helmert, Röger, and Karpas 2011).

Building the Portfolio
We used the same hill-climbing algorithm for building the
portfolio as Fast Downward Stone Soup 2011. It requires
the following information as input:

• A set of planning algorithms A. We used a set of 65 Fast
Downward configurations, which we will describe in the
next section.

• A set of training instances I, for which portfolio perfor-
mance is optimized. We used a set of 3533 instances, de-
scribed in the next section.

• Complete evaluation results that include, for each algo-
rithm A ∈ A and training instance I ∈ I,

– the runtime t(A, I) of the given algorithm on the given
training instance on our evaluation machines, in sec-
onds (we did not consider anytime planners), and

build-portfolio(algorithms, results, granularity, timeout):
portfolio := {A 7→ 0 | A ∈ algorithms }
repeat btimeout/granularityc times:

candidates := successors(portfolio, granularity)
portfolio := argmaxC∈candidates score(C, results)

portfolio := reduce(portfolio, results)
return portfolio

Figure 1: Algorithm for building a portfolio.

– the plan cost c(A, I) of the plan that was found.

We used a timeout of 30 minutes and memory limit of
2 GB to generate this data. In cases where an instance
could not be solved within these bounds, we set t(A, I) =
c(A, I) =∞.

The procedure computes a portfolio as a mapping P :
A → N0 which assigns a time limit (possibly 0 if the al-
gorithm is not used) to each component algorithm. It is a
simple hill-climbing search in the space of portfolios, shown
in Figure 1.

In addition to the algorithms and the evaluation results,
it takes two parameters, granularity and timeout, both mea-
sured in seconds. The timeout is an upper bound on the
total time for the generated portfolio, which is the sum of
all component time limits. The granularity specifies the step
size with which we add time slices to the current portfolio.

The search starts from a portfolio that assigns a time of
0 to all algorithms. In each hill-climbing step, it generates
all possible successors of the current portfolio. There is one
successor per algorithm, where the only difference between
the current portfolio and the successor is that the time limit
of this algorithm is increased by the given granularity value.

To evaluate the quality of a portfolio, we compute a score
in the range 0–1 for each training instance and sum this
quantity over all training instances to form a portfolio score.

For each instance, we apply a similar scoring function as
used for the International Planning Competitions since 2008,
with the only difference that we use the best solution qual-

28

ity among our algorithms as reference quality: if no algo-
rithm in a portfolio P solves an instance I within its allotted
runtime, the instance score is 0. Otherwise, the portfolio is
assigned the instance score c∗I/c

P
I , where c∗I is the best solu-

tion cost for I of any input algorithm A ∈ A and cPI denotes
the best solution cost among all algorithmsA ∈ A that solve
the instance within their allotted runtime P (A).

In each hill-climbing step the search chooses the succes-
sor with the highest portfolio score. Ties are broken in favor
of successors that increase the timeout of the component al-
gorithm that occurs earliest in some arbitrary total order.

The hill-climbing phase ends when all successors would
exceed the given time bound. A post-processing step re-
duces the time assigned to each algorithm by the portfolio. It
considers the algorithms in the same arbitrary order used for
breaking ties in the hill-climbing phase and sets their time
limit to the lowest number that would still lead to the same
portfolio score.

Resulting Portfolio
Our set of training instances consists of almost all tasks
from the deterministic track of IPC 1998 – IPC 2011
plus tasks from various other sources: compilations of
conformant planning tasks (Palacios and Geffner 2009),
finite-state controller synthesis problems (Bonet, Pala-
cios, and Geffner 2009), genome edit distance problems
(Haslum 2011), alarm processing tasks for power net-
works (Haslum and Grastien 2011), and briefcaseworld
tasks from the FF/IPP domain collection (http://fai.cs.uni-
saarland.de/hoffmann/ff-domains.html). In total, we used
3533 training instances.

For the input planning algorithms, we used the following
components:

• search algorithm: As in the 2011 variant, we only exper-
imented with greedy best-first search and with weighted
A∗ with a weight of 3.

• eager vs. lazy: We again considered both “eager”
(textbook) and “lazy” (deferred evaluation) variants of
both search algorithms. The work by Richter and
Helmert (2009) indicates that both evaluation strategies
can be helpful in a portfolio because they have somewhat
different strengths and weaknesses.

• preferred operators: We used preferred operator informa-
tion from the heuristics with the default settings of the
search algorithms in Fast Downward. For eager search,
this is the “dual-queue” method of exploiting preferred
operators, for lazy search it is the “boosted dual-queue”
method, using a boost value of 1000. This is backed by
the results of Richter and Helmert (2009).

• heuristics: We used all heuristics used in 2011, which
are the additive heuristic hadd (Bonet and Geffner 2001),
the FF/additive heuristic hFF (Hoffmann and Nebel 2001;
Keyder and Geffner 2008), the causal graph heuristic
hCG (Helmert 2004), and the context-enhanced additive
heuristic hcea (Helmert and Geffner 2008). In addition,
we this year included the landmark heuristic hLM (Richter

and Westphal 2010) which is known for very good per-
formance when used in combination with hFF as in the
LAMA planner (Richter and Westphal 2010) .
Röger and Helmert (2010) have shown that combinations
of multiple heuristics with the “alternation” method can
often be very beneficial. Therefore, we considered plan-
ner configurations for each of the 10 possible combina-
tions of two of the five heuristics. We did not use larger
subsets because computation time for the evaluation re-
sults was limited. We also included all single-heuristic
configurations except hLM (due to technical problems).

In total, we used 56 planner configurations as input of the
hill-climbing procedure. We tried different values for the
granularity parameter and achieved the best results (com-
puted from the training set) with a granularity of 40. The
resulting portfolio is shown in Tables 1 and 2. It uses 27
of the 56 possible configurations, running them between 17
and 187 seconds. On the training set, the portfolio achieves
an overall score of 3234.53, which is much better than the
best component algorithm with a score of 2722.17. If we
had an oracle to select the perfect algorithm (getting allotted
the full 1800 seconds) for each instance, we could reach a
total score of 3417.

Sequential Portfolio
In the previous sections, a portfolio simply assigns a runtime
to each algorithm, leaving their sequential order open. With
the simplifying assumption that all planner runs use the full
assigned time and do not communicate information, the or-
der is indeed irrelevant.

In reality, the situation is more complex. First, the Fast
Downward planner uses a preprocessing phase that we need
to run once before we start the portfolio, so we do not have
the full 1800 seconds available. Second, we would like to
use the quality of a plan found by one algorithm to prune the
search of subsequent planner runs. Third, planner runs often
terminate early, e. g. because they run out of memory or find
a plan. We would like to use the remaining time to further
search for a plan or improve the solution quality. To handle
these issues, we employ the same strategy as Fast Downward
Stone Soup 2011 in version 1:

We sorted the algorithms by decreasing order of coverage,
hence beginning with algorithms likely to succeed quickly.

Per-algorithm time limits defined by the portfolio are
treated as relative, rather than absolute numbers: whenever
we start a configuration, we compute the total allotted time
of this and all following runs and scale it to the actually re-
maining computation time. We then assign the respective
scaled time to the run. As a result, the last run gets assigned
all the remaining time.

The best solution found so far is always used for prun-
ing based on g values: only paths in the state space that are
cheaper than the best solution found so far are pursued.

A search algorithm often solves an instance more quickly
if it ignores action costs (Richter and Westphal 2010).
Therefore we do not take action costs into account until we
find the first solution. Afterwards, we re-run the success-
ful configuration using action costs the same way as in the

29

Search Evaluation Heuristics Performance Time Marg. Contribution

Greedy best-first Eager hFF,hLM 2722.17 / 3110 35 2.75 / 1
Weighted A∗ Eager hFF,hLM 2663.04 / 2911 40 1.84 / 0
Greedy best-first Eager hCG,hFF 2626.41 / 3044 40 2.46 / 0
Weighted A∗ Lazy hFF,hLM 2615.15 / 2962 159 11.71 / 1
Weighted A∗ Eager hCG,hFF 2609.36 / 2927 0 —
Greedy best-first Eager hadd,hLM 2591.42 / 3116 33 1.45 / 0
Greedy best-first Lazy hFF,hLM 2587.26 / 3195 187 19.11 / 19
Greedy best-first Eager hadd,hFF 2575.28 / 3047 120 12.80 / 12
Greedy best-first Eager hFF 2544.79 / 2934 0 —
Weighted A∗ Eager hcea,hFF 2539.53 / 2880 40 2.22 / 1
Weighted A∗ Eager hadd,hLM 2539.35 / 2950 0 —
Greedy best-first Eager hcea,hFF 2537.93 / 2957 0 —
Weighted A∗ Eager hFF 2535.22 / 2818 72 9.09 / 2
Weighted A∗ Eager hadd,hFF 2533.38 / 2904 0 —
Weighted A∗ Lazy hadd,hLM 2525.66 / 2998 79 5.13 / 1
Weighted A∗ Lazy hcea,hFF 2522.98 / 2942 39 1.87 / 0
Weighted A∗ Eager hcea,hLM 2518.46 / 2921 37 0.85 / 0
Greedy best-first Eager hcea,hLM 2512.55 / 2982 0 —
Weighted A∗ Lazy hcea,hLM 2511.75 / 2957 39 2.19 / 0
Greedy best-first Eager hadd,hCG 2510.72 / 3016 0 —
Weighted A∗ Lazy hCG,hFF 2507.10 / 2918 40 2.48 / 0
Weighted A∗ Eager hCG,hLM 2505.67 / 2857 78 3.50 / 0
Greedy best-first Eager hCG,hLM 2505.49 / 2955 78 8.20 / 3
Greedy best-first Lazy hadd,hLM 2492.53 / 3199 114 5.77 / 3
Greedy best-first Lazy hcea,hFF 2487.23 / 3035 0 —
Weighted A∗ Eager hadd,hCG 2478.44 / 2909 0 —
Greedy best-first Lazy hCG,hFF 2470.78 / 3042 0 —
Greedy best-first Eager hadd 2464.16 / 2994 0 —
Weighted A∗ Eager hadd 2446.85 / 2909 77 5.52 / 3
Greedy best-first Lazy hcea,hLM 2434.88 / 3070 39 9.00 / 8
Weighted A∗ Lazy hadd,hFF 2428.48 / 2940 0 —
Weighted A∗ Lazy hCG,hLM 2415.80 / 2839 39 4.59 / 0
Greedy best-first Eager hcea,hCG 2407.77 / 2899 0 —
Weighted A∗ Eager hcea,hCG 2406.41 / 2825 0 —
Weighted A∗ Eager hcea,hadd 2403.75 / 2837 0 —
Greedy best-first Lazy hCG,hLM 2380.44 / 2980 0 —
Weighted A∗ Lazy hFF 2372.10 / 2801 38 2.86 / 1
Weighted A∗ Eager hcea 2366.58 / 2803 0 —
Greedy best-first Lazy hadd,hFF 2365.67 / 3031 17 2.17 / 2
Greedy best-first Lazy hFF 2350.87 / 2941 0 —
Weighted A∗ Lazy hcea,hCG 2336.09 / 2852 0 —
Greedy best-first Eager hcea 2330.01 / 2845 40 2.75 / 2
Greedy best-first Eager hcea,hadd 2324.89 / 2794 0 —
Weighted A∗ Lazy hadd,hCG 2320.28 / 2875 0 —
Greedy best-first Lazy hadd,hCG 2307.49 / 2999 40 3.47 / 0
Greedy best-first Eager hCG 2290.74 / 2713 0 —
Weighted A∗ Lazy hcea,hadd 2285.72 / 2830 0 —

Table 1: Fast Downward Stone Soup 2014 (continued in Table 2). The performance column shows the score/coverage of the
configuration over all training instances. The last column shows the decrease of score and number of solved instances when
removing only this configuration from the portfolio.

30

Search Evaluation Heuristics Performance Time Marg. Contribution

Greedy best-first Lazy hcea,hCG 2281.19 / 2941 0 —
Weighted A∗ Eager hCG 2271.04 / 2612 38 3.10 / 0
Weighted A∗ Lazy hcea 2269.16 / 2820 40 2.50 / 0
Weighted A∗ Lazy hadd 2238.18 / 2852 0 —
Weighted A∗ Lazy hCG 2205.40 / 2631 0 —
Greedy best-first Lazy hCG 2200.30 / 2762 116 12.77 / 10
Greedy best-first Lazy hcea,hadd 2189.99 / 2844 0 —
Greedy best-first Lazy hcea 2187.15 / 2900 0 —
Greedy best-first Lazy hadd 2181.16 / 2958 0 —

Portfolio 3234.53 / 3286 1714
“Holy Grail” 3417.00 / 3417

Table 2: Fast Downward Stone Soup 2014 (continuation of Table 1).

LAMA planner, by treating all actions of cost c with cost
c + 1 in the heuristic and using the true action costs in the
search component. We maintain this strategy for all remain-
ing planner runs.

Conclusion
Fast Downward Stone Soup 2014 is a very simple portfolio
planner. We are aware that our approach is in almost every
respect not state of the art in portfolio computation, machine
learning, or parameter tuning. Even though, since the 2011
variant was the runner-up at IPC 2011, we decided to submit
it nevertheless as a baseline for other portfolio planners in
the competition.

Acknowledgments
It is a matter of fact that for a portfolio planner not those
who combined the components deserve the main credit but
those who contributed these components.

We therefore wish to thank Blai Bonet, Héctor Geffner,
Malte Helmert, Jörg Hoffmann, Emil Keyder, and Silvia
Richter, who devised the heuristics used in the portfolio. We
could also build on extensive studies by Silvia Richter and
Malte Helmert on the influence of different evaluation meth-
ods and preferred operators.

Special credit also goes to the core developers of Fast
Downward who steadily maintain the code basis with a sig-
nificant amount of work that often goes unnoticed: Malte
Helmert, Erez Karpas, and Silvan Sievers (and – less impor-
tant – the authors of this paper).

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In Proc. ICAPS 2009, 34–41.
Haslum, P., and Grastien, A. 2011. Diagnosis as planning:
Two case studies. In ICAPS 2011 Scheduling and Planning
Applications woRKshop, 37–44.

Haslum, P. 2011. Computing genome edit distances using
domain-independent planning. In ICAPS 2011 Scheduling
and Planning Applications woRKshop, 45–51.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Proc. ICAPS 2008, 140–
147.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A baseline for building planner portfolios.
In ICAPS 2011 Workshop on Planning and Learning, 28–35.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS 2004, 161–170.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. AIJ 173:503–535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proc. ECAI 2008, 588–592.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
JAIR 35:623–675.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Proc. ICAPS
2009, 273–280.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
Proc. ICAPS 2010, 246–249.

31

Fast Downward Uniform Portfolio

Jendrik Seipp
Universität Basel

Basel, Switzerland
jendrik.seipp@unibas.ch

Manuel Braun
Johannes Garimort

Albert-Ludwigs-Universität Freiburg
Freiburg, Germany

The Fast Downward uniform portfolio runs 21 automati-
cally configured Fast Downward instantiations sequentially
for the same amount of time. The portfolio is identical to
the “uniform” portfolio in Seipp et al. (2012a). Therefore,
we only give a high-level description here and refer to the
paper for details of its construction and an exerimental anal-
ysis.

In a nutshell, our uniform portfolio approach works as fol-
lows: we used the automatic parameter tuning framework
ParamILS (Hutter et al. 2009) to find fast configurations
of the Fast Downward planning system for 21 planning do-
mains separately. At runtime we run all found configurations
sequentially for the same amount of time, i.e. in the IPC set-
ting with a time limit of 30 minutes, all configurations run
for at most 85 seconds.

The details of our approach can be found in Seipp et
al. (2012a) and the accompanying technical report (Seipp
et al. 2012b).

References
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: an automatic algorithm configura-
tion framework. Journal of Artificial Intelligence Research
36:267–306.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012a.
Learning portfolios of automatically tuned planners. In Mc-
Cluskey, L.; Williams, B.; Silva, J. R.; and Bonet, B., eds.,
Proceedings of the Twenty-Second International Confer-
ence on Automated Planning and Scheduling (ICAPS 2012).
AAAI Press.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012b.
Learning portfolios of automatically tuned planners: De-
tailed results. Technical Report 268, Albert-Ludwigs-
Universität Freiburg, Institut für Informatik.

32

The Freelunch Planning System Entering IPC 2014

Tomáš Balyo
Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics, Charles University in Prague
biotomas@gmail.com

Abstract

Freelunch is an open-source planning system written
in Java. It takes input in the multivalued SAS+ format,
which can be obtained from PDDL by Helmert’s trans-
lation tool. Freelunch also provides a Java API to make
its use in Java applications convenient. The philosophy
of Freelunch is to first find a plan of arbitrary qual-
ity and then improve it using post planning optimiza-
tion techniques. Several algorithms are implemented in
Freelunch, many of them are based on translation of
planning problems into satisfiability (SAT) and using a
SAT solver.

Introduction
Freelunch (http://ktiml.mff.cuni.cz/freelunch) is an open-
source Java planner and planning library. It is designed to be
used in Java applications, for example to implement sophis-
ticated artificial intelligence for games. Freelunch is a col-
lection of planning algorithms sharing a common interface,
which is easy to understand and use. Everything is written in
Java, which allows using the library on any device or plat-
form that supports Java.

There are many other planners which are faster than
Freelunch, but they are mostly written in C or C++. They
are using a formalism called PDDL, which is in our opin-
ion rather hard to use. Describing a planning problem cor-
rectly in PDDL requires some skills and experience with
abstract modeling. On the other hand describing a problem
with Freelunch is easy and straightforward

Freelunch can be used as a command line planner, it ac-
cepts the SAS+ format defined by Helmert (Helmert 2014).
However, most of the planning benchmark problems come
in the PDDL format, which can be translated into SAS files
using Helmert’s translation tool, which is a part of the Fast
Downward planner (Helmert 2006).

This paper is focused on the description of the algo-
rithms used for the 2014 planning competition version of
the command line planner. The main algorithm can be sum-
marized as follows. First, we translate the PDDL input into
the SAS+ formalism. Then we run a simple backtracking
search, which can solve some of the domains very quickly

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(at the expense of very long plans). If the backtracking fails
to find a plan in the given time limit, then we switch to a
SAT based approach. If a plan is found, then post-planning
optimization techniques are used to increase its quality.

Preliminary Definitions
In this section we give the formal definitions related to
planning. We will use the multivalued SAS+ formalism
(Bäckström and Nebel 1995) instead of the classical STRIPS
formalism (Fikes and Nilsson 1971) based on propositional
logic.

A planning task Π in the SAS+ formalism is defined as a
tuple Π = {X,O, sI , sG} where
• X = {x1, . . . , xn} is a set of multivalued variables with

finite domains dom(xi).
• O is a set of actions (or operators). Each action a ∈ O

is a tuple (pre(a), eff(a)) where pre(a) is the set of pre-
conditions of a and eff(a) is the set of effects of a. Both
preconditions and effects are of the form xi = v where
v ∈ dom(xi).

• A state is a set of assignments to the state variables. Each
state variable has exactly one value assigned from its re-
spective domain. We denote by S the set of all states.
sI ∈ S is the initial state. sG is a partial assignment of
the state variables (not all variables have assigned values)
and a state s ∈ S is a goal state if sG ⊆ s.
An action a is applicable in the given state s if pre(a) ⊆

s. By s′ = apply(a, s) we denote the state after executing
the action a in the state s, where a is applicable in s. All
the assignments in s′ are the same as in s except for the as-
signments in eff(a) which replace the corresponding (same
variable) assignments in s.

A (sequential) planP of length k for a given planning task
Π is a sequence of actions P = {a1, . . . , ak} such that sG ⊆
apply(ak, apply(ak−1 . . . apply(a2, apply(a1, sI)) . . .)).
We will denote by |P | the length of the plan.

Finding Plans
The planner version entering the IPC 2014 can be considered
a simple sequential portfolio planner. The portfolio consists
of only two planning algorithms. The first is a simple heuris-
tic forward search algorithm, the second is a SAT based ap-
proach. The time limit for the forward search is set to 10

33

seconds, the rest of the time is used for SAT search and post
planning optimization. A more detailed description of both
algorithms follows.

Heuristic Forward Search
Starting with the initial state, the algorithm computes all the
applicable actions in the current state that lead to a not yet
visited state. For each of these actions a heuristic value is
computed representing its supposed usefulness. The action
with the highest value is selected and applied on the current
state. If we get to a state, that each applicable action leads to
an already visited state or there is no applicable action, then
we backtrack to the previous state.

The heuristic function of action usefulness is very simple
and greedy. An action starts with a score of 0. If an effect of
the action sets a variable to a goal value while in the current
state it has a different value, then the score of the action is
increased by 1. On the other hand, if an effect changes the
value of a variable which already has a goal value, then the
score is decreased by 1. Finally, to break the ties, the score
is multiplied by 10 and a random value between 0 and 9 is
added to it.

Despite its simplicity, this algorithm can solve around one
half of the IPC 2011 benchmark problems very quickly. The
downside of the algorithm is that it finds extremely long
plans full of redundant actions. For example, for domains
such as Elevators and Transport the found plans contain
hundreds of thousands of actions while plans found by Fast
Downward (Helmert 2006) only have a few hundred actions.

Fortunately, these extremely long plans can be easily re-
duced to reasonable lengths using post planning optimiza-
tion techniques. Even the simplest such techniques perform
very well on these plans due to their severe redundancy.

SAT Based Search
The SAT based algorithm uses the Relaxed Relaxed Exist-
Step (RRES) encoding (Balyo 2013). This novel encoding
is designed to allow more actions to be put inside one par-
allel step than other encodings and thus a planning problem
can be solved with fewer SAT solver calls. We use the state-
of-the-art SAT solver Lingeling (Biere 2013) to solve the
formulas.

Post Planning Optimization
Freelunch entered two tracks of the IPC 2014. One is the ag-
ile track, where the quality of the plans is not considered, the
other is the satisficing track, where both the time of finding
a plan and its quality is important. Therefore, the satisficing
track version of Freelunch does post planning optimization
on the found plan to increase its quality.

The first post planning optimization algorithm run on the
plan is Action Elimination (AE) (Nakhost and Müller 2010;
Fink and Yang 1992). AE is a polynomial (O(|P |2)) heuris-
tic algorithm capable of removing redundant (unnecessary)
actions from plans. It is not guaranteed to remove all redun-
dant actions (which is an NP-complete problem (Fink and
Yang 1992)) and it cannot add/replace actions.

The second method used for plan improvement is a local
re-planning based algorithm (Balyo, Barták, and Surynek
2012). It is an anytime technique for decreasing the plan
length via substituting parts of the plan by optimal sub-
plans. The optimal sub-plans are found using a SAT based
planner using the SASE encoding (Huang, Chen, and Zhang
2010) and the Sat4j Java SAT solver (Berre and Parrain
2010). The technique guarantees optimality though it is pri-
marily intended to quickly improve plan quality. We run this
algorithm until an optimal plan is reached or the planner is
killed due to reaching the time limit.

Conclusion
In this paper we described a subset of the algorithms con-
tained in the Freelunch planning library that was selected
for the competition version of the planner entering the IPC
2014. We hope, that the forward search and the SAT based
algorithm will complete each other to solve many instances
of the competition’s benchmark problems.

Acknowledgments
The research is supported by the Czech Science Foundation
under the contract P103/10/1287 and by the Grant Agency of
Charles University under contract no. 600112. This research
was also supported by the SVV project number 267 314.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
sas+ planning. Computational Intelligence 11:625–656.
Balyo, T.; Barták, R.; and Surynek, P. 2012. Shortening
plans by local re-planning. In Proceedings of ICTAI, 1022–
1028.
Balyo, T. 2013. Relaxing the relaxed exist-step parallel
planning semantics. In ICTAI, 865–871. IEEE.
Berre, D. L., and Parrain, A. 2010. The sat4j library, release
2.2. JSAT 7(2-3):59–6.
Biere, A. 2013. Lingeling and plingeling home page.
http://fmv.jku.at/lingeling/.
Fikes, R., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2(3/4):189–208.
Fink, E., and Yang, Q. 1992. Formalizing plan justifications.
In In Proceedings of the Ninth Conference of the Canadian
Society for Computational Studies of Intelligence, 9–14.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Helmert, M. 2014. Output of the fast downward translator.
http://www.fast-downward.org/TranslatorOutputFormat.
Huang, R.; Chen, Y.; and Zhang, W. 2010. A novel transition
based encoding scheme for planning as satisfiability. In Fox,
M., and Poole, D., eds., AAAI. AAAI Press.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Brafman, R. I.; Geffner, H.; Hoffmann, J.;
and Kautz, H. A., eds., ICAPS, 121–128. AAAI.

34

IBACOP and IBACOP2 Planner

Isabel Cenamor and Tomás de la Rosa and Fernando Fernández
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
icenamor@inf.uc3m.es, trosa@inf.uc3m.es, ffernand@inf.uc3m.es

Abstract

This manuscript describes several planning portfolios
that use the same base planners. Our Instance Based
Configured Portfolios follow two different strategies.
IBaCoP is configured a priori following a Pareto effi-
ciency approach to select a sub-set of planners (baseline
strategy), which receive the same execution time for all
planning problems. On the contrary, IBaCoP2 decides
for each problem the sub-set of planners to use. Such de-
cisions are based on predictive models learnt also with
training instances gathered from previous executions of
the base planners. Both portfolios compete in the se-
quential satisficing, agile and multi-core tracks.

Introduction
In the state of the art, there are several portfolios that de-
fine different ways to combine simple base planners. All of
them are motivated by the general idea that none of existing
planners dominates all other in all cases. The most popular
strategy is the static, where the portfolio components and the
time for each planner is defined “a priori” and maintained
for all domains and problems. Fast Downward Stone Soup
(FDSS) (Helmert 2006) is an example of this type of portfo-
lio. It has various configuration based on previous planning
results. It obtained good results in the last IPC (International
Planning Competition).

The family of PbP portfolios, PbP and PbP2 (Gerevini,
Saetti, and Vallati 2009; 2011), generates domain-specific
multi-planners from a set of domain-independent planning
techniques. It generates macro-actions, optimizes planner
parameters and selects specific planners for each domain.
Therefore, it generates a different configuration for each do-
main. This family of portfolios won both learning tracks that
were held in past IPCs.

All our portfolios use as base planners the ones compet-
ing in the last IPC in the sequential satisficing track (27
planners), plus LPG-tn. The different configurations are ob-
tained applying two different strategies. One is a static con-
figuration that obtains a sub-group of planners (IBaCoP),
and the other is a dynamic portfolio configured through
CRISP-Data Mining methodology (Chapman et al. 2000;
Han, Kamber, and Pei 2006) (IBaCoP2).

IBaCoP is the result of applying the Pareto efficiency
technique (Censor 1977) to select a sub-set of planners from

the planners in sequential satisficing track plus LPG-tn. We
select the planners that dominates all others in at least one
domain (from a set of training domains), taking into account
quality and time. We assign the same running time for all
selected planners

IBaCoP2 is a portfolio auto configurable with a classifica-
tion model. This portfolio is an evolution of IBaCoP, since
it takes as base planners, the planners selected by IBaCoP.
However, IBaCoP2 performs a second planner selection us-
ing predictive models. These models are the result of learn-
ing processes and predict the behaviour of the planners in
future problems, i.e. whether they will be able to solve the
problems or not. The planners with higher confidence are se-
lected and ordered following such confidence. Then, running
time is divided uniformly among them.

The remainder of the paper is organized as follows. In the
next section we present the general ideas of the portfolios,
with their components, the training data, and how we finally
created the portfolios. We finish with the specific informa-
tion of the planners in the different tracks.

General System Description
In this section, we explain the general process to configure
IBaCoP planners. This system is based on a CRISP-Data
Mining and the general idea is depicted in the figure 1.

The first phase in the methodology is to understand the
aims of the data mining process: to extract knowledge from
past planning executions to create portfolio configurations.
Another important consideration is the available inputs of
the process. We have two different inputs: the planners, that
were extracted from the last International Planning Compe-
tition (IPC) plus LPG-tn; and the domains and the problems
from different competitions and different tracks. The output
of the process is the configuration of the portfolio, which
comprises the way to combine the initial planner compo-
nents and the assigned time per planner.

The next step is to select and preprocess the data. The
data is obtained from several sources as explained later, but
basically, it can be considered as information about the ex-
ecution of each planner for each problem of every domain.
However, only execution data from the selected planners by
the Pareto efficiency technique are used in following steps.
In addition, data from problems that were not solved by any
planner was eliminated.

35

(a) General Process

(b) Deployment

Figure 1: General CRISP-DM Process in IBaCoP system

The following step is problem characterization. We have
created some features to better differentiate the planning ex-
ecutions. In this phase, we also choose the output attribute
in the learning process, which is whether the planner found
a solution for the problem in a 1800 seconds.

To continue with the process, we select and apply a va-
riety of modelling techniques to find the model with higher
accuracy. In this part of the process, it is necessary the divi-
sion of the data into training and test sets, which allow us to
estimate the future performance of the models. The output
models should be evaluated in the context of the business
objectives established in the first phase, i.e. planning capa-
bility of the developed portfolio.

The last phase, the deployment, is the part of the process
that verifies previously held hypotheses through the knowl-
edge discovered in the earlier phases of the CRISP-DM pro-
cess. Particularly, this deployment appears in Figure 1(b),
where the final system gets a new problem and domain, cal-
culate the features, queries to the strategy, and returns the
planners with their runtime.

Data understanding
The first step in the DM process is to know the final objec-
tive. In our case, it is the configuration of portfolios through
the methodology. In the following step, preprocess data, we
analyze all the possibilities for the input of the system (do-
mains, problems and planners) and decide the best possi-
ble selection. In the case of the planners, we started with

all planners from the sequential satisficing track in the last
IPC plus LPG-tn. Nevertheless, there are some planners that
obtained similar results, and that do not contribute diversity
to the portfolio. The chosen planners are selected by using
the Pareto efficiency (Censor 1977) technique between the
quality of the best solution found and the time (in seconds)
of the first solution to be found by the planner. Next, it gives
to each planner a score that equals the number of tuples it
Pareto-dominates for the same task.

Selected Planners The Pareto efficiency, performed with
the results of IPC 2011, outputs 11 planners plus LPG-tn
planner:

• ARVAND (Nakhost, Valenzano, and Xie 2011)

• FD-AUTOTUNE 1 Y 2 (Fawcett et al. 2011)

• FD STONE SOUP (FDSS) 1 Y 2 (Helmert et al. 2011)

• LAMA 2008 Y 2011 (Richter, Westphal, and Helmert
2011)

• PROBE (Lipovetzky and Geffner 2011)

• MADAGASCAR (Rintanen 2011)

• RANDWARD (Olsen and Bryce 2011)

• YAHSP2-MT (Vidal 2011)

• LPG-TN (Gerevini et al. 2004)

Selected Domains The next step is to define the set of
problems and domains used to learn the models. We need
a wide group of problems and domains to generalize prop-
erly. We have included the planning problems available from
past IPCs, discarding the first four competitions given that
problems are too easy for the state-of-the-art planners.

• IPC5: openstack, pathways, rover, storage, tpp and trucks.

• IPC6: cybersec, elevators, openstack, parcprinter, peg-
sol, pipesworld, scanalyzer, sokoban, transport and wood-
working.

• IPC7: barman, elevators, floortile, nomystery, visi-
tall, tidybot, openstacks, parcprinter, parking, pegsol,
sokoban, scanalyzer, transport and woodworking

• Leaning 2008: gold-miner, matching-bw, n-puzzle, park-
ing and sokoban.

• Leaning 2011: barman, blockworld, depots, gripper, park-
ing, rover satellite, spanner and tpp.

We consider all the successful problems, and we did not
take into account repeated domains or repeated problems.
We do not know which domains would be used in the future,
so we need to consider a wide and significant number of
instances for the learning process. Finally, we obtained 1070
different problems to create the learning models.

Data Preparation
The next step is the characterization of the problem (trans-
formed data in DM process). For this task we consider some
features in the planning task previously used (Roberts and
Howe 2009) and include others for a better particulariza-
tion of the problems complexity (Cenamor, de la Rosa, and

36

Fernández 2012). These features have shown good accu-
racy for configuring portfolios (Cenamor, de la Rosa, and
Fernández 2013). In addition, we create some new features
to improve the characterization of the initial state of the
problem.

Some basic features are directly extracted from the PDDL
files. A group of elaborated features are generated from the
problem translation to the SAS+ formalism (Backstrom and
Nebel 1995) and its induced graphs, i.e., the causal graph
and the domains transition graphs. These features describe
number of edges, weights, variables of the graphs. Besides,
we include statistical information of the graphs, such as the
sum, maximum and standard deviation of the edges and
weights. We also consider other information that appears in
the translation and preprocess of Fast Downward (Helmert
2006) (FD) system.

As new features we include the most representative
heuristic functions computed for the initial state with unit
cost, the ratio hFF/hmax and a set of features to character-
ize the fact balance of the relaxed plan (RP). We define the
fact balance for fact p, as the number of times p appears as an
add effect of an action belonging to RP , minus the number
of times p is a delete effect of an action in RP , considering
original actions where deletes are not ignore. The intuition
behind fact balances is that high positive values would char-
acterize easier (relaxed) problems for a given domain, since
achieved facts need to be deleted many times. Given that
the number of relevant facts of a planning task is variable,
we compute statistics (i.e., min, max, average and variance)
for the fact balance of the relevant facts. Additionally, we
compute statistics only considering facts that are goals, fol-
lowing the same procedure.

The time to extract features is negligible given that fea-
tures wrt. graphs imply basic arithmetic computations and
heuristic functions are only called once for the initial state.
To finalize the data preparation, we perform a feature se-
lection process where we get the same performance with a
subgroup of all features (35 features). Such features are:

• From the previous work (Cenamor, de la Rosa, and
Fernández 2012), we include the number of objects, the
number of goals, the number of variables in the causal
graph (CG), the ratio between the high level variable and
all variables in the CG, the standard deviation of the num-
ber of input edges in the CG, the average of the number
of output edges in the CG, the maximum and the average
weight of the output edges in the CG, the standard devia-
tion of the number of output edges in high level variables
in the CG, the maximum weight of input edges in high
level variables in the CG, the number of variables in the
domain transition graph (DTG), the number of edges in
the same graph and the maximum weight of input edges
in the DTG.

• As new features from previous work we include: the num-
ber of types of objects, the number of functions, the num-
ber of auxiliary atoms in the translate process between
PDDL to SAS+, the number of implied effect removed,
the number of translator facts and the number of the mu-
tex group in the translator process. In addition, the feature

selection includes the number of relevant facts, the num-
ber of actions, the ratio hFF/hmax, the fact balance (av-
erage and variance), the goal balance (minimum, average
and variance). As well as the following heuristics: hadd,
hmax (Bonet and Geffner 2001), Context enhanced ad-
ditive (Helmert and Geffner 2008), hFF (Hoffmann and
Nebel 2011), Goal count (i.e., the number of unsatisfied
goals), Landmark count (Richter, Helmert, and Westphal
2008) and Landmark cut (Helmert and Domshlak 2009) .

Modelling the Data
One of the most important steps in this system is learn-
ing classification models to predict whether a planner will
find a solution for a problem. We trained with 25 classi-
fication algorithms (for different model types: trees, rules,
support vector machines and instance based learning) using
WEKA (Witten and Frank 2005). WEKA is a data mining
toolkit that provides a standard format for running machine
learning algorithms. We selected the model with best accu-
racy (99.83% in training phase): Random Forest (Breiman
2001). This model is a combination of tree predictors such
that each tree depends on the values of a random vector and
with the same distribution.

In addition, we include two strategies to compare the per-
formance of the system. The first one selects planners only
with the Pareto efficiency, and the other uses in addition the
classification model.

Deployment
In this section, we explain the different configurations of
the system in the different tracks (sequential satisficing, se-
quential agile and sequential multi-core). The summary is
reported in Table 1.

Sequential Satisficing Planner
The IBaCoP planner uses the 12 planners described in sub-
section Selected Planners, which are selected by the Pareto
efficiency analysis. The execution order of the planners is ar-
bitrary, since time is divided uniformly among all them (150
seconds per planner).

The IBaCoP2 planner uses the learned model described in
section Modelling the Data . It selects the 5 planners with the
highest confidence of solving the problem. The execution or-
der of the planners is based on their confidence. The running
time is assigned uniformly to each planner (360 seconds).

Sequential Agile Planner
As in the Sequential Satisficing track, the IBaCoP planner
uses the 12 planners described in subsection Selected Plan-
ners. However, we assigned as running time the average time
to find the first solution in 300 seconds. The execution or-
der for the planners is given by this average from less time
to grater values. Even though all planners are included, in
practice, only a few of them will have the chance to run,
until consuming the time bound of 300 seconds.

The IBaCoP2 planner uses the learned model to select 5
planners; the order of the planners is decided from the con-
fidence and the time for each planner is the same for the five
planners.

37

Sequential Multi-core Planner
For Multi-core track, the planners are the same as for the
sequential satisficing track, but taking into account that we
have more time (1800 seconds × 4 cores). Memory is di-
vided equally among all the planners running in the different
cores.

Planner seq-sat seq-agl seq-mco
1 yahsp2-mt 150 5 600
2 randward 150 50 600
3 arvand 150 55 600
4 fd-autotune-1 150 50 600
5 lama-2008 150 45 600
6 probe 150 – 600
7 madagascar 150 45 600
8 lpg-tn 150 50 600
9 fdss-1 150 – 600

10 lama-2011 150 – 600
11 fd-autotune-2 150 – 600
12 fdss-2 150 – 600

Table 1: Time for each planner execution in sequential tracks

Acknowledgements
We generated sequential portfolios of existing planners to be
submitted to the International Planning Competition 2014.
Thus, we would like to acknowledge and thank the authors
of the individual planners for their contribution and hard
work.

This work has been partially supported by the Spanish
project TSI-090302-2011-6 and TIN2012-38079-C03-02.

References
Backstrom, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Breiman, L. 2001. Random forests. Machine learning
45(1):5–32.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2012. Mining
ipc-2011 results. In Proceedings of the Third Workshop on
the International Planning Competition.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2013. Learn-
ing predictive models to configure planning portfolios. In
Proceedings of the Workshop on the Planning and Learn-
ing.
Censor, Y. 1977. Pareto optimality in multiobjective prob-
lems. Applied Mathematics and Optimization 4(1):41–59.
Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz,
T.; Shearer, C.; and Wirth, R. 2000. Crisp-dm 1.0 step-by-
step data mining guide. CRISPWP-0800.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. Fd-autotune: Automated configuration
of fast downward. The 2011 International Planning Compe-
tition 31–37.

Gerevini, A.; Saetti, A.; Serina, I.; and Toninelli, P. 2004.
Lpg-td: a fully automated planner for pddl2. 2 domains. In
In Proc. of the 14th Int. Conference on Automated Planning
and Scheduling (ICAPS-04) International Planning Compe-
tition abstracts. Citeseer.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: PbP. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS-09).
Gerevini, A.; Saetti, A.; and Vallati, M. 2011. Pbp2: Auto-
matic configuration of a portfolio-based multi-planner. The
2011 International Planning Competition.
Han, J.; Kamber, M.; and Pei, J. 2006. Data mining: con-
cepts and techniques. Morgan kaufmann.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In ICAPS, 140–147.
Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast downward stone soup. The 2011 International Planning
Competition 38.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26(1):191–246.
Hoffmann, J., and Nebel, B. 2011. The ff planning system:
Fast plan generation through heuristic search. arXiv preprint
arXiv:1106.0675.
Lipovetzky, N., and Geffner, H. 2011. Searching with
probes: The classical planner probe. The 2011 International
Planning Competition 30(29):71.
Nakhost, H.; Valenzano, R.; and Xie, F. 2011. Arvand: the
art of random walks. The 2011 International Planning Com-
petition 15.
Olsen, A., and Bryce, D. 2011. Randward and lamar: Ran-
domizing the ff heuristic. The 2011 International Planning
Competition 55.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In AAAI, volume 8, 975–982.
Richter, S.; Westphal, M.; and Helmert, M. 2011. Lama
2008 and 2011. The 2011 International Planning Competi-
tion 50.
Rintanen, J. 2011. Madagascar: Efficient planning with sat.
The 2011 International Planning Competition 61.
Roberts, M., and Howe, A. 2009. Learning from planner
performance. Artificial Intelligence 173(5):536–561.
Vidal, V. 2011. Yahsp2: Keep it simple, stupid. The 2011
International Planning Competition 83–90.
Witten, I. H., and Frank, E. 2005. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann.

38

Jasper: the Art of Exploration in Greedy Best First Search

Fan Xie and Martin Müller and Robert Holte
Computing Science, University of Alberta

Edmonton, Canada
{fxie2,mmueller,robert.holte}@ualberta.ca

Introduction
LAMA-2011 (Richter and Westphal 2010) is the clear win-
ner of the sequential satisficing track in the latest Inter-
national Planning Competition (IPC-2011). It finds a first
solution by Greedy Best-First Search (GBFS), and then
continues to improve solutions using restarting weighted
A* (Richter, Thayer, and Ruml 2010). Diverse Anytime
Search (DAS) (Xie, Valenzano, and Müller 2013) is a meta-
algorithm designed for solution improvement. It takes an
anytime planner and a post-processing system, and adds
restarts and randomization for better quality search.

Jasper is a satisficing planner that builds on LAMA-2011.
It adds two modifications. First, it replaces the GBFS al-
gorithm in LAMA-2011 with an improved GBFS variant,
called Type Exploration based Greedy Best-First Search
with Local Search (Type-GBFS-LS). GBFS always expands
a node n that is closest to a goal state according to a heuristic
h. GBFS’ performance strongly depends on h. Uninforma-
tive or misleading heuristics can massively increase the time
and memory complexity of such searches. Type-GBFS-LS
is an improved version of GBFS that is less sensitive to such
flaws in heuristic functions. Second, it implements the DAS
system for solution improvement, which takes the modified
LAMA-2011 as the anytime planner and Aras (Nakhost and
Müller 2010) as the post-processing system.

A detailed description of the implementation of DAS can
be found in the ICAPS paper by Xie, Valenzano and Müller
(Xie, Valenzano, and Müller 2013). This paper focuses on
describing the new search algorithm, Type-GBFS-LS.

The remainder of this paper is organized as follows. First,
we motivate this work by discussing the two potential prob-
lems of GBFS: uninformative heuristic region and mislead-
ing heuristics, followed by describing two corresponding so-
lutions as well as their combination, Type-GBFS-LS. Later,
experimental results show that the proposed algorithms im-
prove the state of the art planner LAMA-2011 significantly.

Uninformative Heuristic Regions (UHR) and
GBFS with Local Search

The notion of an Uninformative Heuristic Region (UHR) in-
cludes both local minima and plateaus. A local minimum is

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a state with minimum h-value within a local region, which
is not a global minimum. A plateau is an area of the state
space where all states have the same heuristic value.

Figure 1: Cumulative search time (in seconds) of GBFS, and
GBFS-LS with hFF for first reaching a given hmin in 2004-
notankage #21.

As an example, the IPC domain 2004-notankage has no
dead ends, but contains large plateaus and local minima
(Hoffmann 2011). Instance #21 shown in Figure 1 serves
to illustrate a case of bad search behavior in GBFS due
to UHRs. The figure plots the current minimum heuristic
value hmin in the closed list on the x-axis against the log-
scale cumulative search time needed to first reach hmin. The
solid line is for GBFS with hFF . The two huge increases in
search time, with the largest (763 seconds) for the step from
hmin = 2 to hmin = 1, correspond to times when the search
is stalled in UHRs. Since the large majority of overall search
time is used to inefficiently find an escape from UHRs, it
seems natural to try switching to a secondary search strat-
egy which is better at escaping.

GBFS with Local Search
The new algorithm of Greedy Best-First Search with Lo-
cal Search (GBFS-LS) uses a local GBFS (LS) whenever a
global GBFS (G-GBFS) seems stuck. If G-GBFS fails to im-
prove its minimum heuristic value hmin for a fixed number

39

of node expansions, then GBFS-LS runs a small local GBFS
for exploration from the best node n in a global-level open
list.

LS shares the closed list of G-GBFS, but maintains its own
separate open list local_open that is cleared before each lo-
cal search. LS succeeds if it finds a new best node v with
h(v) < hmin before it exceeds a given limit on the number
of nodes. In any case, the remaining nodes in local_open are
merged into the global open list. A local search tree grown
from a single node n is much more focused and grows deep
much more quickly than the global open list in G-GBFS. It
also restricts the search to a single plateau, while G-GBFS
can get stuck when exploring many separate plateaus simul-
taneously. Both G-GBFS and LS use a first-in-first-out tie-
breaking rule. A detailed description of GBFS-LS can be
found in (Xie, Müller, and Holte 2014). In Figure 1, the
same problem takes GBFS-LS only 1 second to solve, while
it takes the basic GBFS around 1000 seconds.

Misleading Heuristics (ML) and Type
Exploration in GBFS

Early mistakes are mistakes in search direction at shallow
levels of the search tree, caused by sibling nodes being ex-
panded in the wrong order due to a misleading heuristic. the
root node of a bad subtree, which contains no solution or
only hard-to-find solutions, has a lower heuristic value than
a sibling which would lead to a quick solution.

The 2011-Nomystery domain from IPC-2011 is a typ-
ical example where delete-relaxation heuristics systemati-
cally make early mistakes (Nakhost, Hoffmann, and Müller
2012). In this transportation domain with limited non-
replenishable fuel, delete-relaxation heuristics such as hFF

ignore the crucial aspect of fuel consumption, which makes
the heuristic overoptimistic and misleading. Bad subtrees
in the search tree, which over-consume fuel early on, are
searched exhaustively, before any good subtrees which con-
sume less fuel and can lead to a solution are explored. As
a result, while the random walk-based planner Arvand with
its focus on exploration solved 19 out of 20 nomystery in-
stances in IPC-2011, LAMA-2011 solved only 10.

Previous exploration methods in GBFS suffer from bias-
ing their exploration heavily towards the neighborhood of
nodes in the open list. In the case of early mistakes, the
large majority of these nodes is in useless regions of the
search space. Consider the nodes in the regular hFF open list
of LAMA-2011 while solving the problem 2011-nomystery
#12. Figure 2 shows snapshots of their h-value distribution
after 2,000, 10,000 and 50,000 nodes expanded. In the fig-
ure, the x-axis represents different heuristic values and the y-
axis represents the number of nodes with a specific h value
in the open list. The solution eventually found by LAMA-
2011 goes through a single node n in this 50,000 node list,
with h(n) = 18. This node is marked with a star in the fig-
ure. Over 99% of the nodes in the open list have lower h-
values, and will be expanded first, along with much of their
subtrees. However, in this example, none of those nodes
leads to a solution. The open list is flooded with a large num-
ber of very similar, useless nodes from undetected dead ends

h-values in 2011-nomystery #12

Figure 2: h-value distribution in the regular hFF open list of
LAMA-2011.

or local minima.
ε-GBFS (Valenzano et al. 2014) samples nodes uniformly

over the whole open list. This is not too useful when entries
are heavily clustered in bad subtrees. In the example above,
ε-GBFS has a less than 1% probability to pick a node with
h-value 18 or more in its exploration step, which itself is
only executed with probability ε. Furthermore, the algorithm
must potentially select several good successor nodes before
making measurable progress towards a solution by finding
an exit node with a lower h-value.

Type System
Can the open list be sampled in a way that avoids the over-
concentration on a cluster of very similar nodes? A type sys-
tem (Lelis, Zilles, and Holte 2013), which is based on earlier
ideas of stratified sampling (Chen 1992), is one possible ap-
proach. It is defined as follows:

Definition 1 (Lelis, Zilles, and Holte 2013) Let S be the set
of nodes in search space. T = {t1, . . . , tn} is a type system
for S if T is a disjoint partitioning of S. For every s ∈ S,
T (s) denotes the unique t ∈ T with s ∈ S.

Types can be defined using any property of nodes. The
simple type system used here defines the type of a node s
in terms of its h-value for different heuristics h, and its g-
value. A simple and successful choice is the pair T (s) =
(hFF (s), g(s)). The intuition behind such type systems is
that they can roughly differentiate between nodes in differ-
ent search regions, and help explore regions differents from
the nodes where GBFS gets stuck.

Type-GBFS: Adding a Type System to GBFS
Type-GBFS uses a simple two level type bucket data struc-
ture tb which organizes its nodes in buckets according to
their type. Type bucket-based node selection works as fol-
lows: first, pick a bucket b uniformly at random from among

40

(a) ε-GBFS(ε = 0.5) (b) Type-GBFS

Figure 3: Distribution of types over the first 20,000 nodes expanded by the exploring phase (ε-exploration or type buckets) of
ε-GBFS(ε = 0.5) and Type-GBFS.

all non-empty buckets and then pick a node n uniformly at
random from all nodes in b. Type-GBFS alternately expands
a node from the regular open list O and from tb, and each
new node is added to both O and tb. A detailed description
of Type-GBFS can be found in (Xie et al. 2014).

Type-GBFS and ε-GBFS with ε = 0.5 both spend half
their search effort on exploration. However, the distribution
of types of the explored nodes is very different. Figure 3
shows the frequency of explored node types for ε-GBFS
with ε = 0.5 and Type-GBFS1 after 20,000 nodes in the
same format. ε-GBFS mainly explores nodes close to the
low heuristic value types, while Type-GBFS explores much
more uniformly over the space of types.

Note that the z-axis scales are different for the two figures.
The single most explored type contains around 800 nodes for
ε-GBFS but only 40 for Type-GBFS. The presence or ab-
sence of exploration helps explain the relative performance
in 2011-Nomystery. The coverage for the 20 instances of
this domain for one typical run under IPC conditions is 9 for
GBFS, 11 for ε-GBFS with ε = 0.5, and 17 for Type-GBFS.

Combining GBFS-LS and Type-GBFS
GBFS-LS and Type-GBFS are designed for two different
problems in GBFS. Jasper applies both enhancements to
GBFS. The new algorithm is called Type Exploration based
Greedy Best-First Search with Local Search (Type-GBFS-
LS). Like GBFS-LS, Type-GBFS-LS uses a local search
when the global search gets stuck. However, it replaces
GBFS with Type-GBFS in both the global level search and
the local level search.

Experiments
Experiments were run on a set of 2112 problems in 54 do-
mains from the seven International Planning Competitions,

1Some explored types are outside the (h, g) range shown in Fig-
ure 3 (b).

using one core of a 2.8 GHz machine with 4 GB memory
and 30 minutes per instance. Results for planners which use
randomization are averaged over five runs.

The performance comparison in this section includes the
following planners:

• LAMA-2011: only the first iteration of LAMA using
GBFS is run, with deferred evaluation, preferred opera-
tors and multi-heuristics (hFF , hlm) (Richter and West-
phal 2010).

• LAMA-LS: Configured like LAMA-2011, but with
GBFS replaced by GBFS-LS.

• Type-LAMA: With GBFS replaced by Type-GBFS, uses
the same four queues as LAMA-2011, plus (hFF , g) type
buckets.

• Jasper: Configured like LAMA-2011, but with GBFS
replaced by Type-GBFS-LS. It uses the same four queues
as LAMA-2011 plus (hFF , g) type buckets in both the
global search and the local search.

Table 1 shows the coverage results for the four plan-
ners. All the three proposed planners get better results than
LAMA-2011, with the best result of 1953.0 for Jasper.

Each diagram in Figure 4 compares one planner with
LAMA-2011 on their time performance. Every data point
represents one instance, with the search time for LAMA-
2011 on the x-axis plotted against the corresponding planner
on the y-axis. Only problems for which both algorithms need
at least 0.1 seconds are shown. Points below the main diag-
onal represent instances that Type-GBFS solves faster than
GBFS. For ease of comparison, additional reference lines in-
dicate 2×, 10× and 50× relative speed. Data points within a
factor of 2 are greyed out in order to highlight the instances
with substantial differences. Problems that were only solved
by one algorithm within the 1800 second time limit are in-
cluded at x = 10000 and y = 10000.

41

(a) LAMA-2011 (x) vs. LAMA-LS(y) (b) LAMA-2011 (x) vs. Type-LAMA (y) (c) LAMA-2011 (x) vs. Jasper (y)

Figure 4: Comparison of search time: LAMA-2011 vs. LAMA-LS (a), Type-LAMA(b) and Jasper.

All the three proposed planners show a clear overall im-
provement over LAMA-2011 in terms of speed. Jasper has
the best overall performance. It solves more problems than
LAMA-LS. Besides its advantage in coverage, it wins the
time comparison with Type-LAMA for a larger number of
instances by factors 2x and 10x.

Planner LAMA-2011 LAMA-LS Type-LAMA Jasper
Coverage 2113 1931 1949.8 1953.0

Table 1: IPC coverage out of 2112.

References
Benton, J.; Haslum, P.; Helmert, M.; Katz, M.; and Thayer,
J., eds. 2014. Proceedings of the Sixth Workshop on Heuris-
tic Search for Domain-Independent Planning, HSDIP 2014.
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds. 2010. Proceedings of the 20th International Confer-
ence on Automated Planning and Scheduling, ICAPS 2010,
Toronto, Ontario, Canada, May 12-16, 2010.
Chen, P. C. 1992. Heuristic sampling: A method for pre-
dicting the performance of tree searching programs. SIAM
J. Comput. 21(2):295–315.
Hoffmann, J. 2011. Where ignoring delete lists works, part
II: Causal graphs. In Bacchus, F.; Domshlak, C.; Edelkamp,
S.; and Helmert, M., eds., ICAPS, 98–105. AAAI.
Lelis, L. H. S.; Zilles, S.; and Holte, R. C. 2013. Stratified
tree search: a novel suboptimal heuristic search algorithm.
In Gini, M. L.; Shehory, O.; Ito, T.; and Jonker, C. M., eds.,
AAMAS, 555–562.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Brafman et al. (2010), 121–128.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A Monte Carlo random walk ap-
proach. In McCluskey, L.; Williams, B.; Silva, J. R.; and
Bonet, B., eds., Proceeedings of the Twenty-Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2012), 181–189.
Richter, S., and Westphal, M. 2010. The LAMA planner:

Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Thayer, J.; and Ruml, W. 2010. The joy of
forgetting: Faster anytime search via restarting. In Brafman
et al. (2010), 137–144.
Valenzano, R.; Schaeffer, J.; Sturtevant, N.; and Xie, F.
2014. A comparison of knowledge-based GBFS enhance-
ments and knowledge-free exploration. In ICAPS.
Xie, F.; Müller, M.; Holte, R.; and Imai, T. 2014. Type-
based exploration with multiple search queues for satisficing
planning. In Benton et al. (2014). 9 pages.
Xie, F.; Müller, M.; and Holte, R. 2014. Adding local ex-
ploration to greedy best-first search in satisficing planning.
In Benton et al. (2014). 9 pages.
Xie, F.; Valenzano, R.; and Müller, M. 2013. Better time
constrained search via randomization and postprocessing. In
ICAPS, 269–277. AAAI.

42

Mercury Planner: Pushing the Limits of Partial Delete Relaxation

Michael Katz
IBM Haifa Research Labs

Haifa, Israel
katzm@il.ibm.com

Jörg Hoffmann
Saarland University

Saarbrücken, Germany
hoffmann@cs.uni-saarland.de

Abstract

Mercury is a sequential satisficing planner that is based
mainly on the red-black planning heuristic. Red-black plan-
ning is a systematic approach to partial delete relaxation, tak-
ing into account some of the delete effects: Red variables take
the relaxed (value-accumulating) semantics, while black vari-
ables take the regular semantics. Prior work on red-black plan
heuristics has identified a powerful tractable fragment requir-
ing the black causal graph – the projection of the causal graph
onto the black variables – to be a DAG; but all implemen-
tations so far use a much simpler fragment where the black
causal graph is required to not contain any arcs at all. We
close that gap here, and we design techniques aimed at mak-
ing red-black plans executable, short-cutting the search. Mer-
cury planner is entered into sequential satisficing and agile
tracks of the competition.

Planner structure
Mercury planner is a sequential satisficing planner that is im-
plemented in the Fast Downward planning system (Helmert
2006). It performs multiple iterations of heuristic search,
starting with a fast and inaccurate greedy best-first search.
Once a solution is found, next iterations run weighted
A∗, gradually decreasing the weight parameter, similarly
to the famous LAMA planning system (Richter and West-
phal 2010). The cost of the best plan found so far is used
in following iterations for search space pruning. Search al-
gorithms are guided by the red-black heuristic (Katz, Hoff-
mann, and Domshlak 2013b; 2013a; Katz and Hoffmann
2013), breaking ties using the landmark count heuristic (Por-
teous, Sebastia, and Hoffmann 2001). In addition, preferred
operators are obtained from each of those heuristics. For
red-black heuristic, which is based on FF (Hoffmann and
Nebel 2001), we decided to use here the preferred opera-
tors of FF heuristic. As the rest of the components are well
known, in what follows, we describe in detail the main nov-
elty of Mercury, red-black heuristic.

Introduction
The delete relaxation, where state variables accumulate their
values rather than switching between them, has played a
key role in the success of satisficing planning systems,
e. g. (Bonet and Geffner 2001; Hoffmann and Nebel 2001;
Richter and Westphal 2010). Still, the delete relaxation

has well-known pitfalls, for example the fundamental in-
ability to account for moves back and forth (as done, e. g.,
by vehicles in transportation). It has thus been an ac-
tively researched question from the outset how to take some
deletes into account, e. g. (Fox and Long 2001; Gerevini,
Saetti, and Serina 2003; Helmert 2004; Helmert and Geffner
2008; Baier and Botea 2009; Cai, Hoffmann, and Helmert
2009; Haslum 2012; Keyder, Hoffmann, and Haslum 2012).
Herein, we continue the most recent attempt, red-black
planning (Katz, Hoffmann, and Domshlak 2013b; 2013a;
Katz and Hoffmann 2013) where a subset of red state vari-
ables takes on the relaxed value-accumulating semantics,
while the other black variables retain the regular semantics.

Katz et al. (2013b) introduced the red-black framework
and conducted a theoretical investigation of tractability. Fol-
lowing up on this (2013a), they devised practical red-black
plan heuristics, non-admissible heuristics generated by re-
pairing fully delete-relaxed plans into red-black plans. Ob-
serving that this technique often suffers from dramatic over-
estimation incurred by following arbitrary decisions taken
in delete-relaxed plans, Katz and Hoffmann (2013) refined
the approach to rely less on such decisions, yielding a more
flexible algorithm delivering better search guidance.

The black causal graph is the projection of the causal
graph onto the black variables only. Both Katz et al.
(2013a) and Katz and Hoffmann (2013) exploit, in theory,
a tractable fragment characterized by DAG black causal
graphs, but confine themselves to arc-empty black causal
graphs – no arcs at all – in practice. Thus current red-
black plan heuristics are based on a simplistic, almost trivial,
tractable fragment of red-black planning. We herein close
that gap, designing red-black DAG heuristics exploiting the
full tractable fragment previously identified. To that end, we
augment Katz and Hoffmann’s implementation with a DAG-
planning algorithm (executed several times within every call
to the heuristic function). We devise some enhancements
targeted at making the resulting red-black plans executable
in the real task, stopping the search if they succeed in reach-
ing the goal.

Background
Our approach is placed in the finite-domain representa-
tion (FDR) framework. We introduce FDR and its delete-
relaxation as special cases of red-black planning. A red-

43

black (RB) planning task is a tuple Π = 〈V B, V R, A, I,G〉.
V B is a set of black state variables and V R is a set of red
state variables, where V B ∩ V R = ∅ and each v ∈ V :=
V B∪V R is associated with a finite domainD(v). The initial
state I is a complete assignment to V , the goal G is a par-
tial assignment to V . Each action a is a pair 〈pre(a), eff(a)〉
of partial assignments to V called precondition and effect.
We often refer to (partial) assignments as sets of facts, i. e.,
variable-value pairs v = d. For a partial assignment p, V(p)
denotes the subset of V instantiated by p. For V ′ ⊆ V(p),
p[V ′] denotes the value of V ′ in p.

A state s assigns each v ∈ V a non-empty subset
s[v] ⊆ D(v), where |s[v]| = 1 for all v ∈ V B. An ac-
tion a is applicable in state s if pre(a)[v] ∈ s[v] for all
v ∈ V(pre(a)). Applying a in s changes the value of
v ∈ V(eff(a))∩V B to {eff(a)[v]}, and changes the value of
v ∈ V(eff(a))∩V R to s[v]∪{eff(a)[v]}. By sJ〈a1, . . . , ak〉K
we denote the state obtained from sequential application of
a1, . . . , ak. An action sequence 〈a1, . . . , ak〉 is a plan if
G[v] ∈ IJ〈a1, . . . , ak〉K[v] for all v ∈ V(G).

Π is a finite-domain representation (FDR) planning
task if V R = ∅, and is a monotonic finite-domain rep-
resentation (MFDR) planning task if V B = ∅. Plans for
MFDR tasks (i. e., for delete-relaxed tasks) can be generated
in polynomial time. A key part of many satisficing plan-
ning systems is based on exploiting this property for deriv-
ing heuristic estimates, via delete-relaxing the task at hand.
Generalizing this to red-black planning, the red-black re-
laxation of an FDR task Π relative to V R is the RB task
Π∗+V R = 〈V \ V R, V R, A, I,G〉. A plan for Π∗+V R is a red-
black plan for Π, and the length of a shortest possible red-
black plan is denoted h∗+V R(Π). For arbitrary states s, h∗+V R(s)

is defined via the RB task 〈V \V R, V R, A, s,G〉. If V R = V ,
then red-black plans are relaxed plans, and h∗+V R coincides
with the optimal delete relaxation heuristic h+.

T

C DB

F

A

(a) (b)

Figure 1: An example (a), and its causal graph (b).

In Figure 1, truck T needs to transport each package X ∈
{A,B,C,D} to its respective goal location x ∈ {a, b, c, d}.
The truck can only carry one package at a time, encoded
by a Boolean variable F (“free”). A real plan has length
15 (8 loads/unloads, 7 drives), a relaxed plan has length 12
(4 drives suffice as there is no need to drive back). If we
paint (only) T black, then h∗+V R(I) = 15 as desired, but red-
black plans may not be applicable in the real task, because
F is still red so we can load several packages consecutively.
Painting T and F black, that possibility disappears.1

1Indeed, all optimal red-black plans (but not some non-optimal
ones) then are real plans. We will get back to this below: As we
shall see, the ability to increase red-black plan applicability is a

Tractable fragments of red-black planning have been
identified using standard structures. The causal graph CGΠ

of Π is a digraph with vertices V . An arc (v, v′) is in
CGΠ if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a))∪ V(pre(a))]×V(eff(a)). The domain
transition graph DTGΠ(v) of a variable v ∈ V is a labeled
digraph with vertices D(v). The graph has an arc (d, d′) in-
duced by action a if eff(a)[v] = d′, and either pre(a)[v] = d
or v 6∈ V(pre(a)). The arc is labeled with its outside condi-
tion pre(a)[V \ {v}] and its outside effect eff(a)[V \ {v}].

The black causal graph CGB
Π of Π is the sub-graph of

CGΠ induced by V B. An arc (d, d′) is relaxed side effects
invertible, RSE-invertible for short, if there exists an arc
(d′, d) with outside condition φ′ ⊆ φ∪ψ where φ and ψ are
the outside condition respectively outside effect of (d, d′). A
variable v is RSE-invertible if all arcs in DTGΠ(v) are RSE-
invertible, and an RB task is RSE-invertible if all its black
variables are. Prior work on red-black plan heuristics (Katz,
Hoffmann, and Domshlak 2013a; Katz and Hoffmann 2013)
proved that plan generation for RSE-invertible RB tasks with
DAG (acyclic) black causal graphs is tractable, but used the
much simpler fragment restricted to arc-empty black causal
graphs in practice. In Figure 1, both T and F are RSE-
invertible; if we paint only T black then the black causal
graph is arc-empty, and if we paint both T and F black then
the black causal graph is (not arc-empty but) a DAG.

Red-Black DAG Heuristics
Katz and Hoffmann (2013) provide an algorithm for RSE-
invertible RB tasks with acyclic black causal graphs. To
provide the context, Figure 2 shows Katz and Hoffmann’s
pseudo-code. The algorithm assumes as input the set R+ of
preconditions and goals on red variables in a fully delete-
relaxed plan, i. e., R+ = G[V R]∪⋃a∈π+ pre(a)[V R] where
π+ is a relaxed plan for Π. It then successively selects
achieving actions for R+, until all these red facts are true.
Throughout the algorithm, R denotes the set of red facts al-
ready achieved by the current red-black plan prefix π; B
denotes the set of black variable values that can be achieved
using only red outside conditions from R.

For each action a ∈ A′ selected to achieve new facts from
R+, and for the global goal condition at the end, there may
be black variables that do not have the required values. For
example, say we paint T and F black in Figure 1. Then R+

will have the form {A = T,A = a,B = T,B = b, C =
T,C = c,D = T,D = d}. In the initial state, A′ will
contain only load actions. Say we execute a =load(A, init),
entering A = T into R and thus including unload(A, a) into
A′ in the next iteration. Trying to execute that action, we
find that its black precondition T = a is not satisfied. The
call to ACHIEVE({T = a}) is responsible for rectifying this.

ACHIEVE(g) creates a task ΠB over Π’s black variables,
asking to achieve g. As Katz and Hoffmann showed, ΠB

is solvable, has a DAG causal graph, and has strongly con-
nected DTGs (when restricting to actions a where pre(a) ⊆
IJπK). From this and Theorem 4.4 of Chen and Gimenez

main advantage of our red-black DAG heuristics over the simpler
red-black plan heuristics devised in earlier work.

44

Algorithm : REDBLACKPLANNING(Π, R+)
main
// Π = 〈V B, V R, A, I,G〉
global R, B ← ∅, π ← 〈〉
UPDATE()
while R 6⊇ R+

do

8>>>>><>>>>>:

A′ = {a ∈ A | pre(a) ⊆ B ∪R, eff(a) ∩ (R+ \R) 6= ∅}
Select a ∈ A′

if pre(a)[V B] 6⊆ IJπK
then π ← π ◦ ACHIEVE(pre(a)[V B])

π ← π ◦ 〈a〉
UPDATE()

if G[V B] 6⊆ IJπK
then π ← π ◦ ACHIEVE(G[V B])

return π
procedure UPDATE()
R← IJπK[V R]
B ← B ∪ IJπK[V B]
for v ∈ V B, ordered topologically by the black causal graph

do B ← B ∪ DTGΠ(v)|R∪B

procedure ACHIEVE(g)
IB ← IJπK[V B]
GB ← g
AB ← {aB | a ∈ A, aB = 〈pre(a)[V B], eff(a)[V B]〉,

pre(a) ⊆ R ∪B, eff(a)[V B] ⊆ B}
〈a′B1 , . . . , a′Bk 〉 ← an FDR plan for ΠB = 〈V B, AB, IB, GB〉
return 〈a′1, . . . , a′k〉

Figure 2: Red-black planning algorithm. R+ = G[V R] ∪⋃
a∈π+ pre(a)[V R] where π+ is a relaxed plan for Π.

(2010), it directly follows that a plan for ΠB, in a succinct
plan representation, can be generated in polynomial time.

The “succinct plan representation” just mentioned con-
sists of recursive macro actions for pairs of initial-
value/other-value within each variable’s DTG; it is required
as plans for ΠB may be exponentially long. Chen and
Gimenez’ algorithm handling these macros involves the ex-
haustive enumeration of shortest paths for the mentioned
value pairs in all DTGs, and it returns highly redundant plans
moving precondition variables back to their initial value in
between every two requests. For example, if a truck unloads
two packages at the same location, then it is moved back to
its start location in between the two unload actions.

Katz and Hoffmann (2013) shunned the complexity of
DAG planning, and considered ΠB with arc-empty causal
graphs, solving which is trivial. In our work, after explor-
ing a few options, we decided to use the simple algorithm
in Figure 3: Starting at the leaf variables and working up to
the roots, the partial plan πB is augmented with plan frag-
ments bringing the supporting variables into place (a similar
algorithm was mentioned, but not used, by Helmert (2006)).

Proposition 1 The algorithm DAGPLANNING(ΠB) is
sound and complete, and its runtime is polynomial in the
size of ΠB and the length of the plan πB returned.

Note here that the length of πB is worst-case expo-
nential in the size of ΠB, and so is the runtime of

Algorithm : DAGPLANNING(ΠB)
main
πB ← 〈〉
for i = n downto 1

do

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

// Denote πB = 〈a1, . . . , ak〉
d← I[vi]
for j = 1 to k

do

8><>:
πj ← 〈〉
if pre(aj)[vi] is defined

then

πj ← πvi(d, pre(aj)[vi])
d← pre(aj)[vi]

πk+1 ← 〈〉
if G[vi] is defined

then πk+1 ← πvi(d,G[vi])
πB ← π1 · 〈a1〉 · . . . · πk · 〈ak〉 · πk+1

return πB

Figure 3: Planning algorithm for FDR tasks ΠB with
DAG causal graph CGΠB and strongly connected DTGs.
v1, . . . , vn is an ordering of variables V consistent with the
topology of CGΠB . πv(d, d

′) denotes an action sequence
constituting a shortest path in DTGv(Π) from d to d′.

DAGPLANNING(ΠB). We trade the theoretical worst-case
efficiency of Chen and Gimenez’ algorithm against the prac-
tical advantage of not having to rely on exhaustive compu-
tation of shortest paths – anew for every call of DAGPLAN-
NING, with “initial values” and DTGs from ΠB – for input
tasks ΠB that typically have small plans (achieving the next
action’s black preconditions) anyhow.2

Unlike the macro-based algorithm of Chen and Gimenez,
our DAGPLANNING algorithm does not superfluously keep
switching supporting variables back to their initial values.
But it is not especially clever, either: If variable v0 supports
two otherwise independent leaf variables v1 and v2, then the
sub-plans for v1 and v2 will be inserted sequentially into
πB, losing any potential for synergies in the values of v0

required.

Painting Strategy
Katz and Hoffmann explored a variety of painting strategies,
i. e., strategies for selecting the black variables. We kept this
simple here because, as we noticed, there actually is little
choice, at least when accepting the rationale that we should
paint black as many variables as possible: In most IPC do-
mains, there are at most 2 possible paintings per task. To
illustrate, consider Figure 1: We can paint T and F black, or
paint T and the packages black. All other paintings either do
not yield a DAG black causal graph, or are not set-inclusion
maximal among such paintings. We thus adopted one of
Katz and Hoffmann’s basic strategies, namely ordering the
variables by causal graph level, and iteratively painting vari-
ables red until the black causal graph is a DAG (Katz and

2One could estimate DAG plan length (e. g., using Helmert’s
(2006) causal graph heuristic), computing a red-black plan length
estimate only. But that would forgo the possibility to actually exe-
cute DAG red-black plans, which is a key advantage in practice.

45

Hoffmann’s original strategies continue until that graph is
arc-empty).

Enhancing Red-Black Plan Applicability
One crucial advantage of red-black plans, over fully-delete
relaxed plans, is that they have a much higher chance of ac-
tually working for the original planning task. This is es-
pecially so for the more powerful DAG red-black plans we
generate here. In Figure 1, as already mentioned, if we paint
just T black then the red-black plan might work; but if we
paint both T and F black – moving to a non-trivial DAG
black causal graph – then every optimal red-black plan defi-
nitely works. A simple possibility for exploiting this, already
implemented in Katz and Hoffmann’s (2013) earlier work,
is to stop search if the red-black plan generated for a search
state s is a plan for s in the original task.

There is a catch here, though – the red-black plans we
generate are not optimal and thus are not guaranteed to ex-
ecute in Figure 1. In our experiments, we observed that the
red-black plans often were not executable due to simple rea-
sons. We fixed this by augmenting the algorithms with the
two following applicability enhancements.

(1) Say that, as above, R+ = {A = T,A = a,B =
T,B = b, C = T,C = c,D = T,D = d} and
REDBLACKPLANNING started by selecting load(A, init).
Unload(A, a) might be next, but the algorithm might
just as well select load(B, init). With T and F black,
load(B, init) has the black precondition F = true. Calling
ACHIEVE({F = true}) will obtain that precondition using
unload(A, init). Note here that variableA is red so the detri-
mental side effect is ignored. The same phenomenon may
occur in any domain with renewable resources (like trans-
portation capacity). We tackle it by giving a preference to
actions a ∈ A′ getting whose black preconditions does not
involve deleting R+ facts already achieved beforehand. To
avoid excessive overhead, we approximate this by recording,
in a pre-process, which red facts may be deleted by moving
each black variable, and prefer an action if none of its black
preconditions may incur any such side effects.

(2) Our second enhancement pertains to the DTG paths
chosen for the black precondition variables in DAGPLAN-
NING (after REDBLACKPLANNING has already selected the
next action). The red outside conditions are by design all
reached (contained in R), but we can prefer paths whose red
outside conditions are “active”, i. e., true when executing the
current red-black plan prefix in the real task. (E.g., if a ca-
pacity variable is red, then this will prefer loads/unloads that
use the actual capacity instead of an arbitrary one.) In some
special cases, non-active red outside conditions can be easily
fixed by inserting additional supporting actions.

Supported Features
In contrast to previous years, a support for conditional ef-
fects is currently mandated. Since there is no straightfor-
ward adaptation of the red-black heuristics to the formal-
ism that supports conditional effects, we have chosen here
to compile them away. This was done by multiplying them
out in the translation step. On one hand, this can lead to

an exponential blow-up in the task representation size. On
the other hand, it does not split up an operator application
into a sequence of operator applications. Our decision was
based on the speculation that the latter option could poten-
tially decrease red-black plan applicability, one of the main
advantages of the current red-black heuristics.

References
Baier, J. A., and Botea, A. 2009. Improving planning per-
formance using low-conflict relaxed plans. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09). AAAI Press.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Cai, D.; Hoffmann, J.; and Helmert, M. 2009. Enhanc-
ing the context-enhanced additive heuristic with precedence
constraints. In Gerevini, A.; Howe, A.; Cesta, A.; and Re-
fanidis, I., eds., Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS’09),
50–57. AAAI Press.
Chen, H., and Giménez, O. 2010. Causal graphs and struc-
turally restricted planning. Journal of Computer and System
Sciences 76(7):579–592.
Fox, M., and Long, D. 2001. Stan4: A hybrid planning
strategy based on subproblem abstraction. The AI Magazine
22(3):81–84.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Haslum, P. 2012. Incremental lower bounds for additive
cost planning problems. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12), 74–82. AAAI Press.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the
18th International Conference on Automated Planning and
Scheduling (ICAPS’08), 140–147. AAAI Press.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Koenig, S.; Zilberstein, S.; and Koehler,
J., eds., Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS’04), 161–170.
Whistler, Canada: Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Katz, M., and Hoffmann, J. 2013. Red-black relaxed plan
heuristics reloaded. In Helmert, M., and Röger, G., eds.,
Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), 105–113. AAAI Press.

46

Katz, M.; Hoffmann, J.; and Domshlak, C. 2013a. Red-
black relaxed plan heuristics. In desJardins, M., and
Littman, M., eds., Proceedings of the 27th National Confer-
ence of the American Association for Artificial Intelligence
(AAAI’13), 489–495. Bellevue, WA, USA: AAAI Press.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013b. Who
said we need to relax all variables? In Borrajo, D.; Fratini,
S.; Kambhampati, S.; and Oddi, A., eds., Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), 126–134. Rome, Italy: AAAI
Press.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12). AAAI Press.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On
the extraction, ordering, and usage of landmarks in plan-
ning. In Cesta, A., and Borrajo, D., eds., Recent Advances in
AI Planning. 6th European Conference on Planning (ECP-
01), Lecture Notes in Artificial Intelligence, 37–48. Toledo,
Spain: Springer-Verlag.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.

47

NUCELAR

Sergio Núñez and Isabel Cenamor and Jesús Virseda
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. 28911 Leganés (Madrid). Spain
sergio.nunez@uc3m.es, icenamor@inf.uc3m.es, jvirseda@inf.uc3m.es

Abstract

In this document we describe the techniques used to
configure NuCeLaR, a sequential portfolio submitted
and adapted to the three deterministic sequential tracks
of the International Planning Competition 2014: se-
quential optimal, sequential satisficing and sequential
multi-core. This portfolio has been configured using
the combination of Machine Learning techniques and
Mixed-Integer Programming.

Introduction
Since none of the existing planners dominates all others in
every domains, the combination of some of them intuitively
should improve their performance. Different approaches to
combine existing planners have been proposed; i.e. using
different components of different planners during the same
search. Specifically, the combination of several planners in-
dependently executed in sequence with short timeouts are
usually named portfolios. Works like (Helmert, Röger, and
Karpas 2011; Gerevini, Saetti, and Vallati 2009) have shown
that portfolios are a useful approach, since they achieved
quite successful results in the previous International Plan-
ning Competitions (IPCs).

In this work, we apply a new strategy to combine exist-
ing planners using a portfolio approach: we configure a se-
quential portfolio for each kind of problem. To determine
these kinds of problems, we apply machine learning to a set
of planning problems from past IPCs. Particularly, we split
these training problems in different groups using clustering
techniques. These techniques are applied over a set of prob-
lem features extracted from the training problems. Once the
set of training problems is split into different subsets (clus-
ters), we compute a different portfolio configuration for each
subset using a technique based on Mixed-Integer Program-
ming (MIP) (Núñez, Borrajo, and Linares López 2012). Fi-
nally, we analyze the features of the problem to be solved
and we run the corresponding portfolio configuration.

Figure 1 shows the two phases of the system: learning
and deployment. The learning phase is also subdivided in
two steps: clustering and portfolio generation.

The next sections describe in more detail both phases and
provide specific information about the planners in the differ-
ent tracks.

Clustering Portfolio Generation

3

4

Portfolio A

Portfolio B

Portfolio C

Portfolio D

? 3 Portfolio C

Deployment Portfolio

Learning

1 2

Figure 1: General System Diagram

Clustering Phase
The goal of data clustering (Jain 2010), also known as clus-
ter analysis, is to discover the natural grouping of a set of
patterns or points. Thus, this statistical classification tech-
nique determines whether the individuals of a population fall
into a group or another by making quantitative comparisons
of multiple characteristics. An operational definition of clus-
tering can be defined as a representation of n objects, where
the objective is to find k groups based on a measure of sim-
ilarity. The similarities between instances that belong to the
same group are high while the similarities between instances
in different groups are low.

This methodology has fundamental challenges associ-
ated (Jain and Dubes 1988). The most relevant to achieve
our objective are the feature selection, the data normaliza-
tion, the number of clusters and whether the discovered clus-
ters and partitions are valid for a portfolio configuration.
We define an appropriate characterization of instances to
find good solutions based in previous works (Roberts and
Howe 2009; Cenamor, de la Rosa, and Fernández 2012;
Virseda, Borrajo, and Alcázar 2013) and we evaluate them
to obtain the best combination of features.

Therefore, we split the initial set of problems in several
sub-groups using the selected features. However, the key is

48

to know how many groups is the best choice. To do that, we
configure the corresponding portfolio for each possible num-
ber of clusters (within a range) and select the best one in or-
der to find the best performance. Consequently, the selected
k value is the one that solves more problems and achieves
the best quality in the evaluation phase.

Portfolio Generator
The portfolio configuration for each cluster has been gen-
erated using MIP (Wolsey 2008), which computes the port-
folio with the best achievable performance with respect to
a selection of training planning tasks (Núñez, Borrajo, and
Linares López 2012). The resulting portfolio configuration
is a linear combination of candidate planners defined as a
sorted set of pairs <planner, time>. The MIP model con-
siders an objective function that maximizes a weighted sum
of different parameters including: overall running time and
quality.

Since the MIP model takes into account two different cri-
teria (time and quality), it could be viewed and solved as
a multi-objective maximization problem. Instead, we solve
two MIP tasks in sequence while preserving the cost of the
objective function from the solution of the first MIP. Specif-
ically, we first run the MIP task to optimize only quality
—i. e., sum of the plan quality of each solved problem for
the satisficing track and the total number of solved planning
tasks for the optimal track. If a solution exists, then a second
execution of the MIP model is performed to find the combi-
nation of candidate planners that achieves the same quality
(denoted as Q) while minimizing the overall running time.
To enforce a solution with the same quality an additional
constraint is added:

∑n
i=0 qualityi ≥ Q − ε, where ε is

just any small real value used to avoid floating-point errors.
Clearly, a solution is guaranteed to exist here, since a first so-
lution was already found in the previous step. Algorithm 1
shows the steps followed to generate all the submitted port-
folios where quality was maximized first, and then running
time was minimized among the combinations that achieved
the optimal quality. In our experiments, ε = 0.001.

Algorithm 1 Build a portfolio optimizing quality and time
set weights to optimize only quality
portfolio1 := solve the MIP task
Q := the resulting value of the objective function
if a solution exists then

add constraint
∑n

i=0 qualityi ≥ Q− 0.001
set weights to optimize only overall running time
portfolio2 := solve the MIP task
return portfolio2

else
exit with no solution

end if

Implementation of the Portfolio
Every submitted portfolio runs a fixed portfolio configura-
tion for each problem to be solved. However, the runtime

assigned to each component planner can change in unex-
pected ways during its execution when the component plan-
ner finishes prematurely: planner bugs, terminating cleanly
without solving the instance, running out of memory, etc.
Therefore, the total runtime of the executed portfolio can be
lower than the available time. In this case, the submitted
portfolio will run a default planner using the remaining time
(RT). This default planner is picked up among the set of can-
didate planners which had a remarkable performance in the
IPC 2011.

Sequential Optimization Track
In the design of NUCELAR, we have used all the problems
defined in the optimal track of the IPC 2011. Also, we con-
sidered all the participant planners in that competition but
FORKINIT, IFORKINIT and LMFORK because the organiz-
ers of the IPC 2014 had problems with the license of the
Mosek LP solver 1. Since the set of candidate planners was
too small, we discarded the participant portfolios and added
their component planners instead. Moreover, we included
all the planners considered in the design of FDSS (Helmert,
Röger, and Karpas 2011).

Table 1 shows the configuration of the NUCELAR portfo-
lio for the sequential optimization track. This configuration
is composed of six portfolio configurations in turn, one for
each cluster, since we defined six clusters in the clustering
phase. The execution sequence of the component planners
has been sorted by increasing order of the allotted time.

Planner Allotted time (s)
GAMER 1800
CPT4 550
RHW LANDMARKS 598
M&S-BISIM 1 652
FD AUTOTUNE 191
M&S-BISIM 2 326
GAMER 1282
LM-CUT 105
M&S-BISIM 1 188
M&S-BISIM 2 220
GAMER 1237
SELMAX 1800
CPT4 131
M&S-BISIM 2 331
hmax LANDMARKS 1356
SELMAX RT

Table 1: Configuration of NUCELAR for the sequential op-
timization track.

Sequential Satisficing Track
NUCELAR for the satisficing track has been configured ap-
plying our technique over all the satisficing planning tasks

1MOSEK is a tool for solving mathematical optimization prob-
lems. http://mosek.com/

49

defined for the IPC 2011. Also, we have used all the partici-
pant planners in that competition and the component solvers
of the participant portfolios. Moreover, we included all
the planners considered in the design of FDSS. The FDSS
planners are defined by a search algorithm, an evaluation
method and a set of heuristics. Specifically, FDSS only con-
sidered weighted-A∗ w=3 (WA∗) and greedy best-first search
(GBFS), with EAGER (standard) and LAZY (deferred evalu-
ation) variants of both search algorithms. Also, only four
heuristics were considered: Additive heuristic ADD (Bonet
and Geffner 2001), FF/additive heuristic FF (Hoffmann and
Nebel 2001; Keyder and Geffner 2008), Causal Graph
heuristic CG (Helmert 2004), and Context-Enhanced Addi-
tive heuristic CEA (Helmert and Geffner 2008).

The resulting portfolio is shown in Table 2, which con-
tains one portfolio configuration for each one of the six clus-
ters defined in the cluster analysis.

Planner Allotted time (s)
YAHSP2 MT 2
LAMA 2011 3
FD AUTOTUNE 2 4
MADAGASCAR P 5
FD AUTOTUNE 1 5
YAHSP2 6
DAE YAHSP 27
ROAMER 30
GBFS - EAGER - FF, CG 78
GBFS - EAGER - CG 109
GBFS - LAZY - CG 116
WA∗ - LAZY - CG 227
PROBE 339
ARVAND 849
LAMA 2011 218
GBFS - LAZY - FF, CG 295
GBFS - LAZY - ADD, FF 1287
WA∗ - LAZY - FF 1800
FD AUTOTUNE 2 762
RANDWARD 1037
YAHSP2 5
YAHSP2 MT 5
FDSS 2 48
LAMA 2008 73
GBFS - EAGER - CG 142
FD AUTOTUNE 2 280
LAMA 2011 432
FORKUNIFORM 813
LAMAR 47
WA∗ - LAZY - FF 91
FDSS 1 1660
ROAMER RT

Table 2: Configuration of NUCELAR for the sequential sat-
isficing track.

Sequential Multi-Core Track
The NUCELAR portfolio for the multi-core track has been
configured using the same training data (candidate planners
and training planning tasks) and the same technique (adding
the concept of core processor to the MIP model) used to
configure the sequential satisficing portfolio.

The resulting portfolio is shown in Table 3, which is com-
posed of six portfolio configurations since we defined six
clusters in the clustering phase. Each portfolio configura-
tion uses the four cores available and respects the wall-clock
time limit defined in the competition.

Planner Allotted Time (s)
PROBE 1356
ARVAND 1800
YAHSP2 MT 8
LAMA 2011 12
FD AUTOTUNE 2 16
MADAGASCAR P 20
FD AUTOTUNE 1 20
YAHSP2 24
DAE YAHSP 108
ROAMER 120
GBFS - EAGER - FF, CG 312
GBFS - EAGER - CG 436
GBFS - LAZY - CG 464
WA∗ - LAZY - CG 908
LAMA 2011 1800
GBFS - LAZY - FF, CG 1800
GBFS - LAZY - ADD, FF 1800
PROBE 1800
WA∗ - LAZY - FF 1800
PROBE 1800
LAMA 2011 1800
ARVAND 1800
FD AUTOTUNE 2 1800
RANDWARD 1800
PROBE 1800
LAMA 2011 1800
FORKUNIFORM 1800
LAMA 2011 1728
YAHSP2 20
YAHSP2 MT 20
FDSS 2 192
LAMA 2008 292
GBFS - EAGER - CG 142
FD AUTOTUNE 2 1120
LAMAR 1800
WA∗ - LAZY - FF 1800
FDSS 1 1800
PROBE 1800
LAMAR RT
LAMA 2011 RT

Table 3: Configuration of the NUCELAR portfolio for the
multi-core track.

50

Acknowledgments
We automatically generated sequential portfolios of existing
planners in other competitions. Thus, we would like to ac-
knowledge and thank the authors of the individual planners
for their contribution and hard work.

This work has been partially supported by the Spanish
project TSI-090302-2011-6 and the Planinteraction project
TIN2011-27652-C03-02.

References
Bonet, B., and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence 129(1-2):5–33.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2012. Mining
ipc-2011 results. In Proceedings of the Third Workshop on
the International Planning Competition.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An Auto-
matically Configurable Portfolio-based Planner with Macro-
actions: PbP. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling, (ICAPS
2009). AAAI.
Helmert, M., and Geffner, H. 2008. Unifying the Causal
Graph and Additive Heuristics. In Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2008), 140–147.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A Baseline for Building Planner Portfo-
lios. In ICAPS 2011 Workshop on Planning and Learning
28–35.
Helmert, M. 2004. A Planning Heuristic Based on Causal
Graph Analysis. In Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), 161–170. AAAI Press.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Jain, A. K., and Dubes, R. C. 1988. Algorithms for cluster-
ing data. Prentice-Hall, Inc.
Jain, A. K. 2010. Data clustering: 50 years beyond k-means.
Pattern Recognition Letters 31(8):651–666.
Keyder, E., and Geffner, H. 2008. Heuristics for Planning
with Action Costs Revisited. In Proceedings of the 18th Eu-
ropean Conference on Artificial Intelligence (ECAI 2008),
588–592.
Núñez, S.; Borrajo, D.; and Linares López, C. 2012. Per-
formance Analysis of Planning Portfolios. In Proceedings
of the Fifth Annual Symposium on Combinatorial Search,
SOCS, Niagara Falls, Ontario, Canada, July 19-21, 2012.
AAAI Press.
Roberts, M., and Howe, A. 2009. Learning from planner
performance. Artificial Intelligence 173(5):536–561.
Virseda, J.; Borrajo, D.; and Alcázar, V. 2013. Learning
heuristic functions for cost-based planning. Planning and
Learning 6.
Wolsey, L. A. 2008. Mixed integer programming. Wiley
Encyclopedia of Computer Science and Engineering.

51

Planets: A Planner for Net Benefit

Jonathan Teutenberg
Independent Researcher

jono.teutenberg@gmail.com

Abstract

Planets is a forward searching STRIPS state-based
branch-and-bound best-first heuristic planner for sat-
isficing planning problems with numeric values, soft
goals and metric objective functions. Designed for nar-
rative generation, Planets trades time for plan quality by
generating multiple delete-relaxed solutions to closely
approximate the optimal delete-relaxed heuristic h+

The search uses an unweighted heuristic, however Plan-
ets strongly prefers actions that are helpful to at least
one of its relaxed plans. Other notable features are a
simple symmetry breaking for ordering actions of inde-
pendent sub-plans; the use of occasional greedy probes
in search of a backup plan; and a top-down approach to
the selection of a subset of soft goals to achieve.

Background
Planets is used as a base-planner for narrative generation
using an IMPRACTical (Teutenberg and Porteous 2013) ap-
proach. This presents planning problems for which
• Adding actions to a partial plan requires a complete state.
• Determining applicable actions in a state is very time-

consuming, requiring the solving of a large number of re-
laxed plans.

• High quality – though not necessarily optimal – plans are
required.

• Plan quality is a mixture of hard goals and a numeric ob-
jective function.
Originally Planets was entered in the satisficing prefer-

ences track of the IPC which was since cancelled. In this pa-
per we still describe and briefly evaluate Planets’ approach
to the selection of soft goals to achieve from each state.

Due to the requirement for high quality plans, a best-first
branch and bound with an unweighted heuristic is used, as
opposed to a greedy search strategy or weighted a-star. The
substantial cost required to determine applicable actions for
narrative generation dominates the cost of heuristic evalu-
ation. For this reason Planets attempts to approximate the
costly h+ heuristic by using the lowest total cost of many
diverse relaxed plans. The full procedure is presented in the

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

following section. While the approximation means this may
not be an admissible heuristic, it is less likely to overesti-
mate than the similar hFF that extracts a single relaxed plan,
or hadd. In addition, multiple explicit relaxed plans provide
information on possible alternative solutions which Planets
makes use of by treating the union of several of the best re-
laxed plans’ helpful actions as being helpful in any given
state.

Though there is as yet no standard planning domain for
narratives, we are able to identify some forms of symmetry
we expect to be present in high quality narratives. In par-
ticular Planets addresses the symmetry present in totally or-
dered plans that contain parallel independent sub-plans, as
described in (Long and Fox 2003). Such sub-plans occur
when two or more characters are active in their own sub-
plots that only occasionally cross paths. In later sections this
paper discusses the symmetry breaking procedure that en-
forces a single linearisation of interleaved sub-plans when
their actions are identified as being helpful.

Finally, this paper presents a search for a low quality
backup plan using a greedy best-first search through a se-
quence of landmarks, similar to Probe (Lipovetzky and
Geffner 2011), using 10% of total planning time.

Planets is still a work in progress The latest version can
be retrieved from http://github.com/jteutenberg/Planets.

Heuristic: Multiple Relaxed Plans
The heuristic for Planets’ search uses solutions to the delete-
relaxed version of the domain in the same vein as FF (Hoff-
mann and Nebel 2001). These relaxed plans are produced
not through a relaxed planning graph, but by an expansion
using hmax as described in (Keyder and Geffner 2008) as
FF(ha).

The notable difference in Planets is that it extracts multi-
ple plans in parallel. When determining the action with best
support for an open precondition, instead of selecting a sin-
gle action a new partial relaxed plan is created for each pos-
sible supporting action. Once a limit on the number of partial
relaxed plans is reached (set to 50 for the IPC) Planets com-
pletes each plan using greedy selection hmax criteria as in
FF(ha). This ensures that a solution found by FF(ha) is also
guaranteed to be considered by Planets.

Some care must be taken when extracting multiple solu-
tions. When selecting supporting actions for an open fact

52

only the lowest hmax action is guaranteed to be reachable
prior to this fact being achieved. To avoid cycles in the plan
such as when two actions support one another, we restrict the
extraction of supporting actions to those that were reached
prior the best supporting action’s expansion.

Another property that distinguishes Planets’ relaxed plans
is that they are an ordered sequence of actions (rather than a
set), sorted in the order in which they were reached during
the expansion using hmax. This sequence becomes impor-
tant when selecting soft goals as described in later sections.

When no soft goals or metric objective functions are pro-
vided, the heuristic value for a state is the lowest total cost
amongst all plans extracted.

Helpful Actions
A helpful action is an action that is applicable in a state and
is a member of the set of actions that comprise a relaxed
solution. Where planners using hFF have one such solution,
Planets maintains a set of solutions – in the IPC this is set to
the best 5 plans from the 50 being extracted.

Helpful actions are therefore any applicable action that
is a member of at least one of the relaxed plans. The idea
here is that such actions represent progress along some path
through the space of partial plans that leads towards a solu-
tion, even if it is not necessarily progress toward the most
promising solution.

Planets maintains an open list partial plans that have been
produced by helpful actions, and a set of plans produced by
non-helpful actions. Plans from the open list are always used
until it empties, at which point the set of non-helpful plans
is emptied into the open list and search resumes.

Handling Preferences
The preferences track of the IPC was to include metric ob-
jective functions such that each goal g ∈ G added a fixed,
positive value and removed the total cost of actions. Plan-
ets solves is set up to solve a slightly more general class of
metrics, of the form

m(S, π) = benefit(S ∩G)− totalCost(π)

where benefit is an arbitrary function over the set of goal
facts present in a state.

The selection of which goals to achieve is made dur-
ing heuristic evaluation, where π is the current partial plan
followed by the relaxed plan extending this to the goals.
This follows other approaches that select subsets of goals
to achieve based on relaxed plans such as (Smith 2004; Ni-
genda and Kambhampati 2005; Garcı́a-Olaya, De La Rosa,
and Borrajo 2011) Most of these use a bottom-up approach –
incrementally adding most beneficial goals. Planets instead
selects goals top-down – by incrementally selecting a set of
goals to remove.

When selecting soft goals, Planets first creates relaxed
plans that achieve all reachable goals using the approach de-
scribed earlier. It then attempts to find the subset of actions,
and the goals that result from them, for each relaxed plan
such that the objective metric function is maximised using
only these actions.

Planets
Hard goals

O
p

ti
m

a
l
so

lu
ti

o
n
 c

o
st

 (
n

o
rm

a
lis

e
d

)

Solution cost (normalised)

1

0.8

0.6

0.90.7

0.4

0.3

0.2

0.10 10.80.60.50.40.2

Figure 1: Ratio of optimal plan net benefit to Planets’ solu-
tions’ net benefit, and to treating all goals as hard goals, over
three planning domains.

Given a relaxed plan π = a1, a2 . . . an, the cause of a fact
p is defined as

cause(p) = ai s.t. p ∈ add(ai) ∧ p /∈
i−1⋃
j=1

add(aj)

and the relevant actions to a fact p as

rel(p) = {cause(p)} ∪ {rel(q) | q ∈ pre(cause(p))}

In particular, Planets uses this definition to generate the
sets of relevant actions to each goal. Planets also makes use
of the inverse of this relationship, the set of all goals that
each action ai is relevant to:

goals(ai) = {g ∈ G | ai ∈ rel(g)}

There are 2|G| subsets of goals to consider for removal.
However we can use the relevant actions defined above to
reduce the partitions that need to be considered. If a subset
of goals Gout ⊆ G are to not be achieved then an action
ai will only be removed if it no longer has any goals that it
is relevant to, or goals(ai) ⊆ Gout. Planets therefore con-
structs the set of unique subsets of goals that can have some

effect on the relaxed plan
n⋃

i=1

{goal(ai)} and only considers

these n candidates for removal in an iterative process.

Figure 1 shows results of goal selection on three domains
from the preferences track of IPC 2008: crew-planning,
transport-numeric and elevators-numeric, with values nor-
malised by the highest benefit plan in their domain. The
comparison against treating all goals as hard goals falls
down on other domains in which these problems become
unsolvable. In 28% of problems the hard goal version failed
to produce a higher quality than the empty plan; in a further
34% the preference selection improved plan quality; and in
1 case it performed worse.

53

a1 a2 a3 ak

b1 b2 b3 bm

c1 c2 c3 cn

Figure 2: An idealised example of a portion of a solution
plan with independent sub-plans. Circles represent actions
and arrows a causal link from effect to precondition.

Simple Symmetry Elimination
When searching the space of totally ordered partial plans
many redundant interleavings, or linearisations, of indepen-
dent sub-plans will be considered. Two sub-plans A and B
are independent when ∀a ∈ A,∀b ∈ B a and b are non-
interfering, using the definition of interference from (Long
and Fox 2003). An idealised example is shown in Figure
2 where three independent sub-plans that are each simple
chains of causality make up a section of a solution.

The number of partial plans considered by a brute-force
search through such a region is in the order of the number of
unique states produced by all possible linearisations of the
sub-plans (as the search is automatically terminated when
a duplicate state is encountered). This is in the order of the
product of the lengths of the sub-plans – kmn in the example
shown. However, when all of these actions form part of the
final solution, all linearisations result in the same state and so
only one linearisation of the actions needs to be considered.
A search through the single linearisation produces only up
to k + n+m unique states.

Planets applies symmetry breaking when a relaxed plan
has two or more independent helpful actionsH , up to a max-
imum of four actions. It forces an early commitment to the
inclusion (or exclusion) of each of these actions. This begins
by creating new partial plans for every selection T ⊂ H of
actions from this set (up to 24 such plans).

For a subset T all a ∈ T are added to the partial plan in
arbitrary order. In addition to the plan, each search node also
contains an action blacklist to which all b ∈ H\T are added.
Actions in the blacklist are not applicable in any state, and
are not used during relaxed plan construction. An action is
removed from the blacklist when an action is added to the
plan that meets the requirements to interfere with it.

On the transport-numeric problems from IPC 2008, when
there are at least two trucks and two packages (so the possi-
bility of narrative-like independent sub-plots exist) this sym-
metry breaking reduces the number of evaluated nodes by an
average of 14%. On those problems with a single truck there
is no difference in the search space explored.

Probing for Backup Plans
While the planning proper continues, it may be necessary
to buy some time by presenting actions from the beginning
of a valid, if low-quality, backup plan. For this reason we
have included a greedy best-first search inspired by PROBE
(Lipovetzky and Geffner 2011) that takes over search for
10% of wall-clock time.

The rough procedure used for the backup planning is:
• Select as a start state the next best state in the branch-and-

bound open list
• Generate a sequence of landmarks from this state to the

goals
• Search to each landmark in turn based on heuristic values

only with a beam search (width set to 50 for the IPC)
In comparison to PROBE, this implementation is missing

the notion of commitments when selecting landmarks, but
most significantly does not yet enforce all goal facts to be
true simultaneously. This reduces the likelihood of success-
fully finding a backup plan in many domains.

Heuristic estimates and their associated relaxed plans that
are generated during probes are stored. When the primary
branch-and-bound search reaches such a state visited by a
probe this is then re-used. The probes themselves will never
expand a state previously visited by an earlier probe or by
the primary search.

References
Garcı́a-Olaya, A.; De La Rosa, T.; and Borrajo, D. 2011. Us-
ing the relaxed plan heuristic to select goals in oversubscrip-
tion planning problems. In Proceedings of the 14th Inter-
national Conference on Advances in Artificial Intelligence:
Spanish Association for Artificial Intelligence.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation throughHeuristic Search. Journal of AI
Research 14:253–302.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In In Proc. ECAI 2008.
Lipovetzky, N., and Geffner, H. 2011. Searching for plans
with carefully designed probes. In Proc. of the 21st Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 154–161.
Long, D., and Fox, M. 2003. Plan permutation symmetries
as a source of inefficiency in planning. In 22nd UK Planning
and Scheduling Special Interest Group.
Nigenda, R. S., and Kambhampati, S. 2005. Planning graph
heuristics for selecting objectives in over-subscription plan-
ning problems. In Proc. of the 15th Int. Conf. on Automated
Planning and Scheduling (ICAPS).
Smith, D. 2004. Choosing objectives in over-subscription
planning. In Proc. of the 14th Int. Conf. on Automated Plan-
ning and Scheduling (ICAPS 2004).
Teutenberg, J., and Porteous, J. 2013. Efficient Intent-Based
Narrative Generation Using Multiple Planning Agents. In
Proc. of 13th Int. Conf. on Autonomous Agents and MultiA-
gent Systems (AAMAS-13).

54

RPT: Random Planning Tree

Vidal Alcázar, Susana Fernández, Daniel Borrajo
Universidad Carlos III de Madrid

Av. Universidad, 30
28911 Leganés, Spain

valcazar@inf.uc3m.es;sfarregu@inf.uc3m.es;dborrajo@ia.uc3m.es

Manuela Veloso
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh PA 15213-3890, USA

mmv@cs.cmu.edu

Abstract

Rapidly-exploring random trees (RRTs) are data struc-
tures and search algorithms designed to be used in con-
tinuous path planning problems. They are one of the
most successful state-of-the-art techniques in motion
planning, as they offer a great degree of flexibility and
reliability. Random Planning Tree (RPT) is a planner
that implements RRTs for their use in automated plan-
ning.

Introduction
Single-query motion planning and satisficing planning have
many points in common. However, bringing techniques from
one area to the other is not straightforward. The main differ-
ence between the two areas is the defining characteristics
of the search space. In motion planning, the original search
space of these problems is an euclidean explicit continuous
space, whereas in automated planning the search space is
a multi-dimensional implicit discrete space. This has lead to
both areas being developed without much interaction despite
the potential benefits of an exchange of knowledge between
the two communities.

The presented planner, Random Planning Tree (RPT),
tries to bridge the gap between the two areas by proposing
the use of an RRT in automated planning. The motivation
is that RRTs may be able to overcome some of the short-
comings that forward search planners have while keeping
most of their good properties. This planner builds on previ-
ous work by the same authors (Alcázar, Veloso, and Borrajo
2011); the main difference is the use of a broader range of
state invariants in the sampling process.

Background
In this section we will present RRTs and the first planner
inspired by RRTs, RRT-Plan (Burfoot, Pineau, and Dudek
2006). Regarding RRTs, this includes both the original def-
inition as a data structure and its subsequent evolution as a
single-query search algorithm in motion planning.

Rapidly-exploring Random Trees
RRTs (LaValle and Kuffner 1999) were proposed as both
a sampling algorithm and a data structure designed to allow
fast searches in high-dimensional spaces in motion planning.

RRTs are progressively built towards unexplored regions of
the space from an initial configuration. Configurations de-
scribe the position, orientation and velocity of the movable
objects in motion planning and are equivalent to states in
other search applications.

Figure 1: Progressive construction of an RRT.

At start, the algorithm creates a tree containing the initial
configuration. At every step, a random qrand configuration is
chosen from all the configuration space and for that config-
uration the nearest configuration already in the tree qnear is
computed. For this a definition of distance is required (in
motion planning the euclidean distance is usually chosen
as the distance measure). When the nearest configuration
is found, a local planner tries to join qnear with qrand with
a limit distance ε. If qrand was reached, it is added to the
tree and connected with an edge to qnear. If qrand was not
reached, then the configuration qnew obtained at the end of
the local search is added to the tree in the same way as long
as there was no collision with an obstacle during search. In
the search literature, the term local search refers to search
algorithms that do not keep track of all the states that they
have visited. The most representative algorithm of this kind
is Hill Climbing, although many others exist. Here, though,
whenever we use the term local search we mean the process
of solving the subproblem needed to create a new branch of
the tree. This operation is called the Extend step, illustrated
in Figure 2. This process is repeated until some criteria is
met, like a limit on the size of the tree. Algorithm 1 gives an
outline of the process.

55

Figure 2: Extend phase of an RRT.

Algorithm 1: Description of the building process of an
RRT.

Data: Search space S, initial configuration qinit , limit ε,
ending criteria end

Result: RRT tree
begin

tree←− qinit
while ¬ end do

qrand ←− sampleSpace(S)
qnear←− nearest(tree,qrand ,S)
qnew←− join(qnear,qrand ,ε,S)
if reachable(qnew) then

addConfiguration(tree,qnear,qnew)

return tree
end

Once the RRT has been built, multiples queries can be
issued. For each query, the nearest configurations (node) of
the tree to both the initial and the goal configurations of the
query are found. Then, the initial and final configurations are
joined to the tree to those nearest configurations using the
local planner and a path is retrieved by tracing back edges
through the tree structure.

The key advantage of RRTs is that they are intrinsically
biased towards regions with a low density of configurations
in their building process. This can be explained by looking
at the Voronoi diagram at every step of the building pro-
cess. The Voronoi diagram is conformed by Voronoi regions;
Voronoi regions associated to a given node q of the tree are
areas such that every point in the area is closer to q than
to any other node q′ of the RRT. The Voronoi region of a
given node is larger when the area around that node has not
been explored. This way, the probability of a configuration
being sampled in an unexplored region is higher as larger
Voronoi regions will be more likely to contain the sampled
configuration (Aurenhammer 1991). This has the advantage
of naturally guiding the tree by extending nodes at the edge
of unexplored regions with a higher probability while just
performing uniform sampling. Besides, the characteristics
of the Voronoi diagram are an indicative of the adequate-
ness of the tree. For example, a tree whose Voronoi diagram
is formed by regions of similar size covers uniformly the
search space, whereas large disparities in the size of the re-
gions mean that the tree may have left big areas of the search
space unexplored. Apart from this, another notable charac-
teristic is that RRTs are probabilistically complete, as they
will cover the whole search space if the number of sampled

configurations tends to infinity. Figure 3 shows the Voronoi
diagrams of the RRTs previously shown in Figure 1.

Figure 3: Voronoi Diagram of an RRT.

RRT-Connect
After corroborating how successful RRTs were for multi-
query motion planning problems, researchers in motion
planning realized that using multi-query RRTs was often
more efficient and robust than using specific single-query
motion planning algorithms even for a single query. Mo-
tivated by this fact and aiming to develop a more suit-
able RRT-like algorithm for the single-query case, a varia-
tion for single-query problems called RRT-Connect was pro-
posed (Kuffner and LaValle 2000). The modifications intro-
duced were the following:
• Two trees are grown at the same time by alternatively ex-

panding them. The initial configuration of the trees are the
initial and the goal configuration respectively.

• The trees are expanded not only towards randomly sam-
pled configurations, but also towards the nearest node of
the opposite tree with a probability p. Hence, with a prob-
ability p the closest distance among the m× n distances
between nodes from both trees is found and the node of
the expanding tree is expanded towards the node of the
non-expanding tree. With a probability 1− p a random
configuration is sampled and the corresponding trees are
expanded as usual.

• The Expand phase is repeated several times until an obsta-
cle is found. The resulting nodes from the local searches
limited by ε are added to the tree. This is called the Con-
nect phase.
Growing the trees from the initial and the goal configura-

tions and, at times, towards the opposite tree gives the algo-
rithm its characteristic single-query behavior. The Connect
phase was added after empirically testing that the additional
greediness that it introduced improved the performance in
many cases. A common variation is also trying to extend the
tree towards the opposite tree after every qnew is added when
sampling randomly, extending from that qnew configuration
towards the opposite tree. This helps in cases in which both
trees are stuck in regions of the search space that are close
as per the distance measure, but in which local searches con-
sistently fail due to obstacles.

56

RRT-Plan
The planner RRT-Plan (Burfoot, Pineau, and Dudek 2006)
was proposed as a stochastic planning algorithm inspired by
RRTs. In this case, the EHC search phase of FF (Hoffmann
and Nebel 2001), a deterministic propositional planner, was
used as the local planner. The limit ε that was used to limit
the reach of the Expand phase was substituted by a limit
on the number of nodes expanded by the local planner. In
this case, once the limit ε was reached the node in the local
search with the best heuristic estimate towards the sampled
space was chosen, and that node was added to the tree. The
tree was built only from the initial state due to the difficulty
of performing regression in automated planning.

The key aspects in this work are two: the computation of
the distance necessary to find the nearest node to the sam-
pled or the goal state, and sampling in an implicit search
space. In RRTs one of the most critical points is the com-
putation of the nearest node in every Expand step, which
may become prohibitively expensive as the size of the tree
grows with the search. The most frequently used distance es-
timations in automated planning are the heuristics based on
the reachability analysis in the relaxed problem employed
by forward search planners, like the hadd heuristic used by
HSP (Bonet and Geffner 2001) or the relaxed plan heuristic
introduced by FF (Hoffmann and Nebel 2001). The prob-
lem with these heuristics is that, although computable in
polynomial time, they are usually still relatively expensive
to compute. To avoid recomputing the reachability analysis
from every node in the tree, every time a new local search
towards a state is done, the authors propose caching the cost
of achieving every goal proposition from a node whenever
that node is added to the tree. This way, by adding the costs
of the propositions that form the sampled state, hadd can be
obtained without needing to perform a reachability analysis.

Regarding sampling, RRT-Plan does not sample the
search state uniformly. Instead, it chooses a subset of propo-
sitions s⊆ S from the goal set such that s⊆ G and uses s as
qrand . This is due to the fact that, although sampling a state
by choosing random propositions in automated planning is
trivial, determining whether a given sampled state belongs
to the search space is PSPACE-complete, as it is as hard,
in terms of computational complexity, as solving the origi-
nal problem itself. This problem is avoided by the sampling
technique of RRT-Plan in the sense that, if the problem is
solvable, G must be reachable. Hence, any of its possible
subsets is also reachable. In addition, RRT-Plan performs
goal locking; i.e., when a goal proposition p that was part
of a given sampled state s ⊆ G | p ∈ s is achieved, any sub-
sequent searches from the added qnew node and its children
nodes are not allowed to delete p.

Whereas RRT-Plan effectively addresses the problem of
sampling states in implicit search spaces, this kind of sam-
pling limits most of the advantages RRTs have to offer. By
choosing subsets of the goal set instead of sampling uni-
formly the search space, the RRT does not tend to expand
towards unexplored regions. Thus, it loses the implicit bal-
ance between exploration and exploitation during search that
characterizes them. In fact, by choosing this method, RRT-
Plan actually benefits from random guesses over the order of

the goals instead of exploiting the characteristics of RRTs.
As a side note, this could actually be seen as a method simi-
lar to the goal agenda (Koehler and Hoffmann 2000), albeit
with random selection of subsets and the possibility in this
case to recover from wrong orderings.

Advantages of RRTs in Automated Planning
Figure 4 shows a typical example of a best-first search al-
gorithm getting stuck in an h plateau due to inaccuracies in
the heuristic. In this example, the euclidean distance used as
heuristic ignores the obstacles. Because of this, the search
advances forward until the obstacle is found. Hence, the
search algorithm must explore the whole striped area before
it can continue advancing towards the goal. This highlights
the imbalance between exploitation and exploration these
approaches have. This problem has been previously stud-
ied, and several methods that tried to minimize its negative
impact on search have been proposed (Röger and Helmert
2010; Linares López and Borrajo 2010). However, this im-
balance still remains as one of the main shortcomings of
best-first search algorithms. To partially address this issue,
we consider expanding nodes towards randomly sampled
states so a more diverse exploration of the search space is
done. In this example, a bias that would make the search
advance towards qrand could avoid the basin flooding phe-
nomenon that greedier approaches suffer from.

Figure 4: Simple example of a best-first search algorithm
greedily exploring an h plateau due to the heuristic ignoring
the obstacles. Advancing towards some randomly sampled
state like qrand can alleviate this problem.

RRTs incrementally grow a tree towards both randomly
sampled states and the goal. Therefore, they are less likely to
suffer from the same problem as best-first search algorithms.
The main advantages that they have over other algorithms in
automated planning are the following:
• They keep a better balance between exploration and ex-

ploitation during search.
• Local searches minimize exploring plateaus, as the maxi-

mum size of the search is bounded.
• They use considerably less memory, as only a relatively

sparse tree must be kept in memory.
• They can employ a broad range of techniques during local

searches.
In terms of memory, the worst case is the same for best-

first search algorithms and RRTs. However, RRTs must keep
in memory only the tree and the nodes from the current lo-
cal search. Trees are typically much sparser than the area
explored by best-first algorithms, which makes them much
more memory efficient on average.

57

Implementing RPT
Due to the differences in the search space, adapting RRTs
from motion planning to automated planning is not trivial.
RPT is an planner based on RRTs and RRT-Plan with some
changes critical to their performance.

Sampling
The main reason why RRTs have not been considered for au-
tomated planning is the difficulty of properly sampling the
search space. The difficulty arises from the fact that choos-
ing propositions from S at random may lead to generating
spurious states. Checking whether a state is spurious or not
is as hard as solving the problem itself, so an approximative
approach must be used instead. Here we propose the use of
state invariants as constraints to reduce the chances of ob-
taining a spurious state when uniformly sampling the search
space. In particular, we propose the use of mutexes (Bonet
and Geffner 2001) (already employed by evolutionary plan-
ners like DAEX (Bibai et al. 2010), which decomposes the
problem using sampling techniques) and “exactly-1” invari-
ant groups.

Sampling a state using state invariants as constraints
is analogous to solving a Constraint Satisfaction Problem
(CSP). A CSP is formally defined as a triple CSP=(V,D,C),
where V are the variables of the problem, D are the domains
of the variables in D and C are the constraints of the prob-
lem. In this CSP the “exactly-1” invariant groups are the
variables in V, the propositions of the “exactly-1” invariant
groups are the domain D of the variables in V and the binary
mutexes of the problem are the constraints of C. The objec-
tive is to choose a proposition p ∈ S from every “exactly-1”
invariant group I1 such that it is not mutex with any other
chosen proposition p′ ∈ S. This ensures that the complete
sampled state s ∈ S satisfies all “exactly-1” invariant groups
and does not violate any binary mutex.

Solving a CSP is NP-complete. Actually, for some plan-
ning instances solving the CSP that represents the sampling
process may be on average very time consuming if it is
done naively. In our implementation we use forward check-
ing (Haralick and Elliott 1980) to improve the performance
of the backtracking procedure needed for solving the CSP.
The order of the variables (the order in which the “exactly-
1” invariant groups are selected to be satisfied) is static, al-
though it may vary between different sampling processes.
“exactly-1” invariant groups with the highest cardinality are
chosen first, with ties broken randomly every time a new
state is sampled. Ordering of values of variables is chosen at
random. This aims to reproduce the behavior of the degree
(most constraining variable) heuristic (Brélaz 1979) while
trying to obtain sampled states as diverse as possible.

Ensuring the Reachability of Goals Even after using
state invariants, it may happen that the goal is not reach-
able from the sampled state. For example, a sampled state in
the Sokoban domain may contain a configuration of blocks
such that some block cannot be moved anymore. While this
sampled state may not violate any state invariant, unless the
unmovable blocks are at a goal location the sampled state
is a dead end, since the original goal is not reachable. To

address this problem, a regular reachability analysis can be
done from the sampled state. If some proposition p ∈ G is
unreachable, then the sampled state can be safely discarded.
This is again an incomplete method, but in cases such as the
aforementioned one it is useful to detect spurious states.

Distance Estimation
One of the most expensive steps in an RRT is finding the
closest node to a sampled state. Besides, the usual dis-
tance estimation in automated planning, the heuristics de-
rived from a reachability analysis, are also computationally
costly. RRT-Plan solved this by caching the cost of achiev-
ing a goal proposition from every node of the tree and using
that information to compute hadd , just like HSPr does (Bonet
and Geffner 2001) when searching backwards. Despite be-
ing an efficient solution, this shares the same problem as
HSPr: only hadd can be computed using that information.
hadd tends to greatly overestimate the cost of achieving the
goal set and other heuristics of the same kind, like the FF
heuristic, are on average more accurate (Fuentetaja, Borrajo,
and Linares López 2009). Therefore, in our implementation,
best supporters, that is, actions that first achieve a given
proposition in the reachability analysis, are cached as pro-
posed by Alcázar et al (Alcázar et al. 2013). This allows to
compute not only hadd but also other heuristics like the FF
heuristic (by tracing back the relaxed plan using the cached
best supporters). The time of computing the heuristic once
the best supporters are known is usually very small com-
pared to the time needed to perform the reachability analy-
sis - linear in the size of the relaxed plan -, so this approach
allows to get more accurate (or diverse) heuristic estimates
without incurring in a significant overhead.

Tree Construction
RRTs can be built in several ways. The combination of the
Extend and Connect phases, the possibility of greedily ad-
vancing towards the goal with a probability 1− p instead of
sampling with a probability p, the way new nodes are added
(only the closest node to the sampled state or all the nodes
on the path to that state),. . . allow for a broad range of differ-
ent options. In this work, we have chosen to build the tree in
the following way:

• the tree is built from the initial state I;

• every node in the tree contains a state, a link to its parent, a
plan that leads from its parent to the state, and the cached
best supporters for every proposition q ∈ S so hFF can be
computed efficiently;

• ε limits the number of expanded nodes in every local
search;

• there is a probability p of advancing towards a sampled
state and a probability 1− p of advancing towards the goal
from the closest node to the original goal G. It may hap-
pen that the closest node to G was already expanded to-
wards G in an earlier iteration and the new generated node
qnew from that expansion is farther from the goal than G;
that is, hFF(qnew)> hFF(qnear). Since planners are for the
most part deterministic, it does not make sense to repeat

58

the search - it would lead to the same qnew -, so in fact
the node selected with a probability 1− p is the closest
node among those that have never served as the origin of
a local search towards the goal before.

• a single node is added to the tree after every local search,
not all the nodes along the solution path;

• when performing a local search, if a solution for the sub-
problem was not found, the last expanded node is added
to the tree (be it when expanding towards a sampled state
or the original goal G itself);

• after adding a new node qnew from the local search to-
wards a sampled state, a new local search from qnew to
qgoal is performed.

No Connect phase is performed. This is because the Con-
nect phase is probably counter-productive if it is done to-
wards sampled states - sampled states may be completely
irrelevant to the solution and the main benefit obtained from
them is the additional bias towards exploration anyway - and
partially overlaps with the expansions towards the goal with
a probability 1− p. Algorithm 2 describes the whole process.

Algorithm 2: Search process of RPT.
Data: Search space S, limit ε, initial state qnew, goal

qgoal
Result: Plan solution
begin

tree←− qinit
while ¬ goalReached() do

if p<random() then
qrand ←− sampleSpace(S)
qnear←− nearest(tree,qrand ,S)
qnew←− join(qnear,qrand ,ε,S)
addNode(tree,qnear,qnew)
qneargoal ←− qnew

else
qneargoal ←− nearest(tree,qgoal ,S)

qnewgoal ←− join(qneargoal ,qgoal ,ε,S)
addNode(tree,qneargoal ,qnewgoal)

solution←− traceBack(tree,qgoal)
return solution

end

Choice of the Local Planner
The choice of the planner used in the local search is sub-
ject to some restrictions. First, after every Extend phase a
new node to the tree is added even if a solution for the
subproblem could not be found. This means that the lo-
cal planner must be able to return an executable plan also
when no solution was found, which rules out some plan-
ning paradigms like partial-order planners (Younes and Sim-
mons 2003) and SAT-based planners (Rintanen 2012). Sec-
ond, the tree is built forward, so the local planner must return
a forward-executable plan. Again, backward search planners
like HSPr (Bonet and Geffner 2001) and FDr (Alcázar et

al. 2013) cannot be used for this reason. Another important
point is the preprocessing time. Since multiple local searches
may be done, it is desirable that the time spent by the local
planner prior to search is as short as possible. For example,
the use of heuristics that require a relatively long preprocess-
ing time and depend on either the initial state or the goals,
like Pattern Databases (Culberson and Schaeffer 1998), are
discouraged.

In this work, the Fast Downward planning sys-
tem (Helmert 2006) was used as the local planner. It was
configured to use greedy best-first search with lazy evalua-
tion as its search algorithm. The heuristic is the FF heuris-
tic (Hoffmann and Nebel 2001). Preferred operators ob-
tained from the FF heuristic were enabled.

Implementation Details and Parameters

RPT was implemented on top of Fast Downward (Helmert
2006). Since RRTs are stochastic algorithms, the seed is
fixed for the pseudorandom number generator so results
would be reproducible. In particular, we use the default seed
‘1’ for the rand function of the standard C++ library. The
computation of h2 was implemented in Fast Downward; mu-
texes were obtained from the computation of h2 forward
and backward. “exactly-1” invariant groups were obtained
from the monotonicity analysis done by the translator of
Fast Downward. To further exploit the state invariants, spu-
rious actions were pruned by disambiguating their precondi-
tions (Alcázar et al. 2013). We set a limit of 300 seconds for
the h2 computation and the disambiguation of actions. ε was
set to ε = 50000; p was set to p = 0.5.

Anytime Phase
Since quality matters in the competition, we have enabled
an anytime phase that begins right after the first solution
is found. It searches forward iteratively using the follow-
ing configurations: Greedy Best First Search with delayed
evaluation, a cost-sensitive version of the FF heuristic and
preferred operators; Weighted A? with regular evaluation,
a cost-sensitive version of the FF heuristic, preferred oper-
ators and w = 5,3,1 sequentially; A? with a cost-sensitive
version of the FF heuristic and no preferred operators; and
blind search.

These settings haven’t been thoroughly tested, they were
mainly just a combination of those of LAMA and our intu-
ition.

Acknowledgements
This work has been partially supported by a FPI grant from
the Spanish government associated to the MICINN project
TIN2008-06701-C03-03, and it has also been supported by
the project TIN2011-27652-C03-02.

The fourth author was partially funded by the Office
of Naval Research under grant number N00014-09-1-1031.
The views and conclusions contained in this document are
those of the authors only.

59

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting regression in planning. In International
Joint Conference on Artificial Intelligence, 2254–2260.
Alcázar, V.; Veloso, M. M.; and Borrajo, D. 2011. Adapting
a Rapidly-Exploring Random Tree for automated planning.
In Symposium on Combinatorial Search, 2–9.
Aurenhammer, F. 1991. Voronoi diagrams - a survey of
a fundamental geometric data structure. ACM Computing
Surveys 23(3):345–405.
Bibai, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010.
An evolutionary metaheuristic based on state decomposition
for domain-independent satisficing planning. In Interna-
tional Conference on Automated Planning and Scheduling,
18–25. AAAI.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Brélaz, D. 1979. New methods to color the vertices of a
graph. Communications of the ACM 22(4):251–256.
Burfoot, D.; Pineau, J.; and Dudek, G. 2006. RRT-Plan:
A randomized algorithm for STRIPS planning. In Interna-
tional Conference on Automated Planning and Scheduling,
362–365.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Comput. Intell. 14(3):318–334.
Fuentetaja, R.; Borrajo, D.; and Linares López, C. 2009.
A unified view of cost-based heuristics. In Proceed-
ings of the ”2nd Workshop on Heuristics for Domain-
independent Planning”. Conference on Automated Planning
and Scheduling (ICAPS’09).
Haralick, R. M., and Elliott, G. L. 1980. Increasing tree
search efficiency for constraint satisfaction problems. Artif.
Intell. 14(3):263–313.
Helmert, M. 2006. The Fast Downward planning system. J.
Artif. Intell. Res. (JAIR) 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. J. Artif. Intell.
Res. (JAIR) 14:253–302.
Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven plan-
ning algorithm. J. Artif. Intell. Res. (JAIR) 12:338–386.
Kuffner, J. J., and LaValle, S. M. 2000. RRT-Connect: An
efficient approach to single-query path planning. In ICRA,
995–1001. IEEE.
LaValle, S. M., and Kuffner, J. J. 1999. Randomized kino-
dynamic planning. In International Conference on Robotics
and Automation, 473–479.
Linares López, C., and Borrajo, D. 2010. Adding diversity to
classical heuristic planning. In Proceedings of the Third An-
nual Symposium on Combinatorial Search (SOCS’10), 73–
80.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Ar-
tificial Intelligence 193:45–86.
Röger, G., and Helmert, M. 2010. The more, the mer-
rier: Combining heuristic estimators for satisficing planning.

In International Conference on Automated Planning and
Scheduling, 246–249.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Versa-
tile heuristic partial order planner. J. Artif. Intell. Res. (JAIR)
20:405–430.

60

USE: The Useful Operator Selection

Reza Sadraei

University of Sharif, Tehran, Iran
sadraei_reza@yahoo.com

Atefeh Ahmadi

University of Science and Technology, Tehran, Iran

atefeh_31@yahoo.com

Abstract

USE is a sequential portfolio planner that uses two search
algorithms: forward and backward search. USE is
implemented based on the Fast Downward planning system.
The forward search employed in USE is a stochastic planner
that uses “Useful Operator Selection” in addition to
heuristic functions and preferred operators of LAMA2011.
“Useful Operator Selection” policy is stochastic and
sometimes causes the goal to be unreachable from the initial
state. In such a case, search process does not progress after a
while and USE resets the forward search process, hoping to
select a better operator in the next iteration. USE repeats
this procedure till the search process progresses
continuously and the goal is reached. In a few domains the
backward search could solve the planning problems better
than the forward search; Consequently, USE also applies
this mechanism. In the backward search, USE utilizes
additive heuristic without preferred operator.

Introduction

Recently, many of heuristic planners use preferred

operators to limit their search spaces. These planners can

search in a smaller space and reach the goals faster. In

most of these planners, selection of preferred operators is

done by using heuristic functions. The performance of

employing preferred operators in planning domains is

related to the performance of heuristic functions in that

domain. It means that, if the heuristic function can be

useful for a specific domain, the selection of preferred

operators will be helpful. On the other hand, in domains

that heuristics are not accurate, preferred operators cannot

usually lead the search process to the goals. In this case,

preferred operators lose their power in leading search

toward the goal, and the planner must search a big part of

the state space for reaching the goals. For example, the

Fast Forward Planner uses Relaxed Planning Graph

(Hoffmann and Nebel 2001) to compute the heuristic

function and also employs this structure to select the

helpful actions. The Relaxed Planning Graph is built by

ignoring the negative effects of actions. If this relaxation

changes the nature of the task, both heuristic function and

helpful actions can’t guide the search efficiently.

In addition to preferred operators, USE applies another

mechanism to prune the search space. This mechanism,

called “Useful Operator Selection”, is totally independent

of heuristic functions and is based on the nature of the

planning tasks. In cases that heuristic functions and

preferred operators can’t guide the search efficiently,

applying the “Useful Operator Selection” prunes the search

space and USE can find a valid plan faster.

On the other hand, the “Useful Operator Selection”

mechanism isn’t complete; it means that, this method may

prune parts of the state space that include the goal. Since

this pruning mechanism is stochastic, when the search does

not progress, USE will reset the search process. In the

cases that the search process sticks in the plateau or the

goal states are pruned, there will be no progress in the

search. In these cases, the resetting of the process can be

useful: it may rescue the search from the plateau or the

next search iteration may not prune the goal.

Useful Operators

Because of the large scale of the search spaces in planning

problems, many planners use some methods like heuristic

search and employing preferred operators for efficient

search in these problems. In addition to the mentioned

methods, we have applied another mechanism in USE to

make the search space smaller. In this mechanism, which is

similar to using preferred operators, some of the applicable

operators for the current state are selected and other

operators are ignored. We call the selected operators

Useful Operators.

Suppose that two operators are applicable to current

state and the order of applying them is not important. In

other words, the order of applying them does not effect on

the result and the same state will be generated after

61

applying both of them. These two operators must not

interfere with each other, and none of them must produce

precondition for the other. These operators are called

independent operators. When exploring the search space,

only one of these operators is needed to be applied to the

current state. The other operator can be ignored because it

can be applied to the next state. In these cases the

randomly selected operator is called Useful Operator.

Two operators are independent if in each valid plan they

can apply in parallel and the order of executing them does

not have any effect on other operators. This concept is the

opposite of the Mutual Exclusive Relation in Planning

Graphs (Avrim and Blum 1997). Two actions at a given

action level in the Planning Graph are mutually exclusive

if no valid plan could possibly include both. It means that,

if two operators are exclusive, they will not be

independent. If two operators are Independent and they are

applicable to the current state, instead of generating two

new states by applying both of them, USE selects one of

them randomly and applies that operator to the current

state. USE utilizes the concept of mutual exclusive relation

to distinguish independent operators. In other words, if two

operators do not be exclusive, they will be independent.

Distinguishing independent operators are costly, so the

same method in (Avrim and Blum 1997) is used. Two

operators are Exclusive if they have one of the following

conditions:

Interference: If either of the actions deletes a

precondition or Add-Effect of the other.

Competing Needs: If there is a precondition of action

“A” and a precondition of action “B” that are marked as

mutually exclusive of each other in the previous

proposition level.

It should be clear that the competing needs between two

operators that is applicable to current state, never happens.

As long as this rule does not distinguish all exclusive

operators, two operators may be considered independent,

while the order of applying them is important. In this case,

some regions of the search space are lost while some goal

states may be in those regions. So, this pruning method is

not complete and USE uses this method in an iterative

method.

When more than two operators could be applied to

current state, the following algorithm is used to find the

Useful Operators:

UsefulOps ← φ

for each op in ApplicabaleOps then

 if for all op1 ∈ UsefulOps, op and op1 are

 exclusive then

 UsefulOps ← UsefulOps ∪ {op}

Iterative Search Process

As mentioned in the past section, the “Useful Operator

Selection” strategy is not complete. Therefore, it is used in

an iterative search approach. In this approach when the

search does not progress, it will be reset by clearing open

lists and close lists. A simple mechanism for resetting the

search process is applied in USE. Assume that, planner

reaches the state with the best heuristic so far, when the

close list size is equal to “n”. One method for determining

the moment of resetting is comparing “n” with the close

list size. It means that, when the close list size equals to

“Kn” (K is configurable parameter) and the planner does

not reach a state with better heuristic value, the search

process will be reset. In some domains, such as

“Nomystry”, a lot of states are dead-ends which causes the

search process to be reset rapidly. In these domains, the

search process does not have enough time for searching

neighbor state space. To overcome this problem, USE only

considers the states that are not dead-ends. So resetting the

search process occurs after extracting “Kn” states from

open list that are not dead-end.

In one domain in “IPC 2011”, the proportion of pruned

operator in all applicable operators is negligible. In such

domains, after resetting the search, the next iteration goes

thorough the previous iterations footsteps. So USE

evaluates this ratio and resets the search when it is bigger

than ϵ, where ϵ is a small number and is configurable.

Backward Search

Another approach that is implemented in USE is the

backward search. In this approach, each node of the search

space is a partial state. In the partial states some state

variables don’t have a value. The goal is a partial state and

it is considered as initial node in the backward search. In

the backward search, actions are applied reversely to

partial states. An action will be reversely applicable to a

partial state if each variable in that partial state has one of

the following conditions:

- The variable does not appear in the preconditions or
effects of the operator.

- The variable has the same value in the partial state and
the operator’s effects.

- The variable has the same value in partial state and
operator’s precondition, and the value of that variable is
not changed by the operator’s effects.

 The result of reversely applying an operator to a partial

state is a new partial state as:

- The variables of parent partial state that don’t appear in
operator’s preconditions have the same value in child
partial state.

62

- All state variables that appear in operator’s precondition
are added to the child partial state with their
corresponding values in operator’s precondition.

 Producing unreachable partial states is one of the main

drawbacks of backward search. The state variable

representation decreases the number of unreachable state

generation in backward search compared to the classical

representation. In addition, during its translation phase,

LAMA2011 generate a file that contains groups of

mutually inconsistent predicates. By using these groups,

USE avoid from generating partial states that contain

inconsistent predicates. By this method branching factor

decreases drastically and therefore, the search space will be

considerably pruned. The implemented backward search

only contains the additive heuristic functions, and not

preferred operators.

For most of the domains in “IPC 2011”, this approach

cannot work efficiently, whereas in some other domains

backward search has an enormous effect on increasing the

performance of the search. To test this approach in “IPC

2014”, USE is using the backward search in a portfolio

structure with the forward search method, where only a

small time slice is allocated to the backward search

method.

References

Avrim L. Blum and Merrick L. Furst. Fast planning through
planning graph analysis. Articial Intelligence 90:279–298, 1997.

Jorg Hoffmann and Bernhard Nebel. The FF planning system:
Fast plan generation through heuristic search. JAIR, 14:253–302,
2001.

Silvia Richter and MatthiasWestphal. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks. JAIR,
39:127–177, 2010.

63

YAHSP3 and YAHSP3-MT in the 8th International Planning Competition

Vincent Vidal
Onera - The French Aerospace Lab

Toulouse, France
Vincent.Vidal@onera.fr

Description
YAHSP3 (Vidal 2004) is a forward state-space heuristic
search planner that embeds a lookahead policy based on an
analysis of relaxed plans. The core of the solver has nearly
not evolved since IPC-2011 where YAHSP2 competed, and
is described in full details in (Vidal 2011). It can be noted
that a minor bug with major effects has been fixed, which
prevented YAHSP2 to find valid plans in domains with O-
cost actions (YAHSP2 got a score of 0 in all such domains at
IPC-2011). The multi-threaded version YAHSP3-MT is also
nearly identical to YAHSP2-MT, and is described in (Vidal,
Bordeaux, and Hamadi 2010).

YAHSP{2,3} have been used in different projects:

• Parallel planning on distributed memory machines.
YAHSP has been parallelized following the ideas of
HDA* (Kishimoto, Fukunaga, and Botea 2009) with the
MPI library and evaluated on two kinds of machines with
a distributed memory architecture: a small-sized cluster
consisting of 4 servers with 12 cores each, and an experi-
mental many-core processor developed by Intel Labs, the
Single-chip Cloud Computer (SCC), containing 48 cores
on a mesh. Super-linear speedups are often observed, par-
ticularly on the SCC thanks to the efficiency of its internal
network (Vidal, Vernhes, and Infantes 2011).

• The Landmark-based Meta Best-First Search algo-
rithm (LMBFS). The objective was to perform a meta-
search in the space of landmark orderings, in order to find
a sequence of landmarks that could help an underlying
planner to find a solution (Vernhes, Infantes, and Vidal
2012; 2013b). A parallelization of the meta-search algo-
rithm inspired by (Vidal, Vernhes, and Infantes 2011) has
been proposed in (Vernhes, Infantes, and Vidal 2013a),
but has not produced interesting results yet.

• Multi-objective AI planning. The DaE planner (Schoe-
nauer, Savéant, and Vidal 2006; 2008; Bibaı̈ et al. 2010)
that embeds YAHSP has been extended with multi-
objective evolutionary algorithms (NSGA-II, SPEA2,
IBEAH) in order to generate Pareto fronts, and studied
following different perspectives (Khouadjia et al. 2013b;
2013d; 2013a; 2013c). Experimental results have been
produced on modified benchmarks from the IPC for sup-
porting several objectives.

References
Bibaı̈, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010.
An evolutionary metaheuristic based on state decomposi-
tion for domain-independent satisficing planning. In Pro-
ceedings of the 20th International Conference on Automated
Planning and Scheduling (ICAPS-2010), 18–25. Toronto,
ON, Canada: AAAI Press.
Khouadjia, M.-R.; Schoenauer, M.; Vidal, V.; Dréo, J.; and
Savéant, P. 2013a. Multi-objective AI planning: Comparing
aggregation and pareto approaches. In Proceedings of the
13th European Conference on Evolutionary Computation in
Combinatorial Optimization (EvoCOP-2013), volume 7832
of LNCS, 202–213. Vienna, Austria: Springer.
Khouadjia, M.-R.; Schoenauer, M.; Vidal, V.; Dréo, J.; and
Savéant, P. 2013b. Multi-objective AI planning: Eval-
uating DAEyahsp on a tunable benchmark. In Proceed-
ings of the 7th International Conference on Evolutionary
Multi-Criterion Optimization (EMO-2013), volume 7811 of
LNCS, 36–50. Sheffield, UK: Springer.
Khouadjia, M.-R.; Schoenauer, M.; Vidal, V.; Dréo, J.; and
Savéant, P. 2013c. Pareto-based multiobjective ai plan-
ning. In Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence (IJCAI-2013). Beijing, China:
AAAI Press.
Khouadjia, M.-R.; Schoenauer, M.; Vidal, V.; Dréo, J.; and
Savéant, P. 2013d. Quality measures of parameter tuning
for aggregated multi-objective temporal planning. In Pro-
ceedings of the 7th Learning and Intelligent Optimization
Conference (LION-2013), LNCS. Catania, Italy: Springer.
Kishimoto, A.; Fukunaga, A. S.; and Botea, A. 2009. Scal-
able, parallel best-first search for optimal sequential plan-
ning. In Proceedings of the 5th International Planning Com-
petition (IPC-2011), 10–17.
Schoenauer, M.; Savéant, P.; and Vidal, V. 2006. Divide-
and-Evolve: a new memetic scheme for domain-independent
temporal planning. In Proceedings of the 6th European
Conference on Evolutionary Computation in Combinatorial
Optimization (EvoCOP-2006), volume 3906 of LNCS, 247–
260. Budapest, Hungary: Springer.
Schoenauer, M.; Savéant, P.; and Vidal, V. 2008. Divide-
and-Evolve: a sequential hybridization strategy using evolu-
tionary algorithms. In Michalewicz, Z., and Siarry, P., eds.,

64

Advances in Metaheuristics for Hard Optimization, Natural
Computing Series. Springer. chapter 9, 179–198.
Vernhes, S.; Infantes, G.; and Vidal, V. 2012. The landmark-
based meta best-first search algorithm for classical planning.
In Proceedings of the 5th European Starting AI Researcher
Symposium (STAIRS-2012), volume 241 of Frontiers in Ar-
tificial Intelligence and Applications, 336–347. Montpellier,
France: IOS Press.
Vernhes, S.; Infantes, G.; and Vidal, V. 2013a. Landmark-
based meta best-first search algorithm: First paralleliza-
tion attempt and evaluation. In Proceedings of the 10th
ICAPS Workshop on Heuristics and Search for Domain-
independent Planning (HSDIP-2013).
Vernhes, S.; Infantes, G.; and Vidal, V. 2013b. Problem
splitting using heuristic search in landmark orderings. In
Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI-2013). Beijing, China: AAAI
Press.
Vidal, V.; Bordeaux, L.; and Hamadi, Y. 2010. Adaptive K-
parallel best-first search: A simple but efficient algorithm for
multi-core domain-independent planning. In Proceedings of
the 3rd Symposium on Combinatorial Search (SOCS-2010),
100–107. Stone Mountain, GA, USA: AAAI Press.
Vidal, V.; Vernhes, S.; and Infantes, G. 2011. Parallel AI
planning on the SCC. In Proceedings of the 4th Sympo-
sium of the Many-core Applications Research Community
(MARC-2011), 15–20. Potsdam, Germany: Hasso-Plattner-
Institute Press.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Proceedings of the 14th International Confer-
ence on Automated Planning and Scheduling (ICAPS-2004),
150–159. Whistler, BC, Canada: AAAI Press.
Vidal, V. 2011. YAHSP2: Keep it simple, stupid. In
Proceedings of the 7th International Planning Competition
(IPC-2011), 83–90.

65

Madagascar: Scalable Planning with SAT

Jussi Rintanen∗
Department of Information and Computer Science

Aalto University
Helsinki, Finland

Abstract

The scalability of SAT to very large problems has been
achieved in the last ten years, due to substantially improved
encodings, SAT solvers, and algorithms for scheduling the
runs of SAT solvers. This has lead to SAT-based planners
that are dramatically different from the earliest implementa-
tions based on the late 1990ies technology. We discuss a SAT-
based planning system that implements modernized versions
of all components of earliest SAT-based planners.

Introduction
During the last decade, SAT, the prototypical NP-complete
problem of testing the satisfiability of the formulas in the
classical propositional logic (Cook 1971), has emerged, due
to dramatically improved SAT solvers (Marques-Silva and
Sakallah 1996; Moskewicz et al. 2001) as a practical lan-
guage for representing hard combinatorial search problems
and solving them, in areas as diverse as Model-Checking
(Biere et al. 1999), FPGA routing (Wood and Rutenbar
1998), test pattern generation (Larrabee 1992), and diagno-
sis (Smith et al. 2005; Grastien et al. 2007).

Planning as Satisfiability, which enjoyed a lot of atten-
tion in the late 1990s after the works by Kautz and Selman
(1996), has re-emerged as a strong approach to planning due
to substantially improved problem encodings, SAT solvers,
and search strategies. The main application is the classical
planning problem (Rintanen 2012b), but the same ideas can
be adapted to more complex forms of planning, or classi-
cal planning can be used as a subprocedure in algorithms
for more general problems. These investigations have only
started, with first breakthroughs obtained in temporal plan-
ning (Rankooh and Ghassem-Sani 2013).

These developments are not surprising, considering that
the classical planning problem is equivalent to the simplest
model-checking and reachability problems in Computer-
Aided Verification, and that SAT and its extensions such as
SAT modulo Theories (SMT) have had great successes in
that area in the past ten years, including wide industry adop-
tion.

∗Also affiliated with Griffith University, Brisbane, Australia,
and Helsinki Institute of Information Technology, Finland. This
work was funded by the Academy of Finland (Finnish Centre of
Excellence in Computational Inference Research COIN, 251170).

In this paper, we will first give a brief description of the
Planning and Satisfiability approach, discuss the issues crit-
ical to its time and space complexity in practice, and explain
the factors that separate the state of the art now and ten years
ago. Specifically, we discuss two critical issues of SAT-
based planning: potentially high memory requirements, and
the necessity and utility of guaranteeing that plans have the
shortest possible horizon length (parallel optimality).

The planning system Madagascar (also called M, Mp or
MpC depending on its configuration) implements several
of the innovations in planning with SAT, including com-
pact and efficient encodings based on ∃-step plans (Rinta-
nen, Heljanko, and Niemelä 2006), parallelized/interleaved
search strategies (Rintanen 2004; Rintanen, Heljanko, and
Niemelä 2006), powerful invariant algorithms (Rintanen
2008b), SAT heuristics specialized for planning (Rintanen
2010b; 2010a), and data structures supporting parallelized
SAT solving with very large problem instances (Rintanen
2012a).

Background
A classical planning problem is defined by a set F of facts
(or state variables) the valuations of which correspond to
states, one initial state, a set A of actions (that represent the
different possibilities of changing the current state), and a
goal which expresses the possible goal states in terms of the
facts F . A solution to the planning problem is a sequence of
actions that transform the initial state step by step to one of
the goal states.

The classical planning problem can be translated into a
SAT problem of the following form.

Φt = I ∧ T (0, 1) ∧ T (1, 2) ∧ · · · ∧ T (t− 1, t) ∧G
Here I represents the unique initial state, expressed in terms
of propositional variables f@0 where f ∈ F is a fact, and
G represents the goal states, expressed in terms of proposi-
tional variables f@t, f ∈ F . The formulas T (i, i + 1) rep-
resent the possibilities of taking actions between time points
i and i+ 1. These formulas are expressed in terms of propo-
sitional variables f@i and f@(i+ 1) for f ∈ F and a@i for
actions a ∈ A.

The formula Φt is satisfiable if and only if a plan with
t time points exists. Planning therefore can be reduced to

66

a sequence of satisfiability tests. The effectiveness of the
planner based on this idea is determined by the following.

1. The form of the formulas T (i, i+ 1).

2. The way the values of t are chosen.

3. The way the SAT instances Φt are solved.

In the rest of the paper we will discuss each of these com-
ponents of an efficient and scalable planning system that
uses SAT.

Encodings of T (i, i+ 1)
The encoding of transitions from i to i + 1 as the formu-
las T (i, i + 1) determines how effectively the satisfiabil-
ity tests of the formulae Φt can be performed. The lead-
ing encodings are the factored encoding of Robinson et al.
(2009), and the ∃-step encoding of Rintanen et al. (2006).
Both of them use the notion of parallel plans, which allow
several actions at each time point and hence time horizons
much shorter than the number of actions in a plan. The
encoding by Robinson et al. is often more compact than
that by Rintanen et al., but the latter allows more actions
in parallel. Both of these encodings are often more than an
order of magnitude smaller than earlier encodings such as
those of Kautz and Selman (1996; 1999), and also substan-
tially more efficient (Rintanen, Heljanko, and Niemelä 2006;
Sideris and Dimopoulos 2010). This is due to the very large
quadratic representation of action exclusion in early encod-
ings. Rintanen et al. (2006) and Sideris and Dimopoulos
(2010) show that eliminating logically redundant mutexes
or improving the quadratic representation to linear dramati-
cally reduces the size of the formulas.

The ∃-step plans allow more actions in parallel than
the earlier most popular GraphPlan-style (Blum and Furst
1997) ∀-step plans (Dimopoulos, Nebel, and Koehler 1997;
Rintanen, Heljanko, and Niemelä 2006). Further, the weaker
conditions on parallelism for ∃-step plans often allow leav-
ing out all constraints on the parallelity of actions, which
further leads to smaller formulas than with ∀-step plans
(Rintanen, Heljanko, and Niemelä 2006). Both factors,
shorter horizon lengths and smaller encodings for action par-
allelism, substantially help improving the scalability of SAT-
based planning.

In addition to constraints that are necessary for the cor-
rectness of planning, there are redundant constraints that
logically follow from the necessary constraints, but that are
still useful because they make such implicit facts explicit
that would otherwise not be effectively inferred by the SAT
solver (Rintanen 2008a).

Our planners use invariants (binary mutexes) to speed up
SAT solving. Mutexes were first introduced in the Graph-
Plan planner (Blum and Furst 1997) for pruning a backward-
chaining search, and they were soon noticed to be important
also for SAT-based planning (Kautz and Selman 1996). The
main reason for the utility of mutexes in planning is the rep-
resentation of multi-valued state variables as sets of Boolean
variables. That multi-valued state variables cannot be repre-
sented directly is a limitation of the PDDL language used by
many planners.

We use a powerful algorithm for finding 2-literal invari-
ants (Rintanen 2008b). The algorithm uses a fixpoint com-
putation similarly to GraphPlan’s planning graph construc-
tion, but works for a far more general input language that
includes arbitrary disjunctions and conditional effects.

Scheduling the Solution of the SAT Instances
Kautz and Selman (1996) proposed testing the satisfiabil-
ity of Φt for different values of t = 0, 1, 2, . . . sequentially,
until a satisfiable formula is found. This strategy is asymp-
totically optimal if the t parameter corresponds to the plan
quality measure to be minimized, as it would with sequential
plan encodings that allow at most one action at a time. How-
ever, for the parallel ∃-step and ∀-step plans optimality of
the t parameter is meaningless because the parallelism does
not correspond to the actual physical possibility of taking
actions is parallel. For STRIPS, Graphplan-style parallelism
exactly matches the possibility of totally ordering the ac-
tions to a sequential plan (Rintanen, Heljanko, and Niemelä
2006). Hence the parallelism can be viewed as a form of par-
tial order reduction (Godefroid 1991), the purpose of which
is to avoid considering all n! different ordering of n indepen-
dent actions, as a way of reducing the state-space explosion
problem. In this context the t parameter often only provides
a weak lower bound on the sequential plan length. So if the
minimality of t does not have a practical meaning, why min-
imize it? The proof that t is minimal was the most expensive
part of the runs of early SAT-based planners.

More complex algorithms for scheduling the SAT tests for
different t have been proposed and shown both theoretically
and in practice to lead to dramatically more efficient plan-
ning, often by several orders of magnitude (Rintanen 2004;
Zarpas 2004; Streeter and Smith 2007). These algorithms
avoid the expensive proofs of minimality of the parallel plan
length, and in practice still lead to plans of comparable qual-
ity to those with the minimal parallel length. The most effec-
tive implementations of these algorithms solve several SAT
problems (for different horizon lengths) in parallel.

Algorithm B (Rintanen 2004) runs an unlimited number
of SAT solvers at varying rates, solving an sequence of SAT
problems for formula Φ0,Φ1,Φ2, Each SAT solver gets
a fraction of the CPU that is proportional to γi, for some
constant γ that satisfies 0 < γ ≤ 1 (we have very success-
fully used γ = 0.9). Hence each SAT test for Φi gets γ times
the CPU the test for Φi−1 gets. Most of the CPU is dedicated
to short horizon lengths, but also longer horizon lengths get
some CPU. In real-world implementations of the algorithm
SAT solvers are started only for Φi for which an amount of
CPU time is allocated that exceeds some positive threshold
value. Our planners in their default configuration also limit
the maximum number of SAT instances solved concurrently
to 20, with new solvers started when earlier instances are
found unsatisfiable.

Figure 1 depicts the gap between the longest horizon
length with a completed unsatisfiability test and the hori-
zon length for the found plan for the Mp planner and for
all the instances considered by Rintanen (2010b). The dots
concentrate in the area below 50 steps, but outside this area
there are typically an area of 30 to 50 horizon lengths for

67

 0

 50

 100

 150

 200

 0 50 100 150 200

u
p
p
e
r

b
o
u
n
d
 M

p

lower bound Mp

Figure 1: Lower and upper bounds of plan lengths

which the SAT test was not completed, in the vast majority
of cases because their difficulty well exceeded the capabil-
ities of current SAT solvers. This explains why the use of
the parallel strategies which avoid the expensive (but unnec-
essary) parallel optimality proofs are essential for efficient
planning.

SAT Solving
Our planners are based on our own highly optimized SAT
solver that implements the Conflict-Driven Clause Learning
algorithm (Marques-Silva and Sakallah 1996; Moskewicz et
al. 2001), together with many improvements more or less
universally employed in best general-purpose SAT solvers,
including phase-saving (Pipatsrisawat and Darwiche 2007),
Luby-restarts (Huang 2007), and clause deletion based on
literal blocking distance (Audemard and Simon 2009).

In addition to the standard VSIDS heuristic (Moskewicz
et al. 2001), our SAT solver implements a planning-specific
heuristic which in many cases fares much better than VSIDS
on the standard benchmark sets (Rintanen 2012b). The
heuristic simulates backward-chaining to identify relevant
action variables to be used as decision variables, and lever-
ages the current partial assignment maintained by the CDCL
algorithm to focus on the most critical relevant actions.
However, standard SAT solvers with VSIDS-style heuristics
continue to be the strongest method for solving many combi-
natorially hard planning problems with relatively short hori-
zon lengths (Porco, Machado, and Bonet 2011; Rintanen
2012b).

In addition to a planning-specific decision variable heuris-
tic, our SAT solver employs a specialized representation
for binary clauses (Rintanen 2012a) targeting planning
and related state-space search applications such as model-
checking. In all standard encodings of planning as SAT, the
transition relation formula is replicated multiple times, with

planner heuristic scheduling strategy
M VSIDS B (geometric rates, linear horizons)
Mp bwd B (geometric rates, linear horizons)
MpC bwd C (constant rates, exponential horizons)

Table 1: Planner configurations

different time indices. Our SAT solver includes only one
copy of all the binary clauses in the transition relation for-
mula, and handles the varying time indices inside the unit
propagation algorithm, with very low overhead. The rep-
resentation often reduces the memory consumption of the
planner to half or one third, and due to reduced cache misses
also SAT solving runtimes are often reduced substantially
(Rintanen 2012a).

Versions of the Planner
There is no universal best configuration for our planner (sim-
ilarly to any other planning method, or combinatorial search
method in general), and we have introduced three major con-
figurations which differ in terms of the heuristic and the SAT
solver scheduling strategy. These configurations are listed in
Table 1.

Planner M uses the standard VSIDS heuristic, limits
search to plan lengths 5i for integers i ≥ 1, and runs the SAT
solvers at varying rates according to the geometric strategy
B (Rintanen 2004; Rintanen, Heljanko, and Niemelä 2006).
In addition to better encodings, the main difference to early
planners that used SAT is the geometric B strategy, which
can – in the worst case – be slower than the sequential strat-
egy used by Kautz and Selman only by a small constant fac-
tor, but may be – and often in practice is – arbitrarily much
faster.

Planner Mp is like M except that it replaces VSIDS with
the heuristic based on backward-chaining which fares ex-
ceptionally well with standard planning benchmarks (Rinta-
nen 2010b; 2012b), but often fares worse with smaller but
combinatorially harder instances.

Planner MpC is like Mp but it replaces the horizon lengths
5i by horizon lengths 5(

√
2)i, with all SAT solvers run at

the same rate. Mp solves few problem instances with plans
much longer than 200 steps due to the difficulty of proving
inexistence of long plans and limits on the number horizon
lengths considered simultaneously. MpC considers longer
horizon lengths successfully, up to some thousands of steps,
but beyond that it is severely limited by the availability of
memory. It sometimes performs worse than Mp when the
horizon lengths are short.

Conclusions
We have discussed a series of developments that have im-
proved the efficiency and scalability of SAT-based planners
dramatically since the early planners from the 1990ies and
early 2000s, and that are all implemented in the Madagascar
planner.

The single most important improvement – in terms of per-
formance and scalability – was the adoption of parallelized

68

strategies that do not require the (unnecessary) proof of par-
allel optimality (Rintanen 2004; 2009). This improvement,
together with compact encodings of parallel ∃-step plans
(Rintanen, Heljanko, and Niemelä 2004), as implemented
in the planner M, lifts the efficiency and scalability of SAT-
based planning close to the level of the best modern planners
that use other search paradigms, and clearly past planners
prior to about 2004.

Further improvements for standard benchmark problems
have been obtained by replacing general-purpose SAT-solver
heuristics, such as VSIDS, by planning-specific ones which
help focusing on actions that are relevant and which adapt
to the current state of the SAT solving process (Rintanen
2012b), and with various smaller improvements. Finally, of
course, a substantial difference to planning as SAT has been
the steady and at times dramatic improvement of general-
purpose SAT solving technology.

Existing techniques not used by our planners include the
use of factored problem encodings for parallel plans (Robin-
son et al. 2009). With many problems these encodings
have outperformed best non-factored encodings, but, as far
as we know, the impact of factored encodings for example
with parallelized SAT solving strategies (which are critical
for high-performance planning) has not been investigated.
Overall, the differences of encodings (which were the almost
exclusive focus in research on planning with SAT for very
long) have a smaller impact on the performance of a SAT-
based planner than for example the SAT-solver scheduling
strategies. Another method that is not currently used by our
planners is approximate plan length upper bounds (Rintanen
and Gretton 2013), which would help focusing the search on
the horizon lengths most likely to yield plans quickly. The
existing method sometimes yields practically significant up-
per bounds, based on SCCs of dependency graphs, but in
many cases decomposition to SCCs is too coarse to be use-
ful. The method is promising, but tighter bounds would be
needed to have a substantial impact on planner performance
and memory usage.

In summary, the current state of the art in Planning as
SAT is characterized by developments in at least half a dozen
different planner components. In many cases the improve-
ments in the components have been orthogonal (for example,
encodings, SAT solving algorithms, and scheduling of SAT
solvers). Understanding dependencies between the different
components, most notably between the encodings and algo-
rithms for the SAT problem, would allow further progress
in SAT-based methods for planning and state-space search
problems in general.

References
Audemard, G., and Simon, L. 2009. Predicting learnt
clauses quality in modern SAT solvers. In Proceedings of
the 21st International Joint Conference on Artificial Intelli-
gence, 399–404. Morgan Kaufmann Publishers.
Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999.
Symbolic model checking without BDDs. In Cleaveland,
W. R., ed., Tools and Algorithms for the Construction and
Analysis of Systems, Proceedings of 5th International Con-

ference, TACAS’99, volume 1579 of Lecture Notes in Com-
puter Science, 193–207. Springer-Verlag.
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1-2):281–
300.
Cook, S. A. 1971. The complexity of theorem-proving pro-
cedures. In Proceedings of the Third Annual ACM Sympo-
sium on Theory of Computing, 151–158.
Dimopoulos, Y.; Nebel, B.; and Koehler, J. 1997. Encod-
ing planning problems in nonmonotonic logic programs. In
Steel, S., and Alami, R., eds., Recent Advances in AI Plan-
ning. Fourth European Conference on Planning (ECP’97),
number 1348 in Lecture Notes in Computer Science, 169–
181. Springer-Verlag.
Godefroid, P. 1991. Using partial orders to improve auto-
matic verification methods. In Guldstrand Larsen, K., and
Skou, A., eds., Proceedings of the 2nd International Con-
ference on Computer-Aided Verification (CAV ’90), Rutgers,
New Jersey, 1990, number 531 in Lecture Notes in Computer
Science, 176–185. Springer-Verlag.
Grastien, A.; Anbulagan; Rintanen, J.; and Kelareva, E.
2007. Diagnosis of discrete-event systems using satisfiabil-
ity algorithms. In Proceedings of the 22nd AAAI Conference
on Artificial Intelligence (AAAI-07), 305–310. AAAI Press.
Huang, J. 2007. The effect of restarts on the efficiency
of clause learning. In Veloso, M., ed., Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence, 2318–2323. AAAI Press.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
planning, propositional logic, and stochastic search. In Pro-
ceedings of the 13th National Conference on Artificial In-
telligence and the 8th Innovative Applications of Artificial
Intelligence Conference, 1194–1201. AAAI Press.
Kautz, H., and Selman, B. 1999. Unifying SAT-based
and graph-based planning. In Dean, T., ed., Proceedings
of the 16th International Joint Conference on Artificial In-
telligence, 318–325. Morgan Kaufmann Publishers.
Larrabee, T. 1992. Test pattern generation using Boolean
satisfiability. Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 11(1):4–15.
Marques-Silva, J. P., and Sakallah, K. A. 1996. GRASP: A
new search algorithm for satisfiability. In Computer-Aided
Design, 1996. ICCAD-96. Digest of Technical Papers., 1996
IEEE/ACM International Conference on, 220–227.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: engineering an efficient SAT solver.
In Proceedings of the 38th ACM/IEEE Design Automation
Conference (DAC’01), 530–535. ACM Press.
Pipatsrisawat, K., and Darwiche, A. 2007. A lightweight
component caching scheme for satisfiability solvers. In
Marques-Silva, J., and Sakallah, K. A., eds., Proceedings
of the 8th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT-2007), volume 4501 of
Lecture Notes in Computer Science, 294–299. Springer-
Verlag.

69

Porco, A.; Machado, A.; and Bonet, B. 2011. Auto-
matic polytime reductions of NP problems into a fragment
of STRIPS. In ICAPS 2011. Proceedings of the Twenty-
First International Conference on Automated Planning and
Scheduling, 178–185. AAAI Press.

Rankooh, M. F., and Ghassem-Sani, G. 2013. New encoding
methods for SAT-based temporal planning. In ICAPS 2013.
Proceedings of the Twenty-Third International Conference
on Automated Planning and Scheduling, 73–81. AAAI
Press.

Rintanen, J., and Gretton, C. O. 2013. Computing upper
bounds on lengths of transition sequences. In IJCAI 2013,
Proceedings of the 23rd International Joint Conference on
Artificial Intelligence, 2365–2372. AAAI Press.

Rintanen, J.; Heljanko, K.; and Niemelä, I. 2004. Parallel
encodings of classical planning as satisfiability. In Alferes,
J. J., and Leite, J., eds., Logics in Artificial Intelligence:
9th European Conference, JELIA 2004, Lisbon, Portugal,
September 27-30, 2004. Proceedings, number 3229 in Lec-
ture Notes in Computer Science, 307–319. Springer-Verlag.

Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.

Rintanen, J. 2004. Evaluation strategies for planning as
satisfiability. In López de Mántaras, R., and Saitta, L., eds.,
ECAI 2004. Proceedings of the 16th European Conference
on Artificial Intelligence, 682–687. IOS Press.

Rintanen, J. 2008a. Planning graphs and propositional
clause-learning. In Brewka, G., and Doherty, P., eds., Princi-
ples of Knowledge Representation and Reasoning: Proceed-
ings of the Eleventh International Conference (KR 2008),
535–543. AAAI Press.

Rintanen, J. 2008b. Regression for classical and nondeter-
ministic planning. In Ghallab, M.; Spyropoulos, C. D.; and
Fakotakis, N., eds., ECAI 2008. Proceedings of the 18th Eu-
ropean Conference on Artificial Intelligence, 568–571. IOS
Press.

Rintanen, J. 2009. Planning and SAT. In Biere, A.; Heule,
M. J. H.; van Maaren, H.; and Walsh, T., eds., Handbook
of Satisfiability, number 185 in Frontiers in Artificial Intelli-
gence and Applications. IOS Press. 483–504.

Rintanen, J. 2010a. Heuristic planning with SAT: beyond
uninformed depth-first search. In Li, J., ed., AI 2010 : Ad-
vances in Artificial Intelligence: 23rd Australasian Joint
Conference on Artificial Intelligence, Adelaide, South Aus-
tralia, December 7-10, 2010, Proceedings, number 6464 in
Lecture Notes in Computer Science, 415–424. Springer-
Verlag.

Rintanen, J. 2010b. Heuristics for planning with SAT. In
Cohen, D., ed., Principles and Practice of Constraint Pro-
gramming - CP 2010, 16th International Conference, CP
2010, St. Andrews, Scotland, September 2010, Proceedings.,
number 6308 in Lecture Notes in Computer Science, 414–
428. Springer-Verlag.

Rintanen, J. 2012a. Engineering efficient planners with

SAT. In ECAI 2012. Proceedings of the 20th European Con-
ference on Artificial Intelligence, 684–689. IOS Press.
Rintanen, J. 2012b. Planning as satisfiability: heuristics.
Artificial Intelligence 193:45–86.
Robinson, N.; Gretton, C.; Pham, D.-N.; and Sattar, A.
2009. SAT-based parallel planning using a split represen-
tation of actions. In Gerevini, A.; Howe, A.; Cesta, A.; and
Refanidis, I., eds., ICAPS 2009. Proceedings of the Nine-
teenth International Conference on Automated Planning and
Scheduling, 281–288. AAAI Press.
Sideris, A., and Dimopoulos, Y. 2010. Constraint prop-
agation in propositional planning. In ICAPS 2010. Pro-
ceedings of the Twentieth International Conference on Au-
tomated Planning and Scheduling, 153–160. AAAI Press.
Smith, A.; Veneris, A.; Fahim Ali, M.; and Viglas, A. 2005.
Fault diagnosis and logic debugging using Boolean satisfi-
ability. Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 24(10).
Streeter, M., and Smith, S. F. 2007. Using decision proce-
dures efficiently for optimization. In ICAPS 2007. Proceed-
ings of the Seventeenth International Conference on Auto-
mated Planning and Scheduling, 312–319. AAAI Press.
Wood, R. G., and Rutenbar, R. A. 1998. FPGA routing and
routability estimation via Boolean satisfiability. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 6(2).
Zarpas, E. 2004. Simple yet efficient improvements of SAT
based bounded model checking. In Hu, A. J., and Martin,
A. K., eds., Formal Methods in Computer-Aided Design:
5th International Conference, FMCAD 2004, Austin, Texas,
USA, November 15-17, 2004. Proceedings, number 3312 in
Lecture Notes in Computer Science, 174–185. Springer-
Verlag.

70

The AllPACA Planner: All Planners Automatic Choice Algorithm

Yuri Malitsky
Insight Center for Data Analytics

University College Cork

David Wang and Erez Karpas
Model-based Embedded and Robotic Systems Group

Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

Abstract

The AllPACA planner is a portfolio planner, which automat-
ically chooses which of several planners to run for the plan-
ning task that it is given. AllPACA is based on machine learn-
ing techniques, which attempt to choose the planner that will
result in the fastest solution time, based on the features ofthe
planning task. In the sequential optimal track, AllPACA was
pre-trained on all planning tasks the sequential optimal track
in all previous editions of the International Planning Com-
petition. For the learning track, AllPACA can also learn to
predict planner performance on tasks from each domain dur-
ing the training phase, and can additionally exploit domain-
specific features.

Introduction
The AllPACA1 planner is a portfolio planner, which auto-
matically chooses which of several planners to run for the
planning task that it is given. However, AllPACA differs
from most portfolio planners in previous editions of the In-
ternational Planning Competition. Inspired by the recent
successes of algorithm portfolios in SAT, MaxSAT, and CSP
Competitions, the new portfolio chooses only one planner to
evaluate on a new instance. This decision is made by a pre-
diction model trained based on newly introduced features for
the planning task. Ultimately, AllPACA attempts to choose
the planner that is expected to solve the given planning task
the fastest.

In this paper, we review the AllPACA planner. We begin
by discussing the planners that comprise our portfolio, pro-
ceeding to discuss the employed features and the machine
learning techniques used. We conclude by explaining how
AllPACA can be modified to also compete in the learning
track of the International Planning Competition.

The Planners
For the sequential optimal track of IPC 2014, we decided
to use all 12 planners which participated in the sequential
optimal track of IPC 2011 (Coles et al. 2012). As some of
these planners share the same codebase, we only had to ship
5 separate planner distributions with AllPACA. Table 1 lists
each of the planners that we used, and the paper describing

1AllPACA is closely related to, but not associated with, LAMA.

Planner Described in
bjolp Domshlak et al. (2011a)
lmcut Helmert and Domshlak (2011)
fd-autotune Fawcett et al. (2011)
fdss-1 Helmert et al. (2011)
fdss-2 Helmert et al. (2011)
merge-and-shrink Nissim, Hoffmann, and Domshlak (2011)
selmax Domshlak et al. (2011b)
forkinit Katz and Domshlak (2011)
iforkinit Katz and Domshlak (2011)
lmfork Katz and Domshlak (2011)
cpt4 Vidal (2011)
gamer Kissmann and Edelkamp (2011)

Table 1: The Planners in AllPACA’s Portfolio

it; all paper are available in the IPC 2011 booklet (Garcı́a-
Olaya, Jiménez, and Linares López 2011).

Training AllPACA
This section describes the necessary components for choos-
ing which planner to use for each task: the features em-
ployed, the set of planning tasks used for training, and the
learning algorithm applied.

Features

AllPACA currently relies on mostly syntactic features of the
planning task’s PDDL description, and of the finite domain
representation produced by the Fast Downward translator
(Helmert 2009). The PDDL features are divided into fea-
tures of the domain, and features of the problem. The fea-
tures of the finite domain representation are extracted from
the translator’s output on a specific task, and are therefore
only features of that task. The complete list of features ap-
pears in Figure 1.

Training Set

AllPACA attempts to predict which planner will be the
fastest on a given planning task. For training it requires a list
of tasks (with features), and the running time of all planners
on these tasks. We ran all 12 planners from IPC 2011 on all

71

PDDL
Domain
1 Number of object types
2 Number of predicates
3 Number of (lifted) operators
4-7 Ratio of add/delete effects: mean, stdev,

min and max
8-11 Arity of propositions: mean, stdev, min and

max
12-15 Number of operator preconditions:

mean, stdev, min and max
16-19 Number of operator add effects: mean,

stdev, min and max
20-23 Number of operator delete effects:

mean, stdev, min and max
24 Number of constants
25 Number of goal propositions
26-29 Arity of goal propositions: mean, stdev,

min and max
Problem
30 Number of objects
31 Number of objects and constants
32 Number of initial state facts

33 Number of possible grounded propositions
34-37 Number of grounded propositions per
predicate: mean, stdev, min and max

38 Number of total ground actions
39-42 Number of ground actions per operator
type: mean, stdev, min and max

FDR
43 Number of variables
44 Number of muteness discovered
45 Number of invariants discovered
46 Number of goals
47 Number of grounded actions
48 Number of axions
49 Number of grounded actions and axioms
50-53 Number of prevail conditions: mean, stdev,

min and max
54-57 Number of pre post conditions: mean,

stdev, min and max
58-61 Number of action effects: mean, stdev, min

and max
62-65 Variable domain sizes: mean, stdev, min and

max

Figure 1: Features employed to describe planning tasks.

planning tasks from the sequential optimal tracks of all pre-
vious IPCs, using the IPC 2011 software (López, Celorrio,
and Helmert 2013).

Learning Algorithm
A plethora of learning algorithms have been applied to the
task of algorithm selection. There are algorithms that learn
a regression model over the features to predict the runtime
of each solver (Silverthorn and Miikkulainen 2010), choos-
ing the one with the lowest expected time. Others learn
forests of trees to distinguish a winner between every pair
of solvers, relying on the one that is voted to win most pair-
ings (Xu et al. 2012). Still others cluster instances, assigning
a single solver to each group (Malitsky and Sellmann 2012).
For a detailed overview of developed techniques we refer the
reader to (Kotthoff, Gent, and Miguel 2012).

Surprisingly, despite all of the research into algorithm se-
lection, a recent paper (Hutter et al. 2013) has shown that
random forests are among the best predictors of a solver’s
runtime. Confirming this result internally on the planning
task data, AllPACA employs this prediction model for its
own decisions. For training, the method is provided with a
collection of training instances, feature vectors that describe
each instance, and the runtime of each solver on each in-
stance. Random forests, each with 300 trees and a max depth
of 3 for each tree, are trained to predict the runtime of each
solver. Ultimately, the solver with the best predicted perfor-
mance is evaluated on the new instance at hand.

The AllPACA Planner
In this section, we tie everything together and describe how
AllPACA works at a high level. Figure 2 illustrates the data
flow of the AllPACA planner.

In an offline phase (on the left side of Figure 2), we show
that AllPACA runs all given planners on a set of training
instances, and extracts the features from them. In this sub-
mission, we used all planning tasks from all previous IPCS.
AllPACA then builds a classifier based upon this informa-
tion, which predicts which planner will solve a given plan-
ning task the fastest.

When given a planning task to solve (top middle of Figure
2), AllPACA first extracts the features from that problem,
and uses its classifier to predict which planner will solve it
the fastest. It then runs that chosen planner, which hope-
fully terminates within the given time limit, and provides
a solution. However, as we are using third party planners,
some of which could provide incorrect solutions, we first
check whether the planner produced a valid solution. If it
did, we keep that solution. Otherwise, if the planner failed
(for example, due to lack of support of conditional effects)
or produced an invalid plan, we run a default planner. In
this submission, the planner is Fast Downward running the
LM-CUT heuristic (Helmert and Domshlak 2009), which
has been modified to support conditional effects by further
relaxing operators into unary effect operators.

Discussion
In AllPACA, we try to choose the planner which will solve a
given planning task the fastest. While this is suitable for the
optimal track, as we are only interested in optimal solutions,
this is not necessarily the best thing to do for the satisficing
track. In a setting where the objective is to find the best pos-
sible solution under a given time limit, it is not clear what
is the best way to choose a planner. However, we believe
that AllPACA decision rule could be used as is, in order to
choose thefirst planner to run, as solving a problem is al-

72

Training
Instances

Run
planners

Extract
features

Runtimes

Features

Build
classifier Classifier

Features

Extract
features

Planning
task

Planner
to run

Run
planner

Temp
solution

Verify
solution

Valid?

Default
planner

No

Solution

Yes

Offline

Figure 2: Data Flow Diagram of AllPACA Planner

ways better than not solving it. As a second stage, we would
need to choose how to improve the solution that was found,
which is the subject of future work.

References

Coles, A. J.; Coles, A.; Olaya, A. G.; Celorrio, S. J.; López,
C. L.; Sanner, S.; and Yoon, S. 2012. A survey of the seventh
international planning competition.AI Magazine33(1).

Domshlak, C.; Helmert, M.; Karpas, E.; Keyder, E.; Richter,
S.; Roger, G.; Seipp, J.; and Westphal, M. 2011a. BJOLP:
The big joint optimal landmarks planner.

Domshlak, C.; Helmert, M.; Karpas, E.; and Markovitch, S.
2011b. The SelMax planner: Online learning for speeding
up optimal planning.

Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Roger, G.;
and Seipp, J. 2011. Fd-autotune: Automated conguration of
fast downward.

Garcı́a-Olaya, A.; Jiménez, S.; and Linares López,
C. 2011. The 2011 international planning compe-
tition: Description of participating planners, deter-
ministic track. http://www.plg.inf.uc3m.es/ipc2011-
deterministic/attachments/ParticipatingPlanners/ipc2011-
booklet.pdf.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS 2009, 162–169.

Helmert, M., and Domshlak, C. 2011. Lm-cut: Optimal
planning with the landmark-cut heuristic.

Helmert, M.; Roger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast downward stone soup.

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks.AIJ 173:503–535.
Hutter, F.; lin Xu; Hoos, H. H.; and Leyton-Brown, K. 2013.
Algorithm runtime prediction: Methods and evaluation.
Katz, M., and Domshlak, C. 2011. Planning with implicit
abstraction heuristics.
Kissmann, P., and Edelkamp, S. 2011. Improving cost-
optimal domain-independent symbolic planning.
Kotthoff, L.; Gent, I.; and Miguel, I. P. 2012. An evalu-
ation of machine learning in algorithm selection for search
problems.AI Communications.
López, C. L.; Celorrio, S. J.; and Helmert, M. 2013. Au-
tomating the evaluation of planning systems.AI Communi-
cations26(4):331–354.
Malitsky, Y., and Sellmann, M. 2012. Instance-specific algo-
rithm configuration as a method for non-model-based port-
folio generation.CPAIOR244–259.
Nissim, R.; Hoffmann, J.; and Domshlak, C. 2011. The
merge-and-shrink planner: Bisimulation-based abstraction
for optimal planning.
Silverthorn, B., and Miikkulainen, R. 2010. Latent class
models for algorithm portfolio methods.AAAI.
Vidal, V. 2011. Cpt4: An optimal temporal planner lost in a
planning competition without optimal temporal track.
Xu, L.; Hutter, F.; Shen, J.; Hoos, H. H.; and Leyton-Brown,
K. 2012. Satzilla2012: Improved algorithm selection based
on cost-sensitive classification models. SAT Competition.

73

cGamer: Constrained Gamer
Álvaro Torralba and Vidal Alcázar
{alvaro.torralba, vidal.alcazar}@uc3m.es

Universidad Carlos III de Madrid, Madrid, Spain

Peter Kissmann
kissmann@cs.uni-saarland.de

Saarland University, Saarbrücken, Germany

Stefan Edelkamp
edelkamp@tzi.de

University of Bremen, Bremen, Germany

Abstract

Gamer is a symbolic planner that performs (in this case) bidi-
rectional symbolic search. It already participated in 2008 and
2011, so in this paper we will focus on the improvements
since then. The main improvements are: fixing some bugs and
implementing basic improvements; a disjunctive partitioning
of the transition relations; and the exploitation of state invari-
ants both during the preprocessing phase and during search.

Motivation
Symbolic search can obtain exponential savings in both time
and space compared to regular explicit-state search (McMil-
lan 1993). This is achieved by using binary decision dia-
grams (BDDs) (Bryant 1986) to represent both sets of states
and transition relations (TRs). Furthermore, the use of BDDs
allows a seamless implementation of detection of subsumed
states and collision of frontiers, which opens up the possibil-
ity of using regression and bidirectional search algorithms
efficiently (Alcázar, Fernández, and Borrajo 2014).

Gamer (Kissmann and Edelkamp 2011), the vanilla ver-
sion of cGamer, already participated in the International
Planning Competitions (IPC) of 2008 and 2011. While it
won the competition in 2008, in 2011 it solved 148 prob-
lems, which was kind of underwhelming given that the win-
ner solved 185 tasks. As described in Section 6.5.5 of Peter
Kissmann’s PhD Thesis (Kissmann 2012), after fixing some
bugs and implementing some basic improvements (such as
using a more efficient parser for grounded PDDL) Gamer
is able to solve 13 additional problems (own results). Also,
on a per domain analysis we can see that Gamer, although
still worse overall, outperforms the rest of the participants
in quite a few domains. All this means that symbolic search
cannot be ruled out and that Gamer, under the right circum-
stances, is still a strong contestant.

Driven by recent research, an important increase in per-
formance in Gamer has been obtained. Two orthogonal
works, one dealing with the handling of the TRs (Torralba,
Edelkamp, and Kissmann 2013) and another dealing with
the encoding of state invariants in symbolic search (Tor-
ralba and Alcázar 2013), reported significantly better cov-
erage than the one obtained by Gamer. cGamer, the plan-
ner described here, implements some techniques proposed
in these previous works.

Symbolic Search
Symbolic search was originally proposed in the area of
model checking (McMillan 1993). The basic idea is to per-
form set-based search as opposed to the traditional search
expanding one state at a time. Sets of states are represented
with efficient data structures, like Binary Decision Diagrams
(BDDs) (Bryant 1986). To perform the search, planning ac-
tions are represented with one or more Transition Relations
(TRs). The successor generation in symbolic search is per-
formed with the image and pre-image operations of a set of
states with respect a transition relation. Given a set of states
and a TR, the image operation computes the set of succes-
sor states that can be reached from any state in the set by
applying any operator represented by the TR. Similarly, the
pre-image operation computes the set of predecessor states
in regression.

Our predecessor planner, Gamer, is a symbolic search
planner that implements two algorithms: symbolic breadth-
first search and symbolic A∗ with symbolic pattern database
heuristics (Culberson and Schaeffer 1998; Edelkamp 2002).
From what we observed both in the results of IPC-11 and
our experimentation, using pattern databases (PDBs) is of-
ten worse than just using bidirectional blind search. This is
the case for most domains without non-unit action costs, and
even in unit-cost domains selecting patterns and precomput-
ing the PDBs is often not better than just searching in both
directions with no heuristics.

The main advantage of the bidirectional search is that it
can interleave the search in forward and backward direc-
tions. Gamer estimates which direction is easier to expand
by taking into account the time spent in the last steps. Thus,
the new version of Gamer features a symbolic bidirectional
Dijkstra search, that is able to cope with non-unit cost do-
mains (Edelkamp, Kissmann, and Torralba 2012).

Preprocessing
Apart from using Gamer’s parser, we employ Fast Down-
ward’s translator and preprocessor (Helmert 2006; 2009)
to generate the SAS+ encoding of the task.1 There are

1Using both Gamer and Fast Downward in the preprocessing
phase is redundant. We did so for convenience, as not all the nec-
essary techniques were implemented in both preprocessors.

74

three noteworthy considerations regarding the preprocessing
phase in cGamer:

• How the SAS+ variables are selected.
• How to compute h2 (Bonet and Geffner 2001) and prune

spurious operators.
• How conditional effects are dealt with.

SAS+ Variable Selection
Switching from Gamer’s SAS+ encoding to the Fast Down-
ward version (Helmert 2009), we observed a decrease of per-
formance in some benchmark domains. We changed the se-
lection of which invariant groups are used as SAS+ variables
in order to avoid that degradation in performance.

The Fast Downward planner chooses invariant groups
with the highest cardinality as SAS+ variables, until all the
fluents of the problem have been considered in a variable.
Aiming to further reduce the number of SAS+ variables se-
lected, we prefer to select invariant groups that contain flu-
ents that do not appear in other invariant groups. We base
our criterion on the observation that, since all the fluents of
the problem have to be included in a SAS+ variable, invari-
ant groups that have a fluent which does not appear in other
invariant groups will always be selected anyway.

As an example, think of the following case, based on a
simplified version of the IPC-2011 floortile domain: we have
two robots on a grid such that the robots cannot be at the
same cell at the same time. Two types of invariant groups
are detected:

1. Each robot is at exactly one single cell:
(at robot1 cell1),(at robot1 cell2),. . .

2. Each cell either is clear or has a robot at it:
(clear cell1),(at robot1 cell1),(at robot2 cell1)

Invariants of the first type have larger cardinality, so Fast
Downward would encode this problem with a variable per
robot that represents the location of the robot ({(at robot1
cell1),(at robot1 cell2),. . .}) and a variable of the kind
{(clear cell1),〈none of those〉} per cell. In our case, we pre-
fer to select invariant groups of the second type first because
each fluent (clear cell1) only takes part on a single invariant
group. Thus, we would only have a variable per cell of the
kind {(clear cell1),(at robot1 cell1),(at robot2 cell1)}, which
amounts to fewer variables and fluents.

This leads to the use of “exactly-one” invariant groups as
variables in most cases, avoiding the use of “at-most-one”
invariant groups if possible – which require an additional
〈none of those〉 fluent. With this policy the number of re-
sulting variables and fluents is usually lower. This may be
counterproductive if techniques that depend on the causal
graph are used, but this only affects us when choosing the
ordering of the variables.

Computing h2 Invariants and Pruning Spurious
Operators
We have implemented the computation of the h2 in Fast
Downward’s preprocessor. We also implemented a back-
ward version of h2 (Haslum 2008), which identifies pairs

of propositions that cannot be reached from goal states in
regression.

We use the mutexes obtained from h2 and the “exactly-
one” invariant groups from Fast Downward’s monotonicity
analysis to disambiguate the preconditions and the effects
of the operators of the problem (Alcázar et al. 2013). We
discard operators whose preconditions or effects are spuri-
ous sets of fluents, that is, contradict the previously inferred
state invariants. We do this because the number of ground
operators is significantly reduced in many planning domains
with respect to the standard preprocessor of Fast Downward.

The discovery and use of the state invariants during this
phase is interleaved: whenever new mutexes or spurious op-
erators are discovered in this process, we repeat the compu-
tation of h2 in both directions and the operator disambigua-
tion until no more constraints are inferred. We set a limit of
300 seconds for this phase.

Conditional Effects
Conditional effects are compiled away by using adl2strips
(Hoffmann et al. 2006), a tool initially developed by Jörg
Hoffmann and modified later by Sergio Núñez that converts
more expressive planning instances into STRIPS. adl2strips
implements two different methods for compiling away con-
ditional effects (Gazen and Knoblock 1997; Nebel 2011).
Both compilations have their pros and cons. Gazen and
Knoblock’s compilation may generate an exponential num-
ber of STRIPS actions on the size of the input task. On the
other hand, Nebel’s compilation guarantees that the number
of STRIPS actions is polynomial on the size of the input
task, but increases the plan length. Therefore, we use Gazen
and Knoblock’s compilation for tasks with at most three con-
ditional effects in the same PDDL action and Nebel’s com-
pilation otherwise.

Disjunctive Transition Relations
Torralba, Edelkamp, and Kissmann (2013) identified the im-
age and pre-image operations and the subsequent union of
successor sets as a bottleneck. In other words, the encoding
of planning operators in the Transition Relations (TRs) may
have a large impact on the overall performance. In Gamer,
a TR was used to represent each operator. Several alterna-
tives were proposed; among them, computing a disjunction
of the TRs of operators with the same cost stood out for its
simplicity and results.

Since the disjunction of all the TRs of the problem is
sometimes not tractable to compute, we set a limit MAX -
TR SIZE on the maximum number of nodes that any TR
may have. If this limit is reached during the computation of
the disjunction of TRs, several disjunctive TRs smaller than
MAX TR SIZE will be used instead of a single TR. When
multiple disjunctive TRs must be used, the choice of which
TRs must be merged is critical, as the number and size of
the resulting disjunctive TRs depends on it. This is done us-
ing a balanced merging approach based on the disjunction
tree used in the original Gamer to compute the disjunction
of successor sets. For the competition, cGamer uses a limit
of MAX TR SIZE=100k nodes.

75

Encoding State Invariants in Symbolic Search
Regression is common in symbolic search, both as a part of
the main search algorithm and as a way to derive admissi-
ble heuristics. Although constraints derived from state in-
variants are commonly used in explicit-state regression, in
symbolic regression this had not been done. Hence, Torralba
and Alcázar (2013) proposed several ways of encoding these
constraints in symbolic search. According with the experi-
mental results, the most efficient method to apply constraints
in symbolic search is to encode them in the TRs.

In cGamer we encode binary mutexes derived from the
computation of h2 and invariant groups derived from Fast
Downward’s monotonicity analysis. Before computing the
disjunction of the TRs described in the previous section, the
TR corresponding to each operator is enriched with all the
constraints that may be violated after applying the operator.
Thus, no state violating the constraints is generated in the
search.

An important difference with respect to the version pre-
sented in (Torralba and Alcázar 2013) is that we also de-
rive mutexes from the backward computation of h2. These
backward mutexes are used to prune the forward search in
a similar manner to how forward h2 mutexes are used in re-
gression.

Acknowledgements
This work has been partially supported by a FPI grant from
the Spanish government associated to the MICINN project
TIN2008-06701-C03-03, and it has also been supported by
the project TIN2011-27652-C03-02. We’d like to thank both
Jörg Hoffmann and Sergio Núñez for adl2strips.

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting regression in planning. In International
Joint Conference on Artificial Intelligence, 2254–2260.
Alcázar, V.; Fernández, S.; and Borrajo, D. 2014. Analyzing
the impact of partial states on duplicate detection and colli-
sion of frontiers. In International Conference on Automated
Planning and Scheduling.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Comput. Intell. 14(3):318–334.
Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2012. Sym-
bolic A∗ search with pattern databases and the merge-and-
shrink abstraction. In European Conference on Artificial In-
telligence (ECAI), 306–311.
Edelkamp, S. 2002. Symbolic pattern databases in heuris-
tic search planning. In Conference on Artificial Intelligence
Planning Systems (AIPS), 274–283.
Gazen, B. C., and Knoblock, C. A. 1997. Combining the
expressivity of ucpop with the efficiency of graphplan. In
ECP, 221–233.

Haslum, P. 2008. Additive and reversed relaxed reachabil-
ity heuristics revisited. Proceedings of the 6th International
Planning Competition.
Helmert, M. 2006. The Fast Downward planning system. J.
Artif. Intell. Res. (JAIR) 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5-
6):503–535.
Hoffmann, J.; Edelkamp, S.; Thı́ebaux, S.; Englert, R.; Li-
porace, F.; and Trüg, S. 2006. Engineering benchmarks for
planning: the domains used in the deterministic part of IPC-
4. Journal of Artificial Intelligence Research (JAIR) 26:453–
541.
Kissmann, P., and Edelkamp, S. 2011. Improving cost-
optimal domain-independent symbolic planning. In AAAI
Conference on Artificial Intelligence (AAAI), 992–997.
Kissmann, P. 2012. Symbolic Search in Planning and Gen-
eral Game Playing. Ph.D. Dissertation, Universität Bremen,
Germany.
McMillan, K. L. 1993. Symbolic Model Checking.
Nebel, B. 2011. On the compilability and expressive power
of propositional planning formalisms. CoRR abs/1106.0247.
Torralba, Á., and Alcázar, V. 2013. Constrained symbolic
search: On mutexes, BDD minimization and more. In Sym-
posium on Combinatorial Search (SoCS), 175–183.
Torralba, Á.; Edelkamp, S.; and Kissmann, P. 2013. Tran-
sition trees for cost-optimal symbolic planning. In Interna-
tional Conference on Automated Planning and Scheduling.

76

Gamer and Dynamic-Gamer – Symbolic Search at IPC 2014

Peter Kissmann
Saarland University

Saarbrücken, Germany
kissmann@cs.uni-saarland.de

Stefan Edelkamp
Universität Bremen
Bremen, Germany
edelkamp@tzi.de

Jörg Hoffmann
Saarland University

Saarbrücken, Germany
hoffmann@cs.uni-saarland.de

Abstract

After its success in IPC 2008, Gamer fared much worse in
IPC 2011. Nevertheless, it is still the state-of-the-art symbolic
search planner, and even in IPC 2011 it was obvious that this
kind of search has its merits as in some domains Gamer was
able to find more solutions than all other planners.
We participate in IPC 2014 with two different versions of this
planner. One version, called Gamer, is a straight-forward
extension of the IPC 2011 version, fixing some bugs, im-
proving some code fragments, supporting conditional effects,
and replacing the complicated handling of (partial) pattern
databases by a bidirectional symbolic version of Dijkstra’s al-
gorithm. The other version, called Dynamic-Gamer, extends
this code further by making use of dynamic variable reorder-
ing.

Introduction
In recent years, the most successful approaches for auto-
mated planning have made use of explicit A* search using
heuristic functions to evaluate states (see, e. g., (Haslum and
Geffner 2000; Helmert et al. 2014; Helmert and Domsh-
lak 2009; Helmert et al. 2011)). The idea here is to have
heuristics to guide the search in order to generate fewer
states. Generating fewer states means that (a) the runtime
decreases (at least if the overhead of the heuristic calcula-
tions is small), and (b) the memory requirements decrease.

An alternative approach, though admittedly currently only
rarely used, is to apply symbolic search (McMillan 1993).
This does not expand all states separately as is done in ex-
plicit search, but rather expands entire sets of states simulta-
neously. These sets are represented by means of binary deci-
sion diagrams (BDDs) (Bryant 1986), which are much more
memory efficient than explicitly representing each state of
the given set.

Our symbolic search planner Gamer (Edelkamp and Kiss-
mann 2009; Kissmann and Edelkamp 2011) started out in
the international planning competition (IPC) 2008 and was
able to win the competition. However, in the instance of
2011 it ended up close to the end of the field of participants.
Nevertheless, from the results it is obvious that symbolic
search still has its merits, as in several domains Gamer was
able to find optimal solutions that no other planner could
find.

For this year’s instance of the IPC we extended Gamer
in several ways. The first are merely a number of improve-
ments on top of the previous version, overcoming problems
we identified in the aftermath of IPC 2011. In addition, we
also implemented some real extensions. The most notable
ones are the use of bidirectional Dijkstra search instead of
symbolic A* search with symbolic pattern databases, the
handling of conditional effects and, in case of Dynamic-
Gamer, use of dynamic reordering of the BDD variables at
runtime for a limited time.

In the following we will start with providing some of
the necessary background in planning and symbolic search.
Then we will briefly discuss the code improvements before
we turn to the actual extensions. Finally, we will provide
some results comparing the three versions of Gamer: the one
of IPC 2011, and Gamer and Dynamic-Gamer as submitted
to IPC 2014.

Background
Planning
We consider planning tasks in finite-domain representation
(FDR). Such a task is a tuple Π = 〈V,A, I,G, c〉, where V
is a set of finite-domain state variables, where each v ∈ V
has an associated domain D(v). A is a finite set of actions,
where each a ∈ A is a pair 〈prea, eff a〉, both being partial
assignments to V ; prea is called the precondition and eff a
the effect of action a. I is the initial state and is given by
a complete assignment to V . G is a description of the goal
states in form of a partial assignment to V . Finally, c : A 7→
N+ is a function assigning a cost to each action. We denote
those variables v ∈ V of a partial assignment pa for which
pa(v) is defined by V(pa).

We say that an action a ∈ A is applicable in state s if
prea ⊆ s. The successor s′ reached by applying action a in
state s is specified by

s′(v) =

{
eff a(v) for all v ∈ V(eff a)
s(v) for all v ∈ V \ V(eff a).

A solution (here called a plan) of a planning task is a se-
quence of actions P = (a1, . . . , an) that can be applied in
the initial state and leads to a goal state sn: each action
ai must be applicable in state si−1 and results in the suc-
cessor state si with s0 = I and G ⊆ sn. The cost of a

77

plan is the sum of the costs of all actions in the plan, i. e.,
c(P) =

∑n
i=1 c(ai). A plan is called optimal if no other

plan has lower cost. In this paper we are only concerned
with optimal planning.

Symbolic Search
The term symbolic search originates in the model checking
literature (McMillan 1993). The basic idea is to perform set-
based search as opposed to the traditional search expanding
one state at a time. The datastructure used to represent such
sets of states are binary decision diagrams (BDDs) (Bryant
1986).

A binary decision diagram is a directed acyclic graph,
where each internal node has two outgoing edges (the 0 and
the 1 edge) and represents the assignment to a corresponding
variable. The two terminal nodes are called sinks, and de-
noted with a Boolean value (0 or 1). A BDD basically repre-
sents the satisfying assignments of the represented Boolean
formula. However, given that we can represent states by bi-
nary variables1, for search algorithms any such satisfying
assignment can be seen as a state represented by the BDD.

Any path leading from the root to the 1 sink and the re-
sulting assignment to the visited variables corresponds to a
satisfying assignment (and thus to a state represented by the
BDD). The unvisited variables can take any value. Paths
leading to the 0 sink correspond to unsatisfied assignments
(and thus to states not represented by the BDD).

What we actually mean when talking about BDDs are re-
duced ordered BDDs (ROBDDs). These have a fixed vari-
able ordering on all paths from the root to the sinks. This
allows to apply two reduction rules: (a) remove any node
having the same successor along both outgoing edges; (b)
merge any two nodes representing the same variable that
have the same successor along the 0 edge and the same suc-
cessor along the 1 edge. Applying these rules results in a
canonical representation.

In order to perform symbolic search, we need two sets
of variables. The first one, x, represents the current state
variables, the second one, x′, represents the successor state
variables. With these we can represent a transition relation
as follows. For each action a ∈ A, we can create a BDD

Ta(x, x′) = prea(x)∧eff a(x′)∧biimp(V \V(eff a), x, x′)

with biimp(V ′, x, x′) =
∧

v∈V ′ v(x) ↔ v(x′). The
full (monolithic) transition relation T is then T (x, x′) =∨

a∈A Ta(x, x′). However, representing this typically takes
too much memory (and also too much runtime for the op-
erators making use of it), so that we store the BDDs for the
actions’ transition relations separately (Burch, Clarke, and
Long 1991).

With such a transition relation, given a set of states S (rep-
resented as a BDD), we can then calculate the successor set
S′ by means of the image operator:

S′(x) = img(S, T) = ∃x.(S(x) ∧ T (x, x′))[x↔ x′]

1A finite-domain variable v with domain D(v) can be repre-
sented by a binary counter, consisting of log |D(v)| binary vari-
ables.

The conjunction makes sure that only applicable actions are
considered, and that the corresponding successor variables
are set. Quantifying the current state variables and swap-
ping the sets of variables (denoted by [x↔ x′]) ensures that
the successor states are again represented in the current state
variables. With the separate transition relations, the image is
equivalently defined as

S′(x) = img(S, T) =
∨

a∈A
∃x.(S(x) ∧ Ta(x, x′))[x↔ x′].

Instead of explicitly applying the conjunction followed
by existential quantification, most BDD packages contain
a more efficient implementation of this so called relational
product, where the quantification and conjunction are inter-
twined (Burch et al. 1994).

For a set of states S, the set of predecessor states S− can
be calculated similarly, by means of the preimage operator:

S−(x′) = preimg(S, T) =
∨

a∈A
∃x′.(S(x′∧Ta(x, x′))[x↔ x′]

Concerning the variable ordering, recall that we are con-
cerned with finite domain representations. However, these
can be easily encoded by binary variables: For a finite do-
main variable with domain D(v) we need log |D(v)| binary
variables (similar to binary counters) and can map each of
the values of the FD variable to one assignment of these bi-
nary variables. In the ordering, the variables representing the
same FD variable are always kept together. Additionally, the
pairs of x and x′ variables are stored in an interleaved fash-
ion (Burch et al. 1994).

Symbolic Blind Search Using the image operator,
breadth-first search is straight-forward. All we need to do
is start with the BDD representing the initial state and then
apply the image operator repeatedly to the result until a goal
state is reached, i. e., until a BDD S is reached for which
S(x) ∧G(x) 6= 0.

Thanks to the separate transition relations, we can also
easily cope with action costs. For this we can define an im-
age operator imgc, which takes only those transitions into
account that are based on actions having the specified cost
c. Thus, symbolic Dijkstra search is performed as follows:
We store all states having the same distance from the initial
state (g) in a BDD. For a given set of states with g value gs,
all successors based on actions with cost c are generated by
means of the imgc operator and added to the BDD represent-
ing the states with g value gs + c by applying disjunction.
As soon as a BDD containing goal states is to be expanded,
we can stop the search and retrieve a solution, which corre-
sponds to an optimal plan.

Symbolic A* Search Two versions of symbolic A* search
have been proposed: BDDA* by Edelkamp and Reffel
(1998) and SetA* by Jensen, Bryant, and Veloso (2002).
Our implementation follows the basic notions of these ap-
proaches.

We construct a two-dimensional matrix of BDDs, where
one dimension corresponds to the g values, and the other to
a heuristic estimate of the distance to a goal state, i. e., the

78

h values. We expand those buckets with smallest f value,
and among those the one with smallest g value, first. The
successors are inserted according to their new g values and
the heuristic estimate. If we use a consistent heuristic, this
order guarantees that each BDD is expanded at most once,
i. e., it is never necessary to expand (g, h) buckets that were
already expanded in a previous step. A consistent heuris-
tic means that the f values of the successors can never be
smaller than the one of the currently expanded states. Addi-
tionally, with each expansion the g value can only increase.
Thus, if the successor states have the same f value they must
be further along the current f diagonal and will be expanded
later and not inserted into an already expanded bucket.

Gamer
In 2008, Gamer (Edelkamp and Kissmann 2009) automat-
ically decided between two different algorithms to run: In
case of non-uniform action costs it performed symbolic A*
search, while in case of only uniform costs it used symbolic
bidirectional breadth-first search. As the heuristic we de-
cided to use pattern databases (PDBs) (Culberson and Scha-
effer 1998), whose extension to the symbolic search setting
is due to Edelkamp (2002). As we did not have a good al-
gorithm for automatically deciding on a pattern we actually
used partial PDBs (Anderson, Holte, and Schaeffer 2007),
and used the full variable set as the pattern – in other words,
we basically performed bidirectional Dijkstra search, in a
non-interleaved fashion, where we allowed half the available
time, i. e., half of 30 minutes, for the backward search. The
remaining time was then spent in forward direction running
symbolic A*. For breadth-first search we implemented an
interleaved approach, which automatically decided for each
step whether to continue in forward or backward direction,
based on the times needed for the previous steps in both di-
rections.

For IPC 2011, we held on to this basic scheme, with three
extensions (Kissmann and Edelkamp 2011):

1. automatic calculation of patterns and the corresponding
PDBs

2. automatic decision whether to use the automated pattern
calculation or the full variable set (in case of non-uniform
costs); and whether to use uni- or bidirectional breadth-
first search (in case of uniform costs)

3. variable ordering based on the causal graph
Again, we spent up to 15 minutes for the PDB generation,
and then took the PDB with highest average heuristic value
to be used in forward search.

The idea of the ordering of the variables was that variables
that depend on each other, as identified by the causal graph,
should be ordered close together in order to decrease BDD
sizes and thus improve performance.

Extensions to Gamer
Basic Improvements
In the aftermath of IPC 2011 we noticed several shortcom-
ings, detailed in (Edelkamp, Kissmann, and Torralba 2012).
Apart from some bug fixes, we decided to fully replace the

parser for grounded PDDL input, as in some cases parsing
took longer than the available time. Also, we noticed that
the way we decided between uni- and bidirectional search
could result in a bottleneck: In some domains the first back-
ward step, on which we based the final decision, took longer
than the available time, so that we never started the actual
search. This we fixed by setting a timeout for this first back-
ward step and stopping the BDD calculations for it in case
of timeout (and using only forward search afterwards).

Bidirectional Dijkstra Search
Apart from these small changes we also checked the used al-
gorithms again. It turned out that (a) in many cases the full
pattern was chosen, and (b) in cases that an actual abstrac-
tion was performed, a large number of PDBs had to be gen-
erated, which typically took the allowed time of 15 minutes,
leaving only 15 minutes for forward search. The advantage
of the bidirectional breadth-first search we were using in the
uniform-cost domains was that here the decision between
forward and backward search was made dynamically at run-
time and the steps could be performed in an interleaved fash-
ion. In domains where forward and backward search result
in roughly the same performance the approach we chose for
symbolic A* with the fixed time for backward search should
result in good performance. However, in domains where one
direction tends to be much more difficult than the other an
interleaved search would be highly preferable.

Thus, we decided to implement a bidirectional version of
Dijkstra search (Edelkamp, Kissmann, and Torralba 2012)
(cf. Algorithm 1). Similar to bidirectional breadth-first
search this automatically decides in which direction to per-
form the next step, solely based on the runtimes for the pre-
vious steps. For bidirectional Dijkstra search, it might not
be immediately obvious how to decide when the search is
actually finished, i. e., when a found solution is optimal.
However, this question was previously tackled in external
bidirectional Dijkstra search (Goldberg and Werneck 2005).
The idea is to store the cost ctotal of the cheapest plan found
so far, and stop the search as soon as the sum of the g values
of the states to be expanded next in the two directions is at
least as high as ctotal . The same criterion works in symbolic
search.

Dynamic Reordering
In a recent study (Kissmann and Hoffmann 2013) we an-
alyzed how closely related the definition of dependence as
found by causal graphs and that required to reduce BDD
sizes actually are. The result is that there is not much of
a relation at all. In fact, even for very limited causal graphs
we found that there are families of planning tasks where in
some layer the ordering we imposed can result in BDDs con-
taining exponentially more nodes than a minimal one.

Apart from this theoretical result we also evaluated differ-
ent ordering schemes experimentally against purely random
orders. Here the result is that most “informed” orders result
in higher coverage, but none fully dominates the random or-
derings in all domains.

As a delimiter to decide how much better we can get we
compared the orderings against the result of running dy-

79

Algorithm 1 Bidirectional symbolic Dijkstra search, from
(Edelkamp, Kissmann, and Torralba 2012)

Input: Π = 〈V,A, I,G, c〉: planning task.
T : set of transition relations for all actions.

Output: cost-optimal plan P .
P ← “no plan”
fClosed ← bClosed ← 0
fReach0 ← I
bReach0 ← G
gf ← gb ← 0
ctotal ←∞
while gf + gb < ctotal

if NextDirection = Forward
{g1, . . . , gn} ← fStep(fReach, gf , c, fClosed , bClosed)
for all g ∈ {g1, . . . , gn}

for all {i | i < gb ∧ bReachi 6= 0 ∧ g + i < ctotal}
if fReachg ∧ bReachi 6= 0
ctotal ← g + i
update P

gf ← gf + 1
else // same in backward direction

return P

Procedure fStep(fReach, g, fClosed , bClosed)
Ret ← {}
fReachg ← fReachg ∧ ¬fClosed
for all c ∈ {1, . . . ,maxa∈A c(a)}

Succ ← ∨
a∈A,c(a)=c img(fReachg, Ta)

if Succ ∧ bClosed 6= 0
Ret ← Ret ∪ {g + c}

fReachg+c ← fReachg+c ∨ Succ
fClosed ← fClosed ∨ fReachg

return Ret

namic reordering for the whole search, for which we as-
sumed that the BDD sizes should be much closer to optimal.

For the dynamic reordering we made use of Rudell’s
(1993) sifting algorithm. This starts with the BDD variable
with the greatest number of nodes in the current BDD, and
then moves it first to the end then to the beginning of the
ordering. This is done by swapping the position with the
next variable in the corresponding direction. Afterwards it is
moved back to the position where the BDD size was small-
est. This is repeated for all variables.

Dynamic reordering is automatically executed whenever
a threshold in BDD sizes is passed. This threshold is ini-
tially set to 4,000 nodes, and after each reordering updated
to twice the number of nodes still in the BDDs.

The result of this experiment was pretty clear (cf. Fig-
ure 1): In very few tasks the static ordering schemes we tried
result in BDDs of slightly smaller size than achievable by
dynamic reordering, while in the vast majority of tasks the
sizes are much greater, in some cases up to three orders of
magnitude. However, this advantage in size comes at a cost,
namely runtime. In order to get a sufficient number of dat-

104

105

106

107

108

104 105 106 107 108

Pe
ak

Si
ze

O
rd

er
in

g
Sc

he
m

es

Peak Size Dynamic Reordering

Figure 1: Comparison of BDD sizes using dynamic reorder-
ing (x-axis) and static ordering schemes (y-axis). Taken
from (Kissmann and Hoffmann 2013).

apoints we had to run the planner using dynamic reordering
much longer than the other approaches. When restricting the
search time to the usual 30 minutes the coverage was much
worse than with the static schemes.

What we learned from this is that using dynamic reorder-
ing can be great in order to reduce BDD sizes, but it should
not be run for the entire time. In a subsequent study we tried
two different approaches: (a) starting dynamic reordering
immediately and (b) starting it only after the basic BDDs for
the initial and goal states as well as the transition relations
have been built. We allowed only fixed numbers of reorder-
ings and tried to find criteria to automatically decide when
to stop reordering, so that the overhead in runtime was not
too high while the memory savings (and thus an increase in
coverage) were visible.

It turned out that the much more stable approach was to
start dynamic reordering only after the basic BDDs have
been built. As criteria for stopping reordering and sticking
to the last generated order we noticed that the best point of-
ten was when (a) the quotient between the time for the last
reordering and the previous one reaches a certain threshold
(often between 1.25 and 1.75), or (b) the percentage of the
time spent in the last reordering step on the total runtime
increased compared to the previous one.

Grounding
For grounding the planning tasks, from the start Gamer
made use of the grounding utility of the MIPS planner
(Edelkamp and Helmert 2001). This not only grounds the
task at hand but also transforms the task to a finite-domain
representation (Edelkamp and Helmert 1999). To do so, it
finds mutually exclusive predicates and groups them to con-
struct the FD variables. However, for this check it considers
only predicates that agree in one argument. For example,
in some logistics task, predicates at(t1, c1) and at(t1, c2)
might be mutually exclusive, denoting the different locations
of truck t1, and can thus be grouped to one FD variable.

We extended this to also check for predicates that agree
in two arguments. For example, in some task where dif-
ferent objects might be placed on the cells of a board,
on(s1, x1, y1) and on(s2, x1, y1) might be mutually exclu-
sive, denoting the different things that can be placed on the

80

cell at position (x1, y1), and can thus be grouped to one FD
variable. This can result in a more concise state represen-
tation, as it allows for more facts to be grouped together to
FD variables and thus might reduce the encoding size even
further.

Additionally we noted that in the old version of the
grounding utility only one encoding was generated, without
any regard of the size of it. We extended this in the follow-
ing way. If the number of possible encodings is small, we
generate all of them; if the number is too large, we generate
as many as possible (in random order) in 1 second. In both
cases we return the one with smallest binary encoding size.

Conditional Effects
IPC 2014 is the first instance of the international planning
competition that requires all planners to support conditional
effects. A conditional effect basically is a kind of sub-action
within an action, having its own additional precondition and
effect. Thus, an action a ∈ A with conditional effects
consists of the precondition prea and effect eff a as before,
but additionally has a set of pairs consisting of conditions
and effects: conda = {〈cpre1

a, ceff 1
a〉, . . . , 〈cpren

a , ceff n
a〉},

where each cprei
a and ceff i

a is a partial assignment to V . An
action a with conditional effects is evaluated as follows: If
prea ⊆ s, then the action is applicable in state s. Applying
a in s results in a new state s′ with

s′(v) =

{
eff a(v) if v ∈ V(eff a)
e(v) if 〈p, e〉 ∈ conda, p ⊆ s, v ∈ V(e)
s(v) else.

One way to handle conditional effects is to compile them
away (see, e. g., (Gazen and Knoblock 1997; Hoffmann et
al. 2006; Nebel 2000)). To do so, each action a containing
some conditional effect 〈cprei

a, ceff i
a〉 can be replaced by

two actions a′+ and a′−. Action a′+ denotes the resulting
action where the condition cprei

a is satisfied:

prea′+
= prea ∪ cprei

a

eff a′+
= eff a ∪ ceff i

a

conda′+
= conda \ {〈cprei

a, ceff i
a〉}

Action a′−, on the other hand, denotes the resulting action
where cprei

a is not satisfied:

prea′−
= prea ∪ cprei

a

eff a′−
= eff a

conda′−
= conda \ {〈cprei

a, ceff i
a〉}

where cprei
a denotes the negation of cprei

a. This replace-
ment can be repeated on the resulting actions until no con-
ditional effects remain. However, due to this each action is
replaced by a number of actions exponential in the number
of conditional effects the original action has.

As our grounding utility already supports conditional ef-
fects, we decided to integrate support into the planner itself
and thus prevent this blowup. In order to do so we had to

extend the creation of the transition relations. We start with
a BDD capturing the precondition and basic effects of an
action a:

T 1
a (x, x′) = prea(x) ∧ eff a(x′)

Let V(conda) = {v | 〈p, e〉 ∈ conda, v ∈ V(e)} be the set
of all variables that appear in effects of conditional effects of
action a. For each variable v ∈ V(conda) we first determine
the set of conditional effects conda(v) ⊆ conda which have
this variable in the effect: conda(v) = {〈p, e〉 | 〈p, e〉 ∈
conda, v ∈ V(e)}. Then we create the corresponding BDD

T 2
a (v, x, x′) =


 ∨

(p,e)∈conda(v)

(p(x) ∧ e(v)(x′))


∨




 ∧

(p,e)∈conda(v)

¬p(x)


 ∧ (v(x)↔ v(x′))


 .

For each variable v ∈ V \ (V(eff a)∪V(conda)), we create
a BDD

T 3
a (v, x, x′) = v(x)↔ v(x′)

to model the frame. Finally, the full transition relation for
action a is

Ta(x, x′) =T 1
a (x, x′)∧
∧

v∈V(conda)

T 2
a (v, x, x′)∧

∧

v∈V \(V(eff a)∪V(conda))

T 3
a (v, x, x′).

Evaluation of Different Versions of Gamer
We have submitted two versions of Gamer for IPC 2014, one
called Gamer as before, the other called Dynamic-Gamer.
Gamer performs bidirectional symbolic Dijkstra search for
all tasks with the extensions as introduced in the previous
sections, while Dynamic-Gamer additionally makes use of
dynamic reordering. The criteria to stop are when the quo-
tient of the last reordering time and the previous one is at
least 1.5, or when the percentage criterion fires. Afterwards
the ordering will remain static.

Table 1 details the coverage results of the three different
versions of Gamer on the IPC 2011 benchmarks. All runs
were performed on machines containing two eight-core In-
tel Xeon E5-2660 CPUs with 2.20 GHz and 64 GB RAM,
running 16 planners with 4 GB memory limit and 30 minute
timeout in parallel. Note that these machines differ from the
one used at IPC 2011, and that we are restricting the plan-
ners to only 4 GB of RAM (the setting of IPC 2014), while
in 2011 6 GB were allowed, so that the numbers are not com-
parable to the results of IPC 2011.

From that table we see that already the basic improve-
ments and the switch over to using only bidirectional Dijk-
stra search bring a slight improvement. However, this im-
provement is surprisingly small: In preliminary runs with
6 GB memory limit the differences between the IPC 2011
and IPC 2014 versions of Gamer were much more pro-
nounced. There, the basic improvements already brought an

81

Domain (#Tasks) G
am

er
’1

1

G
am

er
’1

4

D
yn

am
ic

G
am

er
’1

4

barman (20) 5 7 8
elevators (20) 18 18 18
floortile (20) 7 12 12

nomystery (20) 13 12 14
openstacks (20) 20 20 20
parcprinter (20) 8 6 6

parking (20) 0 0 0
pegsol (20) 17 17 17

scanalyzer (20) 8 9 9
sokoban (20) 16 11 13
tidybot (20) 0 5 8

transport (20) 7 7 9
visitall (20) 9 9 12

woodworking (20) 15 16 16
Total (280) 143 149 162

Table 1: Coverage results of different versions of Gamer on
the set of IPC’11 benchmarks.

increase in coverage of 13, and the change to bidirectional
Dijkstra another increase of 5 (as detailed in (Edelkamp,
Kissmann, and Torralba 2012)). In our setting, which is
the same as in IPC 2014, the change from Gamer ’11 to
Gamer ’14 brings an increase in total coverage of only 6.

Considering dynamic reordering, the change here is much
more pronounced than in previous runs with 6 GB of mem-
ory. In all domains, switching on dynamic reordering never
hurts but only increases the number of solved instances, in
total bringing us from 149 solutions up to 162. This indi-
cates that dynamic reordering is especially helpful in cases
of very limited memory.

Considering the change in the grounding utility, we also
analyzed the binary encoding sizes of the resulting finite do-
main representations (cf. Table 2). From this we can see that
in most domains we can do at least a bit better than with the
IPC’11 version. The biggest advantage comes with Tidybot,
where the positions of the base and the cart are now cor-
rectly identified as FD variables (here we have a situation
where the coordinates are given by two arguments), which
clearly brought an increase in coverage. On the other hand,
the decrease in encoding size in Sokoban was counterpro-
ductive, as this results in an encoding of the different stones
as FD variables instead of the different cells. While the en-
coding size decreases, this creates a number of additional
binary variables (cell empty or not), overall decreasing cov-
erage in this domain. However, as we noticed an increase
in total coverage in further preliminary experiments we de-
cided to keep the new grounding approach. The question
of how to overcome the problem we noticed in Sokoban re-
mains future work.

Conclusion
In this paper we presented a number of extensions to the
existing symbolic planner Gamer over the version that was

used in IPC 2011. One extension concerns the used search
algorithm: While in 2011 Gamer varied between using
(bidirectional) breadth-first search and symbolic A* search
in conjunction with (partial) pattern databases, we now
changed over to a setting where we use bidirectional sym-
bolic Dijkstra search in all cases. Another extension con-
cerns the use of dynamic variable reordering, which seems
especially promising in the setting of IPC 2014, where the
memory is more limited than in 2011.

Finally, we also presented a way to handle conditional ef-
fects by constructing transition relation BDDs that explic-
itly use them. This has the advantage that we do not have to
compile all the conditional effects away and thus prevent an
exponential (in the number of conditional effects) blowup.

References
Anderson, K.; Holte, R.; and Schaeffer, J. 2007. Partial pat-
tern databases. In Miguel, I., and Ruml, W., eds., Proceed-
ings of the 7th International Symposium on Abstraction, Re-
formulation, and Approximation (SARA-07), volume 4612
of Lecture Notes in Computer Science, 20–34. Whistler,
Canada: Springer-Verlag.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Burch, J. R.; Clarke, E. M.; Long, D. E.; McMillan, K. L.;
and Dill, D. L. 1994. Symbolic model checking for sequen-
tial circuit verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 13(4):401–
424.
Burch, J. R.; Clarke, E. M.; and Long, D. E. 1991. Sym-
bolic model checking with partitioned transition relations. In
Halaas, A., and Denyer, P. B., eds., Proceedings of the Inter-
national Conference on Very Large Scale Integration (VLSI-
91), volume A-1 of IFIP Transactions, 49–58. Edinburgh,
Scotland: North-Holland.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge
in planning problems to minimize state encoding length. In
Biundo, S., and Fox, M., eds., Recent Advances in AI Plan-
ning. 5th European Conference on Planning (ECP’99), Lec-
ture Notes in Artificial Intelligence, 135–147. Durham, UK:
Springer-Verlag.
Edelkamp, S., and Helmert, M. 2001. MIPS: The
model checking integrated planning system. AI Magazine
22(3):67–71.
Edelkamp, S., and Kissmann, P. 2009. Optimal symbolic
planning with action costs and preferences. In Boutilier,
C., ed., Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence (IJCAI 2009), 1690–1695.
Pasadena, California, USA: Morgan Kaufmann.
Edelkamp, S., and Reffel, F. 1998. OBDDs in heuristic
search. In Herzog, O., and Günter, A., eds., Proceedings of
the 22nd Annual German Conference on Advances in Arti-
ficial Intelligence (KI’98), volume 1504 of Lecture Notes in
Computer Science, 81–92. Bremen, Germany: Springer.

82

ba
rm

an

el
ev

at
or

s

flo
or

til
e

no
m

ys
te

ry

op
en

st
ac

ks

pa
rc

pr
in

te
r

pa
rk

in
g

pe
gs

ol

sc
an

al
yz

er

so
ko

ba
n

tid
yb

ot

tr
an

sp
or

t

vi
si

ta
ll

w
oo

dw
or

ki
ng

Task 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14
1 68 67 27 27 38 34 17 17 55 54 42 38 108 88 100 72 12 12 54 40 139 85 30 30 5 5 63 59
2 68 67 35 35 38 34 22 22 60 59 52 48 108 88 100 72 24 24 100 61 183 109 30 30 5 5 63 59
3 68 67 35 35 47 40 24 24 65 64 51 47 125 102 100 72 24 24 93 53 183 109 24 24 12 12 76 71
4 68 67 31 31 47 40 28 28 70 69 106 98 125 102 100 72 32 32 81 51 183 109 30 30 12 12 69 65
5 87 85 31 31 56 48 39 39 75 74 65 59 125 102 100 72 50 50 109 68 235 135 34 34 19 19 75 71
6 87 85 36 36 56 48 44 44 80 79 176 164 125 102 100 72 32 32 117 88 235 135 34 34 19 19 87 82
7 87 85 50 50 62 52 48 48 86 85 139 129 167 121 100 72 108 108 73 56 235 135 38 38 29 29 82 76
8 87 85 35 35 62 52 52 52 91 90 92 84 167 121 100 72 60 60 95 63 235 135 45 45 29 29 100 93
9 108 105 40 40 74 60 56 56 96 95 75 69 167 121 100 72 70 70 113 70 295 165 42 42 41 41 101 95

10 108 105 40 40 74 60 60 60 136 135 133 123 167 121 100 72 80 80 152 98 295 165 56 56 41 41 99 93
11 108 105 55 55 86 68 16 16 101 100 158 146 187 136 100 72 32 32 79 54 295 165 46 46 54 54 111 104
12 108 105 40 40 86 68 22 22 106 105 103 95 187 136 100 72 32 32 oom oom 295 165 61 61 54 54 99 93
13 147 144 39 39 92 72 24 24 111 110 217 203 187 136 100 72 32 32 94 59 295 165 54 54 69 69 106 99
14 147 144 44 44 92 72 28 28 116 115 262 254 187 136 100 72 32 32 106 68 375 205 61 61 69 69 121 113
15 147 144 43 43 108 91 38 38 121 120 311 293 232 151 100 72 50 50 116 76 371 201 59 59 87 87 129 120
16 147 144 35 35 108 91 44 44 131 130 364 354 232 151 100 72 60 60 117 76 383 205 66 66 87 87 120 113
17 173 169 39 39 124 108 48 48 126 125 145 140 207 151 100 72 70 70 100 61 379 205 44 44 106 106 148 137
18 173 169 50 50 124 108 52 52 141 140 171 159 207 151 100 72 80 80 155 119 375 205 39 39 106 106 140 131
19 173 169 40 40 129 105 56 56 146 145 211 197 227 188 100 72 108 108 118 72 379 205 44 44 127 127 142 153
20 173 169 45 45 129 105 60 60 151 150 197 183 227 188 100 72 60 60 77 59 383 205 59 59 127 127 156 145

Table 2: Comparison of encoding sizes of the IPC’11 tasks, using the grounding utility of Gamer’11 and Gamer’14.

Edelkamp, S.; Kissmann, P.; and Torralba, A. 2012. Ad-
vances in BDD search: Filtering, partitioning, and bidirec-
tionally blind. In 3rd ICAPS-Workshop on the International
Planning Competition (WIPC-12).
Edelkamp, S. 2002. Symbolic pattern databases in heuristic
search planning. In Ghallab, M.; Hertzberg, J.; and Traverso,
P., eds., Proceedings of the 6th International Conference on
Artificial Intelligence Planning and Scheduling (AIPS-02),
274–283. Toulouse, France: Morgan Kaufmann.
Gazen, B. C., and Knoblock, C. 1997. Combining the ex-
pressiveness of UCPOP with the efficiency of Graphplan. In
Steel, S., and Alami, R., eds., Recent Advances in AI Plan-
ning. 4th European Conference on Planning (ECP’97), vol-
ume 1348 of Lecture Notes in Artificial Intelligence, 221–
233. Toulouse, France: Springer-Verlag.
Goldberg, A. V., and Werneck, R. F. F. 2005. Comput-
ing point-to-point shortest paths from external memory. In
Demetrescu, C.; Sedgewick, R.; and Tamassia, R., eds., Pro-
ceedings of the 7th Workshop on Algorithm Engineering and
Experiments and the Second Workshop on Analytic Algo-
rithmics and Combinatorics (ALENEX/ANALCO’05), 26–
40. Vancouver, BC, Canada: SIAM.
Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. In Chien, S.; Kambhampati, R.;
and Knoblock, C., eds., Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS-00), 140–149. Breckenridge, CO: AAAI Press,
Menlo Park.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?

In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast Downward Stone Soup. In IPC 2011 planner abstracts,
38–45.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
Association for Computing Machinery. Accepted.
Hoffmann, J.; Edelkamp, S.; Thı́ebaux, S.; Englert, R.; Li-
porace, F.; and Trüg, S. 2006. Engineering benchmarks for
planning: the domains used in the deterministic part of IPC-
4. Journal of Artificial Intelligence Research 26:453–541.
Jensen, R. M.; Bryant, R. E.; and Veloso, M. M. 2002.
SetA*: An efficient BDD-based heuristic search algorithm.
In Dechter, R.; Kearns, M.; and Sutton, R. S., eds., Pro-
ceedings of the 18th National Conference of the American
Association for Artificial Intelligence (AAAI-02), 668–673.
Edmonton, AL, Canada: AAAI Press.
Kissmann, P., and Edelkamp, S. 2011. Improving cost-
optimal domain-independent symbolic planning. In Bur-
gard, W., and Roth, D., eds., Proceedings of the 25th Na-
tional Conference of the American Association for Artificial
Intelligence (AAAI-11), 992–997. San Francisco, CA, USA:
AAAI Press.
Kissmann, P., and Hoffmann, J. 2013. What’s in it for my
BDD? On causal graphs and variable orders in planning. In

83

Borrajo, D.; Fratini, S.; Kambhampati, S.; and Oddi, A.,
eds., Proceedings of the 23rd International Conference on
Automated Planning and Scheduling (ICAPS’13), 327–331.
Rome, Italy: AAAI Press.
McMillan, K. L. 1993. Symbolic Model Checking. Kluwer
Academic Publishers.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of Artificial
Intelligence Research 12:271–315.
Rudell, R. 1993. Dynamic variable ordering for ordered
binary decision diagrams. In Lightner, M. R., and Jess, J.
A. G., eds., Proceedings of the 1993 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD-93),
42–47. Santa Clara, CA, USA: IEEE Computer Society.

84

Optimal Planning using Flow-Based Heuristics

Blai Bonet
Universidad Simón Bolı́var

Caracas, Venezuela
bonet@ldc.usb.ve

Menkes van den Briel
NICTA & Australian National University

Canberra, Australia
menkes@nicta.com.au

Overview
We incorporate flow-based heuristics (Bonet and van den
Briel 2014) into the Fast Downward planning system
(Helmert 2006). Flow-based heuristics are defined by the
solution of a linear programming (LP) problem that models
state variables in the planning problem as network flows.
The idea of modeling state variables as network flows
has been explored in previous works (Vossen et al. 1999;
van den Briel, Vossen, and Kambhampati 2005), but using
the corresponding LP solution as heuristic is more recent
(van den Briel et al. 2007; Bonet 2013; Bonet and van den
Briel 2014).

Flow-based heuristics can be quite informative on some
planning tasks as they are not bounded by the optimal delete-
relaxation heuristic h+. Their heuristic value, however, can
be improved considerably by adding a variety of constraints
(Pommerening et al. 2014). In our planner, we add con-
straints derived from action landmarks and from variable
merges. While adding constraints can increase the heuris-
tic estimate, it generally also increases the heuristic evalu-
ation. Hence, we tradeoff increased heuristic quality with
increased heuristic computation time.

Below we provide a brief description of our LP model
and discuss the additional constraints derived from action
landmarks and variable merges.

Linear Programming Model
We consider SAS+ planning with non-negative action costs.
A SAS+ problem is a tuple P = 〈V,A, s◦, s?, c〉 where V
is a set of variables, each variableX ∈ V with finite domain
DX , A is a set of actions, s◦ is the initial state, s? is a goal
description, and c : A→ N are non-negative action costs.

An atom in SAS+ planning is a literal of the form X = x
where X is a variable and x ∈ DX is a variable value. For
atom p, Var(p) and Val(p) denote the variable and variable
value of p.

A SAS+ action is a triple 〈Pre,Post,Prev〉, with Pre the
set of preconditions, Post the set of post conditions, and Prev
the set of prevail conditions of the action. The domain transi-
tion graph (DTG) for a variable X ∈ V is a labeled directed
graph with nodes for each value in DX and a labeled arc for

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

each transition in X . Labels corresponds to actions in the
planning problem and because actions can cause the same
transitions, arcs may have multiple labels.

In flow-based heuristics the planning problem is repre-
sented as a set of interacting network flow problems. Each
variable X ∈ V corresponds to a separate network flow
problem, where nodes correspond to the variable values
x ∈ DX and arcs correspond to the transitions between
these values. These network flow problems are loosely con-
nected as actions may cause transitions in multiple variables.
A flow for a planning task P = 〈V,A, s◦, s?, c〉 is a func-
tion f : A → R+ mapping arc labels into non-negative real
numbers. A plan π defines an integral flow fπ where fπ(a)
is the number of occurrences of a in π.

For each atom p we setup the inequality over flows f :
A→ R+:

LBp ≤
∑

(x′,a,x)∈TX

f(a) −
∑

(x,a,x′)∈TX

f(a) ≤ UBp (1)

where TX is the set of transitions for the DTG and LBp
and UBp are lower and upper bounds for the flow on p.
The lower and upper bounds can be determined by checking
whether p is in the initial state and/or in the goal description.

Action Landmarks
Action landmarks, or landmarks, (Hoffmann, Porteous, and
Sebastia 2004; Helmert and Domshlak 2009) are state de-
pendent. That is, landmarks that apply to one state may
not necessarily apply to another state. For this reason,
constraints derived from landmarks are added and removed
from the LP model each time we evaluate a state. We
compute landmarks using the LM-cut method (Helmert and
Domshlak 2009).

Given a collection L = {Li}ni=1 of landmarks, a land-
mark L ∈ L for state s says that any plan for s must contain
at least one action in L. In other words, landmark L induces
a constraint of the form

∑
a∈L f(a) ≥ 1 on any flow f for

P . Since the collection of landmarks depends on the state s,
landmark constraints are added to the LP when calculating
the heuristic for state s and removed afterwards.

Variable Merges
Variable merges (Helmert, Haslum, and Hoffmann 2007;
van den Briel et al. 2007) combines two or more variables

85

into one “super” variable. Whenever we create a merge,
we represent the new variable as a network flow problem
just like all the other variables. The problem with merged
variables is that they typically have many more values than
the variables it is composed of. Therefore, representing the
complete network flow problem of each merged variable can
become quite costly. In order to control the size of the LP
model we use the concept of dynamic merging (Bonet and
van den Briel 2014). Dynamic merging allows us to be very
selective with merging variables. It allows us to incremen-
tally merge more and more variables and allows us to incre-
mentally merge the variables.

Engineering Considerations
Our implementation of variable merging is different from
the merge-and-shrink heuristic (Helmert, Haslum, and Hoff-
mann 2007). In merge-and-shrink, variables are literally
merged away. For example, after merging variables X and
Y into the variable XY , only one variable exists, which is
the variable XY . Our implementation of variable merging
is similar to van den Briel et al. (2007) where no variable is
ever removed. Thus, after merging variables X and Y into
XY , three variables remain, X , Y , and XY . There are ad-
vantageous and disadvantageous for both implementations.
The reason for not removing variables X and Y is that they
can still be used in other merges. For example, we may only
be interested in the merged variables XY and XZ, but not
in the variable XY Z, which would not be possible in the
implementation the merge-and-shrink heuristic.

Dynamic merging can be tricky to implement. The main
thing is to avoid coding the complete variable merge. With
dynamic merging we can partially merge variables which
prevents us from having to create the cross product of do-
mains as is done when merging variables in the traditional
way. This helps us to keep the size of the LP model a small
as possible.

Merging Strategy
Deciding when to merge and what to merge are two im-
portant questions that determine the success or failure of a
merge strategy. Here, we adopt a simple merge strategy that
considers pairs of atoms such that one atom is the prevail
condition and the other atom is the precondition of an ac-
tion. At a higher level, we look for causal links in the causal
graph (Helmert 2004) that are introduced by actions with a
prevail condition in one variable X ∈ V and an effect in
another variable Y ∈ V .

Note that, some hierarchical planners can handle causal-
ities quite well and simply incorporate them directly into
the hierarchical structure. For example, in a classic logis-
tics planning task, a hierarchical planner may first find a
plan for each package, then use these plans to impose or-
dered conditions on the trucks, and then find a plan for each
truck. By merging variables we, in effect, handle causalities
by “removing” or “compiling-in” the causal links between
variables into the new merged variables.

We recognize that our merge strategy is by no means com-
prehensive as we ignore many other causal links between the

variables. We do believe, however, that there is ample oppor-
tunity to try other, more involved, merge strategies in future
work.

Acknowledgements
NICTA is funded by the Australian Government through
the Department of Communications and the Australian Re-
search Council through the ICT Centre of Excellence Pro-
gram.

References
Bonet, B., and van den Briel, M. 2014. Flow-based heuris-
tics for optimal planning: Landmarks and merges. In Proc.
ICAPS. Portsmouth, NH: AAAI Press. To appear.
Bonet, B. 2013. An admissible heuristic for SAS+ plan-
ning obtained from the state equation. In Proc. IJCAI, 2268–
2274.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS, 162–169. Thessaloniki, Greece: AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proc. ICAPS, 176–183. Providence, RI: AAAI Press.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS, 161–170. Whistler, Canada:
AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215–278.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. Lp-based heuristics for cost-optimal planning. In
Proc. ICAPS. Portsmouth, NH: AAAI Press. To appear.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Proc. CP, 651–665. Springer: LNCS 4741.
van den Briel, M.; Vossen, T.; and Kambhampati, S. 2005.
Reviving integer programming approaches for ai planning:
A branch-and-cut framework. In Proc. ICAPS, 310–319.
AAAI Press.
Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. 1999. On the
use of integer programming models in AI planning. In Proc.
IJCAI, 304–309. Stockholm, Sweden: AAAI Press.

86

h++ and h++
ce

(IPC 2014 Planner Abstract)

P@trik Haslum
Australian National University & NICTA Optimisation Research Group

firstname.lastname@anu.edu.au

Introduction
h++ and h++

ce are not planners. They are incremental lower-
bounding procedures, based on repeatedly computing cost-
optimal plans for a relaxation of the planning problem and
strengthening the relaxation. If the relaxed plan is valid also
for the real (unrelaxed) problem, it is an optimal plan. It is
in this way that they can be used as cost-optimal planners.

The complete details of the h++ and h++
ce procedures are

presented in the following papers:
• Patrik Haslum. “Incremental Lower Bounds for Additive

Cost Planning Problems”. ICAPS 2012.
• Emil Keyder, Joerg Hoffmann and Patrik Haslum. “Semi-

Relaxed Plan Heuristics”. ICAPS 2012.
• Patrik Haslum. “Optimal Delete-Relaxed (and Semi-

Relaxed) Planning with Conditional Effects”. IJCAI
2013.

• Patrik Haslum, John Slaney and Sylvie Thiébaux. “Min-
imal Landmarks for Optimal Delete-Free Planning”
ICAPS 2012.

This abstract presents only a brief overview of the approach,
and notes the few points on which the IPC 2014 versions
differ from the previously published descriptions.

Incremental Semi-Relaxation
The initial relaxation is the standard delete relaxation, P+,
of the original problem P . Strengthening is done by a semi-
relaxing transformation of P into a new problem. Two trans-
formations are used: PC (in h++) and PC

ce (in h++
ce), where

C, a set of conjunctions of propositions in the input prob-
lem, is a parameter of both. The central property of the
semi-relaxing transformations is that h?(PC) = h?(PC

ce) =
h?(P) but h+(PC) ≥ h+(PC

ce) ≥ h+(P). In other words,
they preserve optimal plan cost, but, for some C, increase
the optimal relaxed plan cost. For a sufficiently large set
C, h+(PC) = h+(PC

ce) = h?(P). This is achieved by
introducing new propositions that correspond to the selected
conjunctions. To maintain the correspondence, actions in the
problem have to be modified. The two transformations differ
in how this is done. The PC construction yields a STRIPS
problem (assuming STRIPS input) but may be exponential
in |C|. The PC

ce construction instead outputs a problem with
conditional effects. It can also grow exponentially, but only

in the number of minimal effect conditions that cause the
same action to simultaneously add and delete part of some
conjunction c ∈ C. The PC

ce construction is weaker, in the
sense that h+(PC) ≥ h+(PC

ce) with strict inequality for
some P and C.

The set of conjunctions considered in the semi-relaxing
transformation is found incrementally. In each iteration, an
optimal relaxed plan for the current problem is found. If this
plan fails to solve the real (unrelaxed) problem, the failure is
analysed to find a set of new conjunctions, termed “flaws”,
such that representing those in the next relaxation prevents
the same plan from being found again. Flaw extraction is
complete for the PC construction, meaning that it will al-
ways generate a sufficient set of conjunctions. For the PC

ce
construction, there exist cases where a sufficent set of flaws
may not be found. In this situation, h++

ce terminates with
failure.

The optimal relaxed plan is found using the iterative
landmark algorithm, as described by Haslum, Slaney &
Thiébaux (2012), with one modification: Optimal hitting
set problems are formulated as integer programs and solved
with the CPLEX IP solver, in place of the branch-and-bound
algorithm described in that paper.

Handling of Conditional Effects
h++ compiles away conditional effects (using the standard
exponential compilation) from the input problem. Since it
uses the PC construction, no new conditional effects are
generated. Thus, it operates only with STRIPS problems.

Since h++
ce uses the PC

ce construction, which introduces
conditional effects, it also keeps any conditional effects
present in the input problem. An incremental compilation
approach is used to compute h+ with conditional effects. It
relaxes the association between conditional effects and ac-
tions (allowing effects to “float”) to yield a (delete-relaxed)
STRIPS problem. An optimal plan for this problem is found,
and scheduled into a plan for the delete-relaxed problem
with conditional effects. If scheduling is not possible, due
to cyclic dependencies, a subset of conflicting effects are
compiled away (using the exponential compilation) and the
process repeats.

87

Metis: Arming Fast Downward with Pruning and Incremental Computation

Yusra Alkhazraji
University of Freiburg, Germany

alkhazry@informatik.uni-freiburg.de

Michael Katz
IBM Haifa Research Labs, Israel

katzm@il.ibm.com

Robert Mattmüller
University of Freiburg, Germany

mattmuel@informatik.uni-freiburg.de

Florian Pommerening
University of Basel, Switzerland
florian.pommerening@unibas.ch

Alexander Shleyfman
Technion, Haifa, Israel
alesh@technion.ac.il

Martin Wehrle
University of Basel, Switzerland

martin.wehrle@unibas.ch

Introduction
Metis is a sequential optimal planner that implements three
components on top of the Fast Downward planning sys-
tem (Helmert 2006). The planner performs an A∗ search
using the following three major components:

• an admissible incremental LM-cut heuristic (Pommeren-
ing and Helmert 2013),

• a symmetry based pruning technique (Domshlak, Katz,
and Shleyfman 2012), and

• a partial order reduction based pruning technique based
on strong stubborn sets (Wehrle and Helmert 2012).

Each of those techniques was extended to support condi-
tional effects. In addition, Metis features a flexible invoca-
tion of partial order reduction based pruning. In what fol-
lows, we describe each of these components in detail.

Background
We consider planning tasks Π = 〈V ,O, s0, G,Cost〉 cap-
tured by the standard SAS+ formalism (Bäckström and Klein
1991; Bäckström and Nebel 1995) with operator costs, ex-
tended by conditional effects. In such a task, V is a set
of finite-domain state variables, each with domain D(v).
Each complete assignment to V is called a state, and S =∏

v∈V D(v) is the state space of Π. The state s0 is the initial
state of Π. We sometime refer to a single variable assign-
ment as to fact. Furthermore, the goal G is a partial assign-
ment to V , where a state s is a goal state, iff G ⊆ s1. The
set O is a finite set of operators. Each operator o is given by
a pair 〈pre, effs〉. The precondition pre(o) is a partial assign-
ment to V that defines when the operator is applicable. The
set effs(o) is a set of conditional effects e, each given by a
pair 〈cond, eff〉 of partial assignments to V called conditions
and effects. The condition cond(e) defines when the condi-
tional effect triggers. For a shorter presentation, we assume
that eff assigns a value to exactly one variable. An effect
that assigns a value to more variables can be split into mul-
tiple effects. Effects that do not assign a value at all can be
safely removed. Finally, Cost : O → N0 is a real-valued,

1We slightly abuse the notation here, treating (partial) assign-
ments as sets of facts.

non-negative operator cost function. Applying an applica-
ble operator o in state s results in a state denoted by s[o].
The state s[o] is obtained from s by applying all triggered
conditional effects of o, setting the value of the state vari-
able to the value in eff(e). State variables that do not appear
in triggered effects receive their values from the state s. By
the transition graph TΠ = 〈S,E〉 of Π we refer to the edge-
labeled digraph induced by Π over S: if o ∈ O is applicable
in state s, then TΠ contains an edge (s, s[o]; o) from s to s[o],
labeled with o.

Heuristic
Metis uses a variant of the admissible LM-cut heuristic
(Helmert and Domshlak 2009). In particular, we use the
local incremental LM-cut heuristic, hiLM-cut

local (Pommerening
and Helmert 2013) extended to support conditional effects.
In the following, we provide a short rehash how the compu-
tation of standard LM-cut works, and afterwards discuss the
two extensions.

The computation of standard LM-cut is done in rounds.
Each round discovers a set of operators L such that every
plan must contain at least one operator from L. Such a set
is called a disjunctive action landmark but since we do not
use any other kinds of landmarks, we will just use the term
landmark in the following.

Each round of the LM-cut algorithm does the following
steps:

1. Compute the hmax values (Bonet and Geffner 2001) of all
variables. If the goal has an infinite hmax value, the task
is unsolvable and the heuristic computation stops with a
heuristic value of ∞. If the goal has an hmax value of 0,
the algorithm stops with the current heuristic value (which
is initialized as 0).

2. Define the justification graph as the graph J = (F,E)
with the set of facts F as nodes and a directed, weighted
edge in E for every effect of every operator. The edge for
effect e of operator o starts from a precondition of o with
maximal hmax value, ends in the single fact in eff(e) and
is labeled with o and weighted withCost(o). All nodes in
the justification graph that have a path to the goal where
all edges have weight 0 belong to the goal zone Fg ⊆ F .

88

The cut C contains all edges that end in Fg and start in a
node that can be reached in J without traversing a node in
Fg . The set of operators that occur as labels of edges in C
is a landmark L of the task.

3. The cost of L, Cost(L), is the minimum over the cost of
all operators contained in L. This reflects that at least the
cost of one operator in Lmust be used. Reduce the cost of
each operator in L by Cost(L) and increase the heuristic
value by Cost(L). This induces a cost partitioning and
makes the final estimate admissible.

4. Discard L.

After the last round, all operator costs are reset to their
original value.

Support for Conditional Effects
The original LM-cut algorithm is only defined for tasks
without conditional effects. We extended its definition to
handle conditional effects by considering them in the def-
inition of the justification graph in step 2. and conserva-
tively reducing the operator costs in step 3. (Keyder, Hoff-
mann, and Haslum 2012). Following the naming convention
of Röger, Pommerening, and Helmert (2014), we call this
heuristic hLM-cut

basic .
Our extended definition of the justification graph handles

unconditional effects as before, and includes an edge for ev-
ery conditional effect. The edge for an effect e of an opera-
tor o ends in the single fact in eff(e) and starts in a fact from
pre(o)∪cond(e) with maximal hmax value. It is labeled with
o and weighted with Cost(o). The cut C and the landmark
L are defined as before.

We call the reduction in cost conservative because the cost
of each operator can only be counted once. Once an opera-
tor o is part of a cut, the cost of o is reduced, and all effects
of o are cheaper. In the presence of conditional effects the
optimal relaxed plan can contain operators more than once
which our heuristic would not be able to detect. For this
reason our heuristic no longer dominates the hmax heuristic
(Keyder, Hoffmann, and Haslum 2012). Röger, Pommeren-
ing, and Helmert (2014) describe a variant of LM-cut that
dominates hmax but this is not implemented in Metis.

The original LM-cut heuristic (without support for condi-
tional effects) hLM-cut

standard is the same as hLM-cut
basic on tasks without

conditional effects but can be implemented more efficiently
because the involved data structures have less memory and
time overhead. Metis thus includes both implementations
and uses hLM-cut

basic only on tasks where at least one operator
has a conditional effect.

Incremental Computation
A set of operators L is a landmark for state s if every plan
from s must use one operator from L. If we apply an opera-
tor o /∈ L to s, the resulting state s′ can only have plans that
are suffixes of plans for s. That is, if we add o in front of
any plan π for s′, we get a plan for s. Since every plan for
s must use an operator from L and o /∈ L, every plan for s′
must also use an operator from L and L is also a landmark
for s′.

In particular, this means that during the expansion of a
state all landmarks that do not mention the applied operator
are also landmarks of the successor. If we know landmarks
L of the parent state when we calculate the heuristic value
for a newly generated state, we can compute the set of land-
marks L′ = {L ∈ L | o /∈ L} of all landmarks that do not
mention the applied operator o. For each L ∈ L′ we then
reduce the operator costs and increase the heuristic value as
defined in step 3. and continue with the regular LM-cut al-
gorithm.

Storing the discovered landmarks for all generated states,
can make the heuristic computation much faster but also re-
quires a lot of memory (Pommerening and Helmert 2013).
Instead, we use the local incremental computation method
hiLM-cut

local which recomputes the landmarks of a state before it
is expanded. This is done with a regular (non-incremental)
LM-cut computation that skips step 4. The landmarks are
then stored temporarily, used for the incremental heuris-
tic computation of the generated children and are then dis-
carded. With this method the search will do one non-
incremental heuristic computation for every expanded state
and one incremental computation for every generated state.
Since there usually are a lot more generated than expanded
states and the incremental computation is faster, the time for
the additional non-incremental computation can be amor-
tized.

Symmetry Reduction
The symmetry pruning part of the Metis planner modifies the
A∗ algorithm to prune symmetrical search nodes. For that,
we needed to (a) develop a mechanism identifying symmet-
rical states, and (b) exploit the information in the search. In
what follows, we describe these two in detail.

Symmetries and Conditional Effects
In what follows, we discuss the symmetries of of the state
transition graph TΠ of a SAS+ planning task Π that are cap-
tured by automorphisms (isomorphisms to itself) of TΠ. As
the state transition graph TΠ is not (and cannot be) given ex-
plicitly, automorphisms of TΠ must be inferred from the de-
scription of Π. The specific method that Pochter, Zohar, and
Rosenschein (2011) proposed for deducing automorphisms
of TΠ exploits automorphisms of a certain graphical struc-
ture (colored graph), the problem description graph (PDG),
induced by the description of Π. Later, Domshlak, Katz, and
Shleyfman (2012) slightly modified the definition, in partic-
ular extending it with a support for non-uniform cost oper-
ators. Here we extend the definition of Domshlak et al. to
support conditional effects.

In the regular SAS+ setting, the PDG has one node for
each operator, with incoming edges from variable values in
the operator precondition, and outgoing edges to variable
values in the effect. The operator nodes are colored accord-
ing to their costs. When conditional effects come into the
picture, an additional node is introduced for each conditional
effect. The edges for such nodes are as follows. An incom-
ing edge is added from each variable value in the effect’s
condition. An outgoing edge is added to the variable value

89

in the effect. In addition, to preserve the connection between
the conditional effect to its operator, an incoming edge is
added from the operator node. The color of the conditional
effect nodes is the same as the color of the corresponding
operator node.

Automorphisms of the PDG define isomorphisms on the
states S of the planning task Π, such that if a state s is
mapped into s′, then s and s′ are symmetrical. Given a set
of automorphisms of the PDG, Pochter et al. define a proce-
dure, mapping each state to a canonical symmetrical state.
Obviously, there can be multiple ways to define canonical
states. Pochter et al. have chosen a local search procedure,
comparing states by their variable values. The procedure ter-
minates with a local minimum. Our implementation adopts
their approach with a minor modification to the local search
procedure.

Search Algorithm
In order to exploit the information about the problem’s sym-
metries, Domshlak, Katz, and Shleyfman (2012) propose a
sound and complete optimal search algorithm (hereafter re-
ferred to as DKS), extending A∗ as follows. First, DKS ex-
tends the duplicate elimination mechanism to consider sym-
metrical states as duplicates. To do so, DKS requires stor-
ing an additional information for each node – the canoni-
cal state. Two states are then said to be duplicates, if their
canonical state is the same. Unfortunately, using such du-
plicate elimination comes at a certain cost. When reopening
is required, the parent relation, if updated, loses the connec-
tivity property. Thus, once a goal state is reached, it is no
longer possible to retrace a path from the goal state by the
parent relation. Therefore, DKS introduced a procedure ex-
ploiting the symmetry information for reconstructing a plan
following the parent relation, without requiring its connec-
tivity.

To overcome the aforementioned requirement of storing
an additional state per node for duplicate elimination, we in-
troduce a simple modification of the DKS search algorithm.
It is called orbit search, and it differs from DKS by storing
only the canonical state per node. These canonical states de-
fine orbits, sets of (symmetrical) states that have the same
canonical state – thus the name orbit search. Informally,
orbit search searches in the space of orbits instead of the
space of states. Note that due to the plan reconstruction pro-
cedure of DKS, the implementation of orbit search is ex-
tremely simple. The syntactical difference between A∗ and
orbit search is minor, the states are replaced by their canon-
ical representatives when stored in the open and close lists.
Our preliminary experiments have shown an advantage of
orbit search over DKS, and the less complex implementa-
tion makes it especially attractive.

Partial Order Reduction
In addition to symmetry pruning, Metis features a prun-
ing technique based on strong stubborn sets for planning
(Wehrle and Helmert 2012), which is a state-based prun-
ing technique based on partial order reduction (POR). In a
nutshell, POR attempts to reduce the size of the reachable

state space by pruning redundant applications of operator se-
quences. In the following, we describe strong stubborn sets,
and their extension to support operators with conditional ef-
fects.

Strong Stubborn Sets
Let Π be a SAS+ planning task without conditional effects.
For a state s in Π, a strong stubborn set Ts in s is a set of op-
erators that satisfy the following three requirements: First,
Ts contains the operators of a disjunctive action landmark.
Second, for all operators o in Ts that are applicable in s, Ts
contains all operators that interfere with o. Informally, oper-
ators o and o′ interfere if o falsifies a precondition of o′, or
vice versa, or o and o′ write to a common variable with dif-
ferent values (see below for a definition in presence of oper-
ators with conditional effects). Third, for all non-applicable
operators o in Ts, Ts contains a necessary enabling set for o
in Ts. A necessary enabling setN for an inapplicable opera-
tor o in s is a set of operators such that every plan πs from s
to a goal state that includes o must include an operator from
N before the first occurrence of o in πs. We compute strong
stubborn sets Ts in s with a fixed-point iteration. Generat-
ing successors only based on the applicable operators in Ts
(instead of all operators applicable in s) preserves complete-
ness and optimality of A∗.

Metis features a rather straight-forward implementation
of strong stubborn sets, including some optimizations to re-
duce the induced computational overhead.

• Previous implementations of strong stubborn sets com-
pute the interference relation between operators in a pre-
processing step and cache the result (Alkhazraji et al.
2012; Wehrle et al. 2013). However, in domains with
many operators, the precomputation can run out of mem-
ory due to the quadratic number of operator pairs.
Metis computes the relation for operator interferences
(“which pairs of operators interfere?”) and achievers
(“which fact is added by which operator?”) on-the-fly and
caches the result until a limit of 100 million entries in total
is exceeded. In this case, we stop caching, and compute
the missing information on-the-fly without storing it.

• In order to avoid unnecessary computational overhead in-
duced by the fixed-point iteration for computing strong
stubborn sets, we switch off this computation if we do not
get significant pruning. In more detail, if it turns out that
the number of node generations is reduced by less than
one percent compared to not using POR after at least 1000
node expansions, then the computation of strong stubborn
sets is disabled for the rest of the search on this task.

• Necessary enabling sets for o and s are computed by se-
lecting a precondition fact f of o that is unsatisfied in
s, and including all operators that set f to true. Metis
uses a straight-forward instantiation by greedily selecting
the first unsatisfied precondition fact of o. This strategy
has been proposed by Alkhazraji et al. (2012), and corre-
sponds to the static Fast Downward ordering investigated
by Wehrle and Helmert (2014). Analogously, the disjunc-
tive action landmark used to start the fixed-point iteration

90

to compute strong stubborn sets is obtained by selecting
all achievers of an unsatisfied goal fact.

In the following, we describe the extension of the above
implementation to deal with conditional effects.

Support for Conditional Effects
Metis treats operators with conditional effects in a conserva-
tive (and straight-forward) way based on the following mod-
ifications.

• Definition of operator interference: Operator o =
〈pre, effs〉 disables operator o′ = 〈pre′, effs′〉 iff there is
at least one conditional effect e = 〈cond, eff〉 ∈ effs(o)
such that eff falsifies a precondition fact in pre′ or a
fact in the effect condition cond′ for a conditional effect
〈cond′, eff ′〉 ∈ effs(o′). In other words, the conditions
of the conditional effects are handled exactly as precondi-
tions. Operators o and o′ have conflicting effects iff there
is a conditional effect e = 〈cond, eff〉 ∈ effs(o) and a con-
ditional effect e′ = 〈cond′, eff ′〉 ∈ effs(o′) such that eff
and eff ′ modify the same variable with a different value.
Operators o and o′ interfere if o disables o′, or vice versa,
or o and o′ have conflicting effects.

• During the iterative computation of a strong stubborn set
Ts in state s, for all operators o = 〈pre, effs〉 applica-
ble in s, we add all operators that interfere with o as for
SAS+ planning tasks. In addition, for conditional effects
e = 〈cond, eff〉 ∈ effs(o) with unsatisfied effect condi-
tion cond in s, the set of achievers for an unsatisfied fact
of cond is added. Adding such sets is required for preserv-
ing the soundness of the algorithm. Intuitively, such sets
correspond to necessary enabling sets for non-applicable
operators as compiling away conditional effects would re-
sult in corresponding non-applicable operators.

Finally, in domains that do not feature conditional effects,
Metis additionally performs pruning based on active opera-
tors (Wehrle et al. 2013).

Interaction of Components
The partial order reduction technique is orthogonal to the
other two techniques. There are no special considerations to
consider when combining it with either one or both of them.

However, combining the symmetry based pruning tech-
nique with the incremental computation of the heuristic
function requires some extra considerations. If a node with
state s is expanded in orbit search, the state s′ of the suc-
cessor generated for operator o is not necessarily the result
of applying o to s. Orbit search instead uses the canonical
representative of s[o] as the state s′. Calculating landmarks
for s and re-using those that do not mention o as landmarks
for s′ thus is no longer valid.

We handle this issue in the following way: during the ex-
pansion of state s, we compute the landmarks for s, then
generate the actual successor s[o] and incrementally com-
pute its heuristic value. We then look up s′, the canonical
representative of s[o]. Because of the symmetry between
the two states, the heuristic value of s[o] can also be used

as an admissible estimate for s′. The search algorithm gen-
erates the successor node with the state s′ but the heuristic
value hiLM-cut

local (s[o]). The state s[o] is not stored permanently
to save memory.

Acknowledgments
This work was partly supported by the German Research
Foundation (DFG) with grant HE 5919/2-1 and by the Swiss
National Science Foundation (SNSF) as part of the project
“Safe Pruning in Optimal State-Space Search (SPOSSS)”.

References
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert,
M. 2012. A stubborn set algorithm for optimal planning. In
Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI), 891–892.
Bäckström, C., and Klein, I. 1991. Planning in polyno-
mial time: The SAS-PUBS class. Computational Intelli-
gence 7(3):181–197.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In Proceedings of the 22nd International Con-
ference on Automated Planning and Scheduling (ICAPS).
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: Whats the difference anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS).
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 128–136.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Ex-
ploiting problem symmetries in state-based planners. In
Proceedings of the 25th AAAI Conference on Artificial In-
telligence (AAAI).
Pommerening, F., and Helmert, M. 2013. Incremental lm-
cut. In Proceedings of the 23nd International Conference on
Automated Planning and Scheduling (ICAPS), 31–41.
Röger, G.; Pommerening, F.; and Helmert, M. 2014. Opti-
mal planning in the presence of conditional effects: Extend-
ing LM-Cut with context splitting. In ICAPS 2014 Workshop
on Heuristics for Domain-Independent Planning.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Proceedings of the 22nd International Conference on Auto-
mated Planning and Scheduling (ICAPS), 297–305.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Pro-

91

ceedings of the 24th International Conference on Automated
Planning and Scheduling (ICAPS). To appear.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller,
R. 2013. The relative pruning power of strong stubborn
sets and expansion core. In Proceedings of the 23rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 251–259.

92

RIDA:In Situ Selection of Heuristic Subsets

Santiago Franco and Mike Barley and Pat Riddle
Computer Science Department

Auckland University
Auckland, New Zealand

Abstract

Progress has been made in developing techniques to
automatically generate effective heuristics. These tech-
niques aim to reduce the size of the search tree, usually
by combining more primitive heuristics. However, sim-
ply reducing search tree size is not enough to guarantee
that problems will be solved more quickly. In this pa-
per we summarize the planner RIDA*, a new approach
to automatic heuristic generation that combines more
primitive heuristics in a way that can produce better
heuristics than current methods. A more complete de-
scription can be found in (Barley, Franco, and Riddle
2014).

Introduction
In this paper we briefly describe the planning system called
RIDA*1 Most of the information given in this paper is taken
from (Barley, Franco, and Riddle 2014).

In the last few years, multiple techniques (Haslum et al.
2007; Haslum, Bonet, and Geffner 2005; Edelkamp 2007;
Nissim, Hoffmann, and Helmert 2011; Helmert, Haslum,
and Hoffmann 2007; Pommerening and Helmert 2012; Pom-
merening, Röger, and Helmert 2013) have been developed
to automatically generate heuristics from domain and prob-
lem specifications. In this paper, we call the components that
generate these heuristics heuristic generators. Frequently,
different heuristic generators perform better on different do-
mains. In some cases, combining different heuristic genera-
tors can result in either solving more problems or reducing
the overall solving times.

RIDA* chooses heuristics by reasoning about how those
choices will impact the problem-solver’s search time.
RIDA* is able to reason about a heuristic’s impact on search
time because it measures both per node generation time and
per node heuristic evaluation time. RIDA* then uses a run-
time formula to predict the impact of a heuristic upon search
time by using its estimates of the heuristic’s impact on the
average time per node and on the tree size. In this way

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1(Barley, Franco, and Riddle 2014) referred to the planning sys-
tem as RA*, but for the planning competition its name was changed
to RIDA* because order planners had similar names.

RIDA* can base its choice of heuristics upon their predicted
impact on search time.

RIDA* is implemented on top of Fast Downward.
For the planning competition we are using the following
PDB-based heuristics: GA-PDBs(Edelkamp 2007),PDB-
LP(Pommerening, Röger, and Helmert 2013), iPDB(Haslum
et al. 2007) as implemented in Fast Downward. We are also
using Incremental-lmcut(Pommerening and Helmert 2012)
and blind (brute force A*) search. Surprisingly, for domains
in which the heuristics do not do well having the option of
blind search can solve a few more problems. Finally, when
dealing with conditional effect domains, we use a different
heuristic set including just hmax(Bonet and Geffner 2001)
and blind. These are the only two heuristics available to
us which can deal with conditional effects. We are aware
that conditional effects can be ”compiled away” but this fre-
quently results in unwieldy computational increases, so we
decided to stick to those heuristics which can deal with con-
ditional effects.

Planner Description
Our approach’s focus is on reducing the overall system’s
time to solve the problem. RIDA* trades the quality of the
selected combination against the cost of making that selec-
tion. We try to reduce this selection cost primarily by reduc-
ing the time to predict each combination’s effective branch-
ing factor.

RIDA* predicts the expected time to fully expand the cur-
rent f-boundary for up to 20,000 different heuristic combi-
nations. In our experiments, the current implementation of
RIDA*’s heuristic generation process takes almost 70% of
the total problem solving time. The generation time includes
sampling time and utility calculation time.

We will first look at the different phases that RIDA* uses
in solving a problem, then at our utility formula, next at the
combination pruning heuristics used to reduce the combina-
torics of the selection process and finally at the mechanisms
that underlie our approach to reducing the time to approxi-
mate the combinations’ effective branching factors (EBFs):
the min combiner and culprit counters.

RIDA* Phases RIDA* inputs a set of heuristics and
heuristic generators and outputs a heuristic. To do this it
goes through a sequence of phases (which are described in

93

the next few sections):
• Run heuristic generators to produce “primitive” heuris-

tics.
• Time how long it takes to generate a node.
• Time how long each primitive heuristic takes to evaluate

a state.
• Initial Growth Period: Expand the initial part of the prob-

lem’s search tree, maximizing available heuristics, to an
adequate frontier size to start sampling.

• Sample Period: Nodes are taken from the frontier to ob-
tain information on each candidate combination’s EBFs.

• Estimate the utility for each candidate heuristic combina-
tion.

• Finish solving the problem with the best combination.

Utility Formula The utility formula for a combination c
is:

Uc,f =| Frontf | ∗EBFc,f ∗ (eRNc + gRN) (1)

where f is the current f-level, Frontf is the set of frontier
nodes at the beginning of f , EBFc,f is the effective branch-
ing factor at f for combination c, eRNc is the per node eval-
uation time, and gRN is the per node generation time. We
obtainEBFc,f from sampling this f-level as described in the
rest of this section. EBFc,f is all the sampled nodes by c in
that f-level divided by the number of sampled frontier nodes.
eRNc is the sum of the evaluation times of all the heuristics
in the combination.

Pruning Heuristics For any non-trivial set of heuristics,
the number of combinations is large. In our experiments, we
use a set of 45 heuristics. Thus there are 245 (approximately
32 ∗ 1012 combinations). Far too many to predict times for.
Instead, we want to eliminate as many of the clearly infe-
rior combinations as possible. To do this we use some rules
of thumb to identify and prune away less useful primitive
heuristics. We now discuss the main rules.

At the end of the initial growth period, we randomly se-
lect frontier nodes2 to grow during the sampling period. We
call these nodes the sample roots. We classify the primitive
heuristics into strong, medium, and weak by evaluating ev-
ery sample root using every heuristic. We count the times
each heuristic had the highest value for a sample root. If a
heuristic’s count is high enough3, it is called a strong heuris-
tic. Of the remaining heuristics, with associated non-zero
counts, the top user-specified percentage4are called medium
heuristics. The remaining ones are called weak. A combi-
nation candidate is defined to be one which has at least
one strong primitive heuristic, and the remainder are at least
medium primitive heuristics. We generate the set of com-
bination candidates in the ascending subset size order and
prune away the ones that do not meet our criteria (specified

2In our experiments RIDA* selects 1% of the previous f-level
to sample.

3In our experiments, the count must be more than half of the
number of samples taken.

4In our experiments, the user-specified percentage is 30%.

above). We stop generating after a user-specified number5,
MaxComb, of candidate combinations.

Min Combiner and the Search Tree We grow only one
search tree, a MinTree, rather than a separate tree for every
combination. We do this by using a min combiner. A min
combiner is very much like a max combiner, except that the
heuristic value of a min combiner over a set of heuristics is
the minimum value produced by that set of heuristics.

We need to grow the search tree deep enough, that our
approximations will be reasonable. We call this period, the
initial growth period . While we are in the initial growth
period, we use the max combiner to keep the tree size small.
When the tree is deep enough, at the end of an f-boundary,
we switch to using the min combiner for one f-level. We call
this f-level the sampling period. Using the max combiner, a
node is expanded only if all the heuristics agree to expand it.
However, for the min combiner, a node is expanded as long
as one of the heuristics wants to expand it.

Culprit Counters and Combination Counters In this
section we give a very brief overview of how RIDA* com-
putes the number of nodes generated by each heuristic com-
bination during the sampling period. Franco et al. (2013)
provide a more detailed description of this process.

During the sampling period, culprit counters are used to
compute the effective branching factors for each combina-
tion. The min combiner allows us to only grow one search
tree and the culprit counters allow us to only update one
counter (the culprit counter) per node expanded.

When we expand a node, the primitive heuristics that
agreed to the expansion are call the culprits. The culprits are
a subset of the full set of heuristics. We associate a counter
with each culprit set6, the culprit counter. When a node is
expanded in the sampling period, we add its number of chil-
dren to the counter associated with its culprit set.

When the sampling period is over, we now need to cal-
culate the number of nodes generated for each combination.
During the final search to find a solution, RIDA* will be
using the max combiner, which means that all the heuris-
tics in the combination must agree to generate a node for
it to be generated. This means that for each combination of
heuristics, we compute how many nodes would have been
generated for this f-level. For a given combination, we sum
all the culprit counters whose culprit set heuristics are a sub-
set of the combination’s heuristics. After the counts for all
the combinations have been summed, we can compute the
effective branching factor for each combination by dividing
its count by the number of sampled roots. We can also cal-
culate the per node evaluation time for that combination of
heuristics by adding together the per node evaluation time of
each heuristic in that combination.

Once, the effective branching factors and the per node
evaluation times have been calculated, then the utility for
each combination is calculated and the combination with the
highest utility is selected to finish the search for the solution.

5In our experiments, this was set to 20,000
6We only store counters for the culprit sets actually encountered

during the sampling period.

94

Current work
We have described the planner as in Barley et al (2014), in
the mean time we have made the following modifications.

First, we realized that our selection method is biased to-
wards more accurate heuristics. Lets say that we have two
heuristics, h1 and h2, and h1 is more accurate. Furthermore,
lets say that for one of the selected nodes in the sampling
phase the f-value of h2 (f2) is less than the f-value of h1. In
that case, the EBF we are calculating for h2 is incorrectly
assessed. This is due to the fact that for some of the ran-
domly selected sampled nodes, the lower accuracy heuris-
tics give a lower f-value. This results in RIDA* calculating
the EBF for h2 based on a bigger f-boundary transition. For
h1, we only sampled the last f-boundary transition. In or-
der for RIDA*’s selection to be unbiased, we need to ensure
that only a common f-boundary transition is sampled for all
heuristics. We have developed a mechanism, called subtract
counters, to eliminate this bias. The subtract counters have
the same structure as the culprit counters, but account for
every time a node is expanded bellow the currently sam-
pled f-level. When calculating the number of nodes gener-
ated for each heuristic combination, the corresponding sub-
tract counters are subtracted to eliminate any nodes whose
f-value is bellow the currently sampled f-level.

Secondly, we are dropping poor performing heuristics
more aggressively. If a heuristic’s f-value for the initial state
is below another heuristic we check whether it is signifi-
cantly more expensive (currently 10 times or more). If it is,
then we eliminate the more expensive heuristic. It is very
unlikely for such a heuristic to be part of RIDA*’s selected
combination.

Finally, RIDA* does not take into account memory costs.
This means that RIDA* can make a bad choice memory-
wise, i.e. the combination is the fastest but also runs out of
memory before other combinations which do find the solu-
tion before the memory limit is reached. The best way to deal
with this is to take memory costs into account in the utility
formula. However, this is ongoing work. For the competi-
tion we added two rules of thumb. First, if adding a heuris-
tic to the selected combination reduces the number of gen-
erated nodes while only increasing slightly (currently up to
20%) the overall expected solving time, we add the heuristic.
This rule of thumb aims to bias RIDA*’s selections towards
heuristic combinations with smaller memory footprints, as
long as the increase in solution time is reasonable. If we still
run out of memory, we use a second rule of thumb. We rerun
the search but select all the strong heuristics. Once again,
this is far from ideal, but it can help when RIDA* quickly
runs out of memory while it has only used a small portion of
the allocated time to solve the problem.

IPC 2011 Experiments
In (Barley, Franco, and Riddle 2014) we compare the per-
formance of RIDA* with both the primitive heuristics and
also the standard maximization/randomization combination
methods. Here we reproduce in Table 1 the results in terms
of number of problems solved under the ICP 2011 time and
memory limits. The list of primitive heuristics is missing the

PDB LP and Incremental LmCut heuristics, which were not
available at the time. The problems suite is the STRIPS op-
timal ICP2011 suite.

Looking at Table 1 we see that RIDA* was able to solve
187 of the 280 problems. This was better than the other sys-
tems. RIDA*’s heuristics failed to solve 5 of the 192 solved
by at least one of the systems. In each of these 5 cases,
RIDA*’s heuristic caused A* to exceed the memory limit
rather than the time limit. A clear improvement to RIDA*
would be to take the memory costs into account as well. This
is future work.

Finally, Table 2 shows that even though RIDA* solves
more problems, it is not the fastest method. The main rea-
son for this is that RIDA* uses most of its time (in average
70%) generating all of the alternative PDBs, while the other
methods only generate a subset of them. More detailed ex-
perimental data can be found in Barley et al (2014).

Avg. Std. Dev. Sum
GA-D 205.79 371.40 38,700
iPDB 227.68 469.94 43,700

GA-ND 232.68 333.67 44,700
RIDA* 284.97 319.38 54,700
LM-cut 446.62 699.15 85,800
MAX 453.31 571.95 87,000

RAND 517.68 607.15 99,400
hmax 706.12 820.01 136,000

Table 2: The Total Times for Solving Problems

Conclusions
Our main claim is that heuristic generators can suffer from
the utility problem. The utility problem is when the gen-
erator’s attempts to create heuristics that generate smaller
search trees also makes the system take longer to solve the
problem.

Creating better heuristics involves reasoning about the
heuristics’ impact upon search time. Smaller search trees do
not guarantee shorter search times. What is necessary, how-
ever, is for the heuristic combiner to make the best tradeoffs
between the heuristic’s reductions in the search tree size and
any additional per node evaluation costs. RIDA* is a sys-
tem that explicitly reasons about the heuristics’ impact on
the system’s search time. The experiments presented in this
paper were done in the 2011 IPC setting. These experiments
use a set of five state-of-the-art7 admissible heuristics and
compare RIDA*’s performance with two default approaches
(Max and Random). RIDA* is clearly superior to both ap-
proaches. These experiments also compare RIDA*’s perfor-
mance against the individual heuristics. RIDA*’s heuristics,
on average, reduce the search time more than any of the
individual approaches. More extensive analysis in (Barley,
Franco, and Riddle 2014) of the experiments indirectly sup-
port our claim that RIDA*’s superiority comes from its ex-
plicit reasoning about the heuristics’ impact on search time.

7This was true on 2012, when out ICAPS paper experiments
were performed. For the IPC 2014 competitions we have added
PDB LP and substituted LmCut with Incremental LmCut. We are
looking forward to review the results in the IPC 2014 domains.

95

Problems Solved Avg. # Heuristics
RIDA* problems solved (problems solved after sampling phase) Used By RIDA*

RIDA* GA-ND GA-D MAX iPDB LM-cut RAND hmax total GA iPDB LM-cut
Barman 4(4) 4 4 4 4 4 4 4 4 1.333 0.25 1

Elevators 19(9) 19 19 18 16 18 16 13 19 2.22 0 0
Floortile 6(4) 3 4 6 2 6 2 6 6 3.5 0 0.5

Nomystery 20(4) 20 20 20 18 14 20 8 20 3.25 0 0
Openstack 15(10) 16 16 13 16 16 15 16 16 1 0 0
Parcprinter 13(3) 13 13 13 11 13 10 11 13 1.67 0 0.33

Parking 7(7) 1 1 1 7 1 0 0 7 0 1 0
Pegsol 19(14) 19 19 17 18 17 17 17 19 6.86 0 0

Scanalyzer 14(4) 10 9 11 10 11 6 6 14 5 0 0
Sokoban 20(9) 20 20 20 20 20 20 20 20 0.67 0.67 0
Tidybot 13(11) 12 11 11 13 12 7 5 13 0.09 1 0

Transport 9(4) 10 10 8 6 6 7 6 10 1.25 0 0
Visitall 18(2) 16 17 17 16 10 13 9 18 7 0 0

Woodworking 10(5) 10 9 11 7 11 5 4 13 1.8 0 0
Total 187(92) 173 172 170 164 159 143 123 192 2.9 weighted average
Ratio .97(.49) .89 .88 .88 .85 .83 .74 .64

Table 1: Number of Problems Solved by Each System

While RIDA* generates better heuristic combinations,
how does it compare to other systems that generate heuris-
tics? In this paper we used the 2011 IPC criteria. The 2011
IPC criteria for deterministic optimal planners was the to-
tal number of problems solved under given time and mem-
ory constraints. RIDA* did best with 187 problems solved
out of 280, while the next best system, GA-ND, solved 173
problems. However, when we compared RIDA*’s total run-
time against the seven other systems, it came in 4th. This is
unsurprising as RIDA* generates all 43 PDBs (using GA-D,
iPDB, and GA-ND), while the top 3 systems (GA-D, iPDB,
and GA-ND) only generated 21, 1, and 21 PDBs, respec-
tively. The PDB generation time took up 70% of RIDA*’s
total time.

The greatest improvement for RIDA* would likely come
from better handling of PDB generation. Currently, all the
candidate PDBs are generated and then they are evaluated
at one time. It seems plausible that a better approach is to
adopt the approaches of iPDB and GA-PDB to integrate the
generation and evaluation of heuristics into an incremental
search. This integration would have the drawback of making
it more difficult to add new heuristic generators to RA*.

References
Barley, M.; Franco, S.; and Riddle, P. 2014. Overcoming the
utility problem in heuristic generation: Why time matters. In
ICAPS.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Edelkamp, S. 2007. Automated creation of pattern database
search heuristics. In Model Checking and Artificial Intelli-
gence, volume 4428 of LNCS. 35–50.
Franco, S.; Barley, M.; and Riddle, P. 2013. A new effi-
cient in situ sampling model for heuristic selection in opti-
mal search. In Australasian Joint Conference on Artificial
Intelligence.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,

S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissi-
ble heuristics for domain-independent planning. In AAAI.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS, 176–183.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
IJCAI, volume 3, 1983–1990.
Pommerening, F., and Helmert, M. 2012. Optimal planning
for delete-free tasks with incremental lm-cut. In ICAPS.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning.

Acknowledgments
This material is based on research sponsored by the
Air Force Research Laboratory, under agreement number
FA2386-12-1-4018. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of the Air Force Research Laboratory
or the U.S. Government.

We would also like to thank Malte Helmert, et al, for
making available the Fast Downward code repository and
the 2011 International Planning Competition domains and
problems. Both of these have made doing research a lot eas-
ier. We would also like to thank Florian Pommerening for
his generous contribution of two of the latest state-of-the-
art heuristic generators (PDB LP) and Incremental LmCut.
Finally also thanks to both Malte Helmert and Florian Pom-
merening for their generous and prompt technical guidance
whenever we had doubts on how FD worked.

96

The Rational Lazy A* Planner

Erez Karpas
CSAIL

MIT

David Tolpin
Tal Beja

Solomon Eyal Shimony
CS Department

Ben-Gurion University
Israel

Ariel Felner
ISE Department

Ben-Gurion University
Israel

Abstract

Rational lazy A∗ is a heuristic search algorithm which com-
bines two or more heuristics efficiently, where one is cheap
and less informative, and the other is expensive and more in-
formative. Rational lazy A∗ performs meta-reasoning to pre-
dict when the added pruning power from the more expensive
heuristic is worth the extra time needed to compute it. In this
paper, we present the rational lazy A∗ planner, which was
submitted to the sequential optimal track of the 2014 Interna-
tional Planning Competition.1

Introduction
The A∗ algorithm (Hart, Nilsson, and Raphael 1968) is a
best-first heuristic search algorithm guided by the cost func-
tion f(n) = g(n)+h(n). If the heuristic h(n) is admissible
(never overestimates the real cost to the goal) then the set
of nodes expanded by A∗ is both necessary and sufficient to
find the optimal path to the goal (Dechter and Pearl 1985).
This paper examines the case where we have several avail-
able admissible heuristics. Clearly, we can evaluate all these
heuristics, and use their maximum as an admissible heuris-
tic, a scheme we call A∗MAX . The problem with naive max-
imization is that all the heuristics are computed for all the
generated nodes. In order to reduce the time spent on heuris-
tic computations, Lazy A∗ (or LA∗, for short) evaluates the
heuristics one at a time, lazily. When a node n is gener-
ated, LA∗ only computes one heuristic, h1(n), and adds n
to OPEN. Only when n re-emerges as the top of OPEN is
another heuristic, h2(n), evaluated; if this results in an in-
creased heuristic estimate, n is re-inserted into OPEN. This
idea was briefly mentioned by Zhang and Bacchus (2012) in
the context of the MAXSAT heuristic for planning domains.
LA∗ is as informative as A∗MAX , but can significantly re-
duce search time, as we will not need to compute h2 for
many nodes.
LA∗ reduces the search time, while maintaining the in-

formativeness of A∗MAX . However, as noted by Domsh-
lak, Karpas, and Markovitch (2012), if the goal is to reduce
search time, it may be better to compute a fast heuristic on
several nodes, rather than to compute a slow but informative

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1This paper is based upon the original publication by Tolpin et
al. (2013).

heuristic on only one node. Based on this idea, they formu-
lated selective max (Sel-MAX), an online learning scheme
which chooses one heuristic to compute at each state. Sel-
MAX chooses to compute the more expensive heuristic h2
for node n when its classifier predicts that h2(n)− h1(n) is
greater than some threshold, which is a function of heuristic
computation times and the average branching factor. Fel-
ner et al. (2011) showed that randomizing a heuristic and
applying bidirectional pathmax (BPMX) might sometimes
be faster than evaluating all heuristics and taking the max-
imum. This technique is only useful in undirected graphs,
and is therefore not applicable to some of the domains in
this paper. Both Sel-MAX and Random compute the result-
ing heuristic once, before each node is added to OPEN while
LA∗ computes the heuristic lazily, in different steps of the
search. In addition, both randomization and Sel-MAX save
heuristic computations and thus reduce search time in many
cases. However, they might be less informed than pure max-
imization and as a result expand a larger number of nodes.

We then combine the ideas of lazy heuristic evaluation
and of trading off more node expansions for less heuristic
computation time, into a new variant of LA∗ called ratio-
nal lazy A∗ (RLA∗). RLA∗ is based on rational meta-
reasoning, and uses a myopic value-of-information criterion
to decide whether to compute h2(n) or to bypass the compu-
tation of h2 and expand n immediately when n re-emerges
from OPEN. RLA∗ aims to reduce search time, even at the
expense of more node expansions than A∗MAX .

Lazy A∗

Throughout this paper we assume for clarity that we have
two available admissible heuristics, h1 and h2. Extension to
multiple heuristics is straightforward, at least for LA∗. Un-
less stated otherwise, we assume that h1 is faster to com-
pute than h2 but that h2 is weakly more informed, i.e.,
h1(n) ≤ h2(n) for the majority of the nodes n, although
counter cases where h1(n) > h2(n) are possible. We say
that h2 dominates h1, if such counter cases do not exist and
h2(n) ≥ h1(n) for all nodes n. We use f1(n) to denote
g(n) + h1(n). Likewise, f2(n) denotes g(n) + h2(n), and
fmax(n) denotes g(n)+max(h1(n), h2(n)). We denote the
cost of the optimal solution by C∗. Additionally, we denote
the computation time of h1 and of h2 by t1 and t2, respec-
tively and denote the overhead of an insert/pop operation in

97

Algorithm 1: Lazy A∗

Input: LAZY-A∗

Apply all heuristics to Start1
Insert Start into OPEN2
while OPEN not empty do3

n← best node from OPEN4
if Goal(n) then5

return trace(n)6

if h2 was not applied to n then7
Apply h2 to n8
insert n into OPEN9
continue //next node in OPEN10

foreach child c of n do11
Apply h1 to c.12
insert c into OPEN13

Insert n into CLOSED14

return FAILURE15

OPEN by to. Unless stated otherwise we assume that t2 is
much greater than t1 + to. LA∗ thus mainly aims to reduce
computations of h2.

The pseudo-code for LA∗ is depicted as Algorithm 1,
and is very similar to A∗. In fact, without lines 7 – 10,
LA∗ would be identical to A∗ using the h1 heuristic. When
a node n is generated we only compute h1(n) and n is
added to OPEN (Lines 11 – 13), without computing h2(n)
yet. When n is first removed from OPEN (Lines 7 – 10),
we compute h2(n) and reinsert it into OPEN, this time with
fmax(n).

It is easy to see that LA∗ is as informative as A∗MAX , in
the sense that both A∗MAX and LA∗expand a node n only if
fmax(n) is the best f -value in OPEN. Therefore, LA∗ and
A∗MAX generate and expand and the same set of nodes, up
to differences caused by tie-breaking.

In its general form A∗ generates many nodes that it does
not expand. These nodes, called surplus nodes (Felner et
al. 2012), are in OPEN when we expand the goal node with
f = C∗. All nodes in OPEN with f > C∗ are surely surplus
but some nodes with f = C∗ may also be surplus. The
number of surplus nodes in OPEN can grow exponentially
in the size of the domain, resulting in significant costs.
LA∗ avoids h2 computations for many of these surplus

nodes. Consider a node n that is generated with f1(n) >
C∗. This node is inserted into OPEN but will never reach the
top of OPEN, as the goal node will be found with f = C∗.
In fact, if OPEN breaks ties in favor of small h-values, the
goal node with f = C∗ will be expanded as soon as it is
generated and such savings of h2 will be obtained for some
nodes with f1 = C∗ too. We refer to such nodes where we
saved the computation of h2 as good nodes. Other nodes,
those with f1(n) < C∗ (and some with f1(n) = C∗) are
called regular nodes as we apply both heuristics to them.
A∗MAX computes both h1 and h2 for all generated nodes,

spending time t1+t2 on all generated nodes. By contrast, for
good nodes LA∗ only spends t1, and saves t2. In the basic
implementation ofLA∗ (as in algorithm 1) regular nodes are
inserted into OPEN twice, first for h1 (Line 13) and then for

h2 (Line 9) while good nodes only enter OPEN once (Line
13). Thus, LA∗ has some extra overhead of OPEN opera-
tions for regular nodes. We distinguish between 3 classes of
nodes:
(1) expanded regular (ER) — nodes that were expanded af-
ter both heuristics were computed.
(2) surplus regular (SR) — nodes for which h2 was com-
puted but are still in OPEN when the goal was found.
(3) surplus good (SG) — nodes for which only h1 was com-
puted by LA∗ when the goal was found.

Alg ER SR SG
A∗MAX t1 + t2 + 2to t1 + t2 + to t1 + t2 + to
LA∗ t1 + t2 + 4to t1 + t2 + 3to t1 + to

Table 1: Time overhead for A∗MAX and for LA∗

The time overhead of A∗MAX and LA∗ is summarized in
Table 1. LA∗ incurs more OPEN operations overhead, but
saves h2 computations for the SG nodes. When t2 (boldface
in table 1) is significantly greater than both t1 and to there is
a clear advantage for LA∗, as seen in the SG column.

Rational Lazy A∗

LA∗ offers us a very strong guarantee, of expanding the
same set of nodes as A∗MAX . However, often we would pre-
fer to expand more states, if it means reducing search time.
We now present Rational Lazy A* (RLA∗), an algorithm
which attempts to optimally manage this tradeoff.

Using principles of rational meta-reasoning (Russell and
Wefald 1991), theoretically every algorithm action (heuris-
tic function evaluation, node expansion, open list opera-
tion) should be treated as an action in a sequential decision-
making meta-level problem: actions should be chosen so as
to achieve the minimal expected search time. However, the
appropriate general meta-reasoning problem is extremely
hard to define precisely and to solve optimally.

Therefore, we focus on just one decision type, made in
the context of LA∗, when n re-emerges from OPEN (Line
7). We have two options: (1) Evaluate the second heuris-
tic h2(n) and add the node back to OPEN (Lines 7-10) like
LA∗, or (2) bypass the computation of h2(n) and expand n
right way (Lines 11 -13), thereby saving time by not comput-
ing h2, at the risk of additional expansions and evaluations
of h1. In order to choose rationally, we define a criterion
based on value of information (VOI) of evaluating h2(n) in
this context.

The only addition ofRLA∗ toLA∗ is the option to bypass
h2 computations (Lines 7-10). Suppose that we choose to
compute h2 — this results in one of the following outcomes:
1: n is still expanded, either now or eventually.
2: n is re-inserted into OPEN, and the goal is found without
ever expanding n.

Computing h2 is helpful only in outcome 2, where po-
tential time savings are due to pruning a search subtree at
the expense of the time t2(n). However, whether outcome
2 takes place after a given state is not known to the algo-
rithm until the goal is found, and the algorithm must decide
whether to evaluate h2 according to what it believes to be
the probability of each of the outcomes. We derive a rational
policy for when to evaluate h2, under the myopic assumption

98

that the algorithm continues to behave like LA∗ afterwards
(i.e., it will never again consider bypassing the computation
of h2).

The time wasted by being sub-optimal in deciding
whether to evaluate h2 is called the regret of the decision.
If h2(n) is not helpful and we decide to compute it, the ef-
fort for evaluating h2(n) turns out to be wasted. On the
other hand, if h2(n) is helpful but we decide to bypass it,
we needlessly expand n. Due to the myopic assumption,
RLA∗ would evaluate both h1 and h2 for all successors of
n.

Compute h2 Bypass h2

h2 helpful 0 te + (b(n)− 1)td
h2 not helpful td 0

Table 2: Regret in Rational Lazy A*

Table 2 summarizes the regret of each possible decision,
for each possible future outcome; each column in the table
represents a decision, while each row represents a future out-
come. In the table, td is the to time compute h2 and re-insert
n into OPEN thus delaying the expansion of n, te is the time
to remove n from OPEN, expand n, evaluate h1 on each
of the b(n) (“local branching factor”) children {n′} of n,
and insert {n′} into the open list. Computing h2 needlessly
wastes time td. Bypassing h2 computation when h2 would
have been helpful wastes te+b(n)td time, but because com-
puting h2 would have cost td, the regret is te+(b(n)−1)td.

Let us denote the probability that h2 is helpful by ph. The
expected regret of computing h2 is thus (1 − ph)td. On the
other hand, the expected regret of bypassing h2 is ph(te +
(b(n)− 1)td). As we wish to minimize the expected regret,
we should thus evaluate h2 just when:

(1− ph)td < ph(te + (b(n)− 1)td) (1)

or equivalently:

(1− b(n)ph)td < phte (2)

If phb(n) ≥ 1, then the expected regret is minimized by
always evaluating h2, regardless of the values of td and te.
In these cases, RLA∗ cannot be expected to do better than
LA∗. For example, in the 15-puzzle and its variants, the ef-
fective branching factor is ≈ 2. Therefore, if h2 is expected
to be helpful for more than half of the nodes n on which
LA∗ evaluates h2(n), then one should simply use LA∗.

For phb(n) < 1, the decision of whether to evaluate h2
depends on the values of td and te:

evaluate h2 if td <
ph

1− phb(n)
te (3)

Denote by tc the time to generate the children of n. Then:

td = t2 + to
te = to + tc + b(n)t1 + b(n)to (4)

By substituting (4) into (3), obtain: evaluate h2 if:

t2 + to <
ph [tc + b(n)t1 + (b(n) + 1)to]

1− phb(n)
(5)

The factor ph

1−phb(n)
depends on the potentially unknown

probability ph, making it difficult to reach the optimum de-
cision. However, if our goal is just to do better than LA∗,

then it is safe to replace ph by an upper bound on ph. Note
that the values ph, t1, t2, tc may actually be variables that de-
pend in complicated ways on the state of the search. Despite
that, the very crude model we use, assuming that they are
setting-specific constants, is sufficient to achieve improved
performance.

We now turn to implementation-specific estimation of the
runtimes. OPEN in A∗ is frequently implemented as a prior-
ity queue, and thus we have, approximately, to = τ logNo

for some τ , where the size of OPEN is No. Evaluating h1 is
cheap in many domains, as is the case with Manhattan Dis-
tance (MD) in discrete domains, to is the most significant
part of te. In such cases, rule (5) can be approximated as 6:

evaluate h2 if t2 <
τph

1− phb(n)
(b(n) + 1) logNo (6)

Rule (6) recommends to evaluate h2 mostly at late stages of
the search, when the open list is large, and in nodes with a
higher branching factor.

In other domains, such as planning, both t1 and t2 are
significantly greater than both to and tc, and terms not in-
volving t1 or t2 can be dropped from (5), resulting in Rule
(7):

evaluate h2 if
t2
t1
<

phb(n)

1− phb(n)
(7)

The right hand side of (7) grows with b(n), and here it is
beneficial to evaluate h2 only for nodes with a sufficiently
large branching factor.

IPC 2014 Submission
We implemented LA∗ and RLA∗ on top of the Fast Down-
ward planning system (Helmert 2006). Ideally, the two
heuristics we use are: the admissible landmarks heuristic
hLA (used as h1) (Karpas and Domshlak 2009), and the
landmark cut heuristic hLMCUT (Helmert and Domshlak
2009) (used as h2).

However, IPC 2014 introduced conditional effects as a
required feature to support. We have developed a variant
of hLMCUT which support conditional effects, by relaxing
each operator into several unary effect operators — one for
each effect, which also includes the condition for that ef-
fect. However, supporting conditional effects in hLA re-
quires a great deal of work. Therefore, when a planning task
with conditional effects is given to our planner, it uses hmax

(Bonet, Loerincs, and Geffner 1997) as h1, and the modified
version of hLMCUT as h2. For planning tasks with no con-
ditional effects, our planner still uses hLA and the original
version of hLMCUT .

When applying RLA∗ in planning domains we evaluate
rule (7) at every state. This rule involves two unknown quan-
tities: t2

t1
, the ratio between heuristic computations times,

and ph, the probability that h2 is helpful. Estimating t2
t1

is
quite easy — we simply use the average computation times
of both heuristics, which we measure as search progresses.

Estimating ph is not as simple. While it is possible to
empirically determine the best value for ph, this does not

99

fit the paradigm of domain-independent planning. Further-
more, planning domains are very different from each other,
and even problem instances in the same domain are of vary-
ing size, and thus getting a single value for ph which works
well for many problems is difficult. Instead, we vary our
estimate of ph adaptively during search. To understand this
estimate, first note that if n is a node at which h2 was help-
ful, then we computed h2 for n, but did not expand n. Thus,
we can use the number of states for which we computed h2
that were not yet expanded (denoted by A), divided by the
number of states for which we computed h2 (denoted byB),
as an approximation of ph. However, A

B is not likely to be
a stable estimate at the beginning of the search, as A and
B are both small numbers. To overcome this problem, we
“imagine” we have observed k examples, which give us an
estimate of ph = pinit, and use a weighted average between
these k examples, and the observed examples — that is, we
estimate ph by (AB ·B+ pinit ·k)/(B+k). In our empirical
evaluation, we used k = 1000 and pinit = 0.5.

Conclusion
We discussed two schemes for decreasing heuristic evalua-
tion times. LA∗ is very simple to implement and is as in-
formative as A∗MAX . LA∗ can significantly speed up the
search, especially if t2 dominates the other time costs. Ra-
tional LA∗ allows additional cuts in h2 evaluations, at the
expense of being less informed than A∗MAX . However, due
to a rational tradeoff, this allows for an additional speedup,
and in our empirical evaluation (Tolpin et al. 2013) Rational
LA∗ achieves the best overall performance in our domains.
RLA∗ is simpler to implement than its direct competi-

tor, Sel-MAX, but its decision can be more informed. When
RLA∗ has to decide whether to compute h2 for some node
n, it already knows that f1(n) ≤ C∗. By contrast, although
Sel-MAX uses a much more complicated decision rule, it
makes its decision when n is first generated, and does not
know whether h1 will be informative enough to prune n.
Rational LA∗ outperforms Sel-MAX in our planning exper-
iments.
RLA∗ and its analysis can be seen as an instance of

the rational meta-reasoning framework (Russell and Wefald
1991). While this framework is very general, it is extremely
hard to apply in practice. Recent work exists on meta-
reasoning in DFS algorithms for CSP) (Tolpin and Shimony
2011) and in Monte-Carlo tree search (Hay et al. 2012).
This paper applies these methods successfully to a vari-
ant of A∗. There are numerous other ways to use rational
meta-reasoning to improve A∗, starting from generalizing
RLA∗ to handle more than two heuristics, to using the meta-
level to control decisions in other variants of A∗. All these
potential extensions provide fruitful ground for future work.

References
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and
fast action selection mechanism for planning. In Kuipers,
B., and Webber, B. L., eds., AAAI/IAAI, 714–719. AAAI
Press / The MIT Press.

Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. Journal of the ACM
32(3):505–536.
Domshlak, C.; Karpas, E.; and Markovitch, S. 2012. Online
speedup learning for optimal planning. JAIR 44:709–755.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. Artificial Intelligence 175(9-10):1570–1603.
Felner, A.; Goldenberg, M.; Sharon, G.; Stern, R.; Beja, T.;
Sturtevant, N. R.; Schaeffer, J.; and R, H. 2012. Partial-
expansion a* with selective node generation. In AAAI, 471–
477.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SCC-4(2):100–107.
Hay, N.; Russell, S.; Tolpin, D.; and Shimony, S. E. 2012.
Selecting computations: Theory and applications. In de Fre-
itas, N., and Murphy, K. P., eds., UAI, 346–355. AUAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS, 162–169.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI, 1728–1733.
Russell, S., and Wefald, E. 1991. Principles of metereason-
ing. Artificial Intelligence 49:361–395.
Tolpin, D., and Shimony, S. E. 2011. Rational deployment
of CSP heuristics. In Walsh, T., ed., IJCAI, 680–686. IJ-
CAI/AAAI.
Tolpin, D.; Beja, T.; Shimony, S. E.; Felner, A.; and Karpas,
E. 2013. Toward rational deployment of multiple heuristics
in a. In Rossi, F., ed., IJCAI. IJCAI/AAAI.
Zhang, L., and Bacchus, F. 2012. Maxsat heuristics for cost
optimal planning. In AAAI.

100

SPM&S Planner: Symbolic Perimeter Merge-and-Shrink
Álvaro Torralba and Vidal Alcázar and Carlos Linares López and Daniel Borrajo

{alvaro.torralba, vidal.alcazar, carlos.linares, daniel.borrajo}@uc3m.es
Universidad Carlos III de Madrid

Madrid, Spain

Peter Kissmann
kissmann@cs.uni-saarland.de

Saarland University
Saarbrücken, Germany

Stefan Edelkamp
edelkamp@tzi.de

University of Bremen
Bremen, Germany

Abstract

The SPM&S planner uses Symbolic Perimeter Merge-and-
Shrink and Symbolic Perimeter Pattern Database heuristics
within a standard A∗ search. This paper briefly describes the
heuristics used and some technical details of the planner.

Introduction
One of the most successful approaches to cost-optimal plan-
ning is the use of abstraction heuristics as admissible es-
timators in an A∗ search. Abstraction heuristics use the
optimal cost of the solution in a simplified abstract state
space as an admissible estimation of the cost of the original
problem. The heuristic value of each abstract state is usu-
ally precomputed and stored in a lookup table. We consider
two automatic ways to derive domain-independent abstrac-
tions: Pattern Databases (Culberson and Schaeffer 1998;
Edelkamp 2001) and Merge-and-Shrink (Helmert, Haslum,
and Hoffmann 2007; Helmert et al. 2014). Pattern Databases
(PDBs) perform a projection of the planning task over a sub-
set of variables. Merge-and-Shrink (M&S) is a flexible ap-
proach that allows deriving abstractions more general than
PDBs.

Perimeter search (Dillenburg and Nelson 1994; Manzini
1995) is a form of bidirectional search that operates in two
phases: the backward phase and the forward phase. The
backward phase generates a perimeter around the goal with
a uniform-cost (Dijkstra) search. Then, the forward phase
performs forward search from the initial state to the perime-
ter. Since the goal of the forward search is any state in the
perimeter P , the heuristic estimates the distance to the clos-
est state in the perimeter so that h(s) = mins′∈P h(s, s′).
Perimeter PDBs (Felner and Ofek 2007) estimate the dis-
tance to the closest node in the perimeter. They were initially
proposed in the context of heuristic search for combinatorial
puzzles (Felner and Ofek 2007) and later adapted to auto-
mated planning in a work parallel with ours (Eyerich and
Helmert 2013).

Symbolic PDBs (Edelkamp 2002) are different from regu-
lar PDBs in that they are stored as Binary Decision Diagrams
(BDDs) (Bryant 1986) and that symbolic search is used to
traverse the abstract space. The GAMER planner uses sym-
bolic A∗ with Symbolic PDBs (Kissmann and Edelkamp
2011). Previous work on Symbolic PDBs have shown their

ability to derive stronger heuristics (Kissmann 2012) by ex-
ploring larger, less-abstracted, state spaces, able to com-
pete with M&S heuristics (Edelkamp, Kissmann, and Tor-
ralba 2012). More recently, optimizations on image compu-
tation (Torralba, Edelkamp, and Kissmann 2013) and the use
of constraints from state invariants to prune the search (Tor-
ralba and Alcázar 2013) have further improved the perfor-
mance in symbolic search, which directly affects the accu-
racy of symbolic heuristics.

The Symbolic Perimeter M&S planner (SPM&S) imple-
ments a new algorithm that combines abstraction heuristics,
perimeter search and symbolic search to derive admissible
estimates. The algorithm was originally presented in (Tor-
ralba, Linares López, and Borrajo 2013) 1. In this paper, we
only explain our approach briefly and the parameter config-
uration used for IPC-2014.

Symbolic Perimeter Merge-and-Shrink
Our proposed technique, SPM&S, derives a symbolic
heuristic using M&S abstractions to relax a symbolic back-
ward search. Figure 1 represents a high level view of the in-
teraction between symbolic search and M&S abstractions in
the SPM&S algorithm. SPM&S starts computing a symbolic
perimeter, Exp(α0). The first BDD with h = 0 contains the
goal states and by successive pre-image operations SPM&S
generates the sets of states with h = 1, h = 2, etc. Exploring
the whole search space is not practical for general planning
domains, so when memory or time bounds are surpassed, it
is truncated (h = 2 in Figure 1). The minimum distance to
the goal of the expanded state sets is stored, transforming
the list of BDDs representing the search into an Algebraic
Decision Diagram (ADD) (Bahar et al. 1997) representing
the heuristic, hExp(α0).

Then, M&S is used to derive an abstraction, α1. M&S
merges variables, applying shrinking if needed to fit the
maximum number of abstract states (in Figure 1, α1 must
have at most three abstract states before merging the next
variable). SPM&S uses α1 to relax the top levels of all the
BDDs in the exploration Exp(α1). All partial states related
to the same abstract state are considered equivalent so that,

1We originally called our technique Symbolic M&S in (2013).
We rename it to Symbolic Perimeter M&S to highlight its condition
of perimeter abstraction heuristic.

101

h

M&S

Symbolic
Search

h

υ0
υ1
υ2
υ3...

Vα0
= ∅

M&S

Vα1
υ0
υ1

e0 e1 e2

υ0
υ1
υ2M&S

Vα2

e0 e1 e2

Exp(α0) Exp(α1) Exp(α2)

S?

0

S1

1

S2

2

S2

α1

2

S3

α1

3

S3

α2

3

S4

α2

4

S5

α2

5

S6

α2

6

S7

α2

7

∅

hExp(α0) hExp(α1) hExp(α2)

truncated truncated

Figure 1: SM&S example with binary variables, unary cost operators and a limit of six abstract states for M&S.

when one is reached, all of them are. In Figure 1, abstract
state e1 represents partial states 00 and 10. During the ex-
ploration, if state 10010. . . is reached, then state 00010. . .
is also reached and vice versa. Hence, BDD nodes pointed
to by 00 and 10 are equivalent, making the top part of any
BDD in the exploration equal to its M&S representation.
Also, M&S abstractions are accumulative, so the top levels
of α2 coincide with those of previous abstractions. SPM&S
continues interleaving symbolic explorations and M&S it-
erations until an exploration is completed or time/memory
bounds are violated. When finished, it returns the list of
ADDs representing the heuristic.

Memory is controlled by the maximum number of M&S
abstract states N and the maximum number of nodes NF to
represent the search frontier. Two different parameters limit
time: TM&S is the total time allowed for the generation of
the heuristic, and TI limits the maximum time employed in
one pre-image operation. If TI is exceeded, not only the
pre-image but the whole exploration is halted. In order to
avoid starting another image as hard as the halted one, the
maximum number of nodes in the frontier search is reduced
to half of the size of the current frontier that we just failed to
expand.

PDB selection
The SPM&S algorithm can also be used in combination with
Pattern Database abstractions, as they are a particular case
of M&S abstraction. For the pattern selection, instead of
choosing a particular fixed pattern for the abstraction like
previous domain-independent methods (Haslum et al. 2007;
Kissmann and Edelkamp 2011; Edelkamp 2006), we seek a
complete hierarchy. This hierarchy consists of an ordering
on the variables such that the variables at the beginning are
abstracted first until a small enough abstraction is obtained.
This ordering is similar to the one used by linear merge
strategies of M&S, although in this case it is reversed, as the
merge strategies consider important variables first whereas
we abstract away important variables last.

These orderings are computed by adding goal variables to
the ordering (Goal first strategies) or variables causally con-

nected to variables already in the ordering (CG first strate-
gies). Tie-breaking is performed either randomly (Random)
or by taking Gamer’s ordering (Gamer) or its reverse (Re-
verse Gamer). The SPM&S planner makes use of three dif-
ferent strategies, derived from the previously described cri-
teria:
• CG Goal Random: Adds variables causally connected to

variables already in the ordering. If there is none, a goal
variable is added. Ties are broken randomly.

• Goal CG Gamer: Goal variables are added first. Then,
variables causally connected to variables already in the
ordering are added. Ties are broken by adding to the or-
dering variables lower in Gamer’s ordering.

• Reverse Gamer: The ordering is the same as Gamer’s, but
reversed. This aims to obtain abstractions that are effi-
ciently computable, as the variables are abstracted away
from the top of the BDD. Goals and causal links are ex-
plicitly ignored, although they are taken into account in
Gamer’s ordering. Also, at some point the abstraction may
not contain goal variables, although this is fine as long as
we work with a perimeter.

The SPM&S Planner
The SPM&S planner is implemented on top of the Fast
Downward planning system (Helmert 2006). The SPM&S
planner generates several heuristics during the precompu-
tation phase. Then, it performs an explicit-state A∗ search
taking the maximum of all the precomputed heuristics. The
SPM&S planner precomputes up to five abstractions, al-
though the perimeter in the original state space is computed
only once and then reused for subsequent applications of the
algorithm. Each run of the algorithm uses different abstrac-
tion procedures until the available time has been exhausted
or the five strategies have been used. The strategies are used
in the following order:

1. M&S using bisimulation shrinking, with a maximum
number of 10000 abstract states

2. PDBs with CG Goal Random

102

3. PDBs with Goal CG Gamer
4. PDBs with Reverse Gamer
5. PDBs with CG Goal Random

Note that the second and fifth strategies are the same, but
they typically produce different results due to the random
tie-breaking.

Preprocessing
There are two noteworthy considerations regarding the pre-
processing phase in SPM&S:
• How the SAS+ variables are selected.
• How to compute h2 (Bonet and Geffner 2001) and prune

spurious operators.

SAS+ Variable Selection
Switching from Gamer’s SAS+ encoding to the Fast Down-
ward version (Helmert 2009), we observed a decrease of per-
formance in some benchmark domains. We changed the se-
lection of which invariant groups are used as SAS+ variables
in order to avoid that degradation in performance.

The Fast Downward planner chooses invariant groups
with the highest cardinality as SAS+ variables, until all the
fluents of the problem have been considered in a variable.
Aiming to further reduce the number of SAS+ variables se-
lected, we prefer to select invariant groups that contain flu-
ents that do not appear in other invariant groups. We base
our criterion on the observation that, since all the fluents of
the problem have to be included in a SAS+ variable, invari-
ant groups that have a fluent which does not appear in other
invariant groups will always be selected anyway.

As an example, think of the following case, based on a
simplified version of the IPC-2011 floortile domain: we have
two robots on a grid such that the robots cannot be at the
same cell at the same time. Two types of invariant groups
are detected:

1. Each robot is at exactly one single cell:
(at robot1 cell1),(at robot1 cell2),. . .

2. Each cell either is clear or has a robot at it:
(clear cell1),(at robot1 cell1),(at robot2 cell1)
Invariants of the first type have larger cardinality, so Fast

Downward would encode this problem with a variable per
robot that represents the location of the robot ({(at robot1
cell1),(at robot1 cell2),. . .}) and a variable of the kind
{(clear cell1),〈none of those〉} per cell. In our case, we pre-
fer to select invariant groups of the second type first because
each fluent (clear cell1) only takes part on a single invariant
group. Thus, we would only have a variable per cell of the
kind {(clear cell1),(at robot1 cell1),(at robot2 cell1)}, which
amounts to fewer variables and fluents.

This leads to the use of “exactly-one” invariant groups as
variables in most cases, avoiding the use of “at-most-one”
invariant groups if possible – which require an additional
〈none of those〉 fluent. With this policy the number of re-
sulting variables and fluents is usually lower. This may be
counterproductive for techniques that depend on the causal
graph, like the abstraction strategies that we use.

Computing h2 Invariants and Pruning Spurious
Operators
We have implemented the computation of the h2 in Fast
Downward’s preprocessor. We also implemented a back-
ward version of h2 (Haslum 2008), which identifies pairs
of propositions that cannot be reached from goal states in
regression.

We use the mutexes obtained from h2 and the “exactly-
one” invariant groups from Fast Downward’s monotonicity
analysis to disambiguate the preconditions and the effects
of the operators of the problem (Alcázar et al. 2013). We
discard operators whose preconditions or effects are spuri-
ous sets of fluents, that is, contradict the previously inferred
state invariants. We do this because the number of ground
operators is significantly reduced in many planning domains
with respect to the standard preprocessor of Fast Downward.

The discovery and use of the state invariants during this
phase is interleaved: whenever new mutexes or spurious op-
erators are discovered in this process, we repeat the compu-
tation of h2 in both directions and the operator disambigua-
tion until no more constraints are inferred. We set a limit of
300 seconds for this phase.

Parameter Configuration
SPM&S uses a total of TSM&S = 1200 seconds and 3GB
for the precomputation phase. When any of those bounds are
violated the precomputation phase automatically ends and
the planner starts an A∗ search with the heuristics that were
successfully precomputed so far.

During the precomputation phase, SPM&S perform sev-
eral regression searches in different state spaces. Each
search continues until the frontier has more than NF = 10
million nodes or the next step is estimated to take TI = 30
seconds. Whenever a search surpasses any of these bounds,
it is deemed as “not searchable” and its used as a perimeter
to initialize a new search on a more abstracted state space.

All symbolic searches performed in the precomputa-
tion phase use the latest improvements on image computa-
tion (Torralba, Edelkamp, and Kissmann 2013) and h2 con-
straints for symbolic search (Torralba and Alcázar 2013). In
particular, we use a disjunctive partitioning of TRs with a
maximum TR size of 100k nodes and a timeout of 60 sec-
onds to generate the TRs. Constraints from the state invari-
ants are encoded directly in the TRs.

Conditional Effect Support
Fast Downward planning system partially supports condi-
tional effects. They are correctly handled by the A∗ search,
but the current public version of M&S does not support
them. We chose to disable M&S relaxations on these cases,
so only Symbolic Perimeter PDBs were used on domains
with conditional effects.

To handle conditional effects in symbolic search, we en-
code them in the TRs. According with the semantics of con-
ditional effects, they are applied in order. If more than one
effect is applied over the same variable, the last one over-
writes all the others. Hence, to generate the TR with condi-
tional effects we group all the effects by the variable they

103

modify. Each conditional effect is encoded as the conjunc-
tion of its condition, its effect and the negation of the condi-
tions of previous effects over the same variable.

For the h2 computation, conditional effects are not com-
piled away, but rather we ignore conditional preconditions
and all the delete effects that are conditional or that delete a
conditional effect.

Technical Details
To perform BDD operations, we used version 2.5 of Fabio
Somenzi’s CUDD library. The planner is compiled in 32-
bit (-m32), using the compiler optimization (-O3) and with
support of c++-11 features (–std=c++11).

Acknowledgements
This work has been partially supported by a FPI grant from
the Spanish government associated to the MICINN project
TIN2008-06701-C03-03, and it has also been supported by
the project TIN2011-27652-C03-02.

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting regression in planning. In International
Joint Conference on Artificial Intelligence (IJCAI).
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1997. Algebraic de-
cision diagrams and their applications. Formal Methods in
System Design 10(2/3):171–206.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Dillenburg, J. F., and Nelson, P. C. 1994. Perimeter search.
Artificial Intelligence 65(1):165–178.

Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2012. Sym-
bolic A∗ search with pattern databases and the merge-and-
shrink abstraction. In European Conference on Artificial In-
telligence (ECAI), 306–311.
Edelkamp, S. 2001. Planning with pattern databases. In
ECP, 13–34.
Edelkamp, S. 2002. Symbolic pattern databases in heuris-
tic search planning. In Conference on Artificial Intelligence
Planning Systems (AIPS), 274–283.
Edelkamp, S. 2006. Automated creation of pattern database
search heuristics. In MoChArt, 35–50.
Eyerich, P., and Helmert, M. 2013. Stronger abstraction
heuristics through perimeter search. In International Con-
ference on Automated Planning and Scheduling (ICAPS).
Felner, A., and Ofek, N. 2007. Combining perimeter search
and pattern database abstractions. In Symposium on Abstrac-
tion, Reformulation and Approximation (SARA), 155–168.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI Con-
ference on Artificial Intelligence (AAAI), 1007–1012.
Haslum, P. 2008. Additive and reversed relaxed reachability
heuristics revisited. In International Planning Competition
(IPC).
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
Association for Computing Machinery. Accepted.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flex-
ible abstraction heuristics for optimal sequential planning.
In International Conference on Automated Planning and
Scheduling (ICAPS), 176–183.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5-
6):503–535.
Kissmann, P., and Edelkamp, S. 2011. Improving cost-
optimal domain-independent symbolic planning. In AAAI
Conference on Artificial Intelligence (AAAI).
Kissmann, P. 2012. Symbolic Search in Planning and Gen-
eral Game Playing. Ph.D. Dissertation, Universität Bremen.
Manzini, G. 1995. Bida: An improved perimeter search
algorithm. Artificial Intelligence 75(2):347–360.
Torralba, Á., and Alcázar, V. 2013. Constrained symbolic
search: On mutexes, bdd minimization and more. In Sympo-
sium on Combinatorial Search (SoCS).
Torralba, Á.; Edelkamp, S.; and Kissmann, P. 2013. Tran-
sition trees for cost-optimal symbolic planning. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Torralba, Á.; Linares López, C.; and Borrajo, D. 2013. Sym-
bolic merge-and-shrink for cost-optimal planning. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI).

104

SymBA∗: A Symbolic Bidirectional A∗ Planner
Álvaro Torralba and Vidal Alcázar and Daniel Borrajo

{alvaro.torralba, vidal.alcazar, daniel.borrajo}@uc3m.es
Universidad Carlos III de Madrid

Madrid, Spain

Peter Kissmann
kissmann@cs.uni-saarland.de

Saarland University
Saarbrücken, Germany

Stefan Edelkamp
edelkamp@tzi.de

University of Bremen
Bremen, Germany

Abstract

Lately, several important advancements have been obtained in
symbolic search. First, bidirectional blind search has obtained
good results on many domains. Second, perimeter-based ab-
straction heuristics have been proposed as an important im-
provement over regular abstraction heuristics. Motivated by
the synergy between bidirectional search and perimeter-based
abstraction heuristics, here we present SymBA∗, which per-
forms bidirectional A∗ using the frontiers of the opposite
search to infer informed perimeter-based abstraction heuris-
tics.

Motivation
Most cost-optimal planners are based on A∗ guided with an
admissible heuristic. Bidirectional search has not been ex-
plored so extensively, due to the inherent difficulties of re-
gression in planning and the computational cost of detecting
collision between frontiers (Alcázar, Fernández, and Borrajo
2014). However, symbolic search (McMillan 1993) reasons
using sets of states, avoiding the otherwise complex prob-
lem of subsumption of states and substantially reducing the
cost of detecting the collision of frontiers. Moreover, re-
cent advances in symbolic search planning have helped to
overcome some of the problems of performing regression in
planning (Torralba and Alcázar 2013). Thus, recent results
have shown that symbolic bidirectional blind search has be-
come one of the best alternatives for cost-optimal planning,
outperforming not only A∗-based planners but also BDDA∗,
the symbolic search variant of A∗.

These recent improvements have risen the question of
whether it is possible to use heuristics in combination with
symbolic bidirectional search. Bidirectional heuristic search
has a long history (Pohl 1969; de Champeaux 1983), but the
hardness of proving optimality reduces considerably the ad-
vantages it has over regular A∗ (Kaindl and Kainz 1997).
Because of this, bidirectional heuristic search has fallen out
of flavor, with the majority of the search and planning com-
munity working mostly with regular A∗.

Abstraction heuristics, like Pattern Databases
(PDBs) (Culberson and Schaeffer 1998) and Merge-
and-Shrink (M&S) (Helmert et al. 2014), are commonly
used admissible heuristics. These heuristics can be
enhanced with a perimeter (Felner and Ofek 2007;
Eyerich and Helmert 2013; Torralba, Linares López, and

Borrajo 2013), which leads to a strictly more informed
heuristic than both the abstraction heuristic and the perime-
ter alone. Now, abstraction heuristics do not require a
perimeter of a fixed radius to obtain better estimates –
any frontier in the original space can be used as a seed to
improve the heuristic as long as the g value of the expanded
states is optimal. Because of this, we propose the use of the
frontier in one direction in a bidirectional search algorithm
to enhance an abstraction heuristic used by the search in the
opposite direction.

The aim of the SymBA∗ planner is to exploit the synergy
between bidirectional search and perimeter-based abstrac-
tion heuristics. SymBA∗ performs bidirectional searches on
different state spaces. It starts in the original search space
and, when the search becomes too hard, it derives an ab-
straction heuristic enhanced by the frontier of the opposite
direction. The planner decides at any point whether to ad-
vance the search in the original state space, enlarging the
perimeter, or search in an abstract state space to provide bet-
ter heuristic estimations for the unabstracted search.1

This paper describes the main algorithm used by the plan-
ner and technical and implementation details. A more elab-
orate theoretical discussion will be presented in a future pa-
per.

Symbolic Bidirectional A∗

SymBA∗ performs several symbolic bidirectional A∗

searches on different state spaces. We denote a bidirectional
search on a state space, Θi, as SΘi . A bidirectional search is
composed of two unidirectional searches in opposite direc-
tions: a forward search, SΘi

fw , and a backward search, SΘi
bw .

We will use SΘi
u to denote a unidirectional search in an un-

specified direction. f(SΘi
u) denotes the value of the f -layer

with minimum f .
First, SymBA∗ starts a bidirectional search in the origi-

nal state space. Since no abstraction heuristic has been de-
rived yet, it behaves like symbolic bidirectional blind search.

1A connection can be made with hierarchical heuristic
search (Holte, Grajkowski, and Tanner 2005), in particular with
Switchback (Larsen et al. 2010) and its improved version Short-
Circuit (Leighton, Ruml, and Holte 2011), as both traverse the ab-
stract state lazily to avoid searching parts that are irrelevant for the
problem at hand.

105

This search continues until the next step in both directions
is deemed as not searchable, because SymBA∗ estimates
that it will take too much time or memory. Only then, a
new bidirectional search is initialized in an abstract state
space. Both the forward and backward searches are initial-
ized with the frontiers of the current original search. The ab-
stract searches provide heuristic estimations for the original
search, increasing the f -value of states in the search frontier.
Eventually, the search in the original state space will be sim-
plified (as the number of states with minimum f -value will
be smaller)2and SymBA∗ will continue expanding states in
the original search space.

A distinction must be made between bidirectional search
in the original state space and the ones performed in abstract
state spaces. The first type of search aims to find a plan, so
techniques like nipping and pruning (Kwa 1989) should re-
main activated to prune both search frontiers whenever they
meet. On the other hand, searches on abstract state spaces
are used to derive heuristic estimates for the original search.
The additional pruning is deactivated in order to guarantee
that the derived heuristics are admissible.

Algorithm 1: SymBA∗

1 SΘ
fw ← 〈I,Θ〉

2 SΘ
bw ← 〈G,Θ〉

3 SearchPool ← {SΘ
fw ,S

Θ
bw}

4 π ← None

5 while max(f(SΘ
fw), f(SΘ

bw)) < Cost(π) do
6 if ∃S ∈ SearchPool | IsCandidate(S) then
7 SΘi

u ← SelectSearch(SearchPool)
8 π′ ← Expand-frontier(SΘi

u)
9 if Θi = Θ ∧ π′ 6= ∅ ∧ Cost(π′) < Cost(π) then

10 π ← π′

11 Notify-h(SΘi , SΘ)
12 else
13 α←Select-abstraction(SΘ

fw , SΘ
bw)

14
〈
SΘα
fw ,SΘα

bw

〉
←Apply(α, SΘ

fw , SΘ
bw)

15 SearchPool ← SearchPool ∪ {SΘα
fw ,SΘα

bw }
16 return π

Algorithm 1 shows the main algorithm of SymBA∗,
which decides whether to advance the search in the original
state space or in one of the abstract state spaces. SymBA∗

maintains a pool of all the current active searches. The pool
is initialized with a bidirectional search on the original state
space. The algorithm proceeds while the current best solu-
tion so far has not been proven optimal (line 5). At each
iteration, the algorithm filters the searches that are valid can-
didates from the pool and selects the most promising ones.

A search is a valid candidate if and only if it is both useful
and searchable. The search in the original search space is

2This is not entirely true in the symbolic case, as having fewer
states does not mean that the BDD that represents them is smaller,
but in most cases there is a positive correlation.

always useful. A search in an abstract search space is useful
if and only if there are still states from the opposite frontier
that do not correspond to a state already expanded in the
abstract space. The main intuition behind this is that non-
useful searches cannot possibly simplify the next step in the
original search space. A search is searchable if the estimated
time needed to perform the next step does not surpass the
bounds imposed by our parameters. Among all the searches
that are valid candidates, we select those that have a greater
minimum f -value, because they are closer to proving that
the current solution is optimal. If more than one search has
the same minimum f -value, we select the one whose next
step is estimated to take less time.

Once a search has been selected, the procedure
ExpandFrontier expands the set of states that have a
minimum g-value among those that have a minimum f -
value, like in the standard implementation of BDDA∗. If this
was in the original state space, a new plan may be found (if
the new plan has a lower cost, it is stored). If this was in
an abstract state space, we update the heuristic value of the
other searches in the opposite direction in the pool, both ab-
stract and original. In order to easily re-evaluate the heuris-
tic, we use the Symbolic List A∗ implementation proposed
in (Edelkamp, Kissmann, and Torralba 2012).

If there are no valid search candidates (line 12), a new
bidirectional search is added to the pool (which amounts to
two new searches). First, we select a new abstraction strat-
egy (line 13). Using the strategy, we relax the current fron-
tiers of the original state space search, until the frontier size
is small enough to continue the search and there is no pre-
vious equivalent search (line 14). Finally, the new search is
included in the pool to be selected in subsequent iterations.

Abstraction Hierarchies
The SymBA∗ planner can be used with different abstrac-
tion hierarchies. We use the Symbolic M&S abstractions de-
scribed in (Torralba, Linares López, and Borrajo 2013) and
Symbolic PDB abstractions.

For the pattern selection, instead of choosing a particu-
lar fixed pattern for the abstraction like previous domain-
independent methods (Haslum et al. 2007; Kissmann and
Edelkamp 2011; Edelkamp 2006), we seek a complete hi-
erarchy. This hierarchy consists of an ordering on the vari-
ables such that the variables at the beginning are abstracted
first until a small enough abstraction is obtained. This or-
dering is similar to the one used by linear merge strategies
of M&S, although in this case it is reversed, as the merge
strategies consider important variables first whereas we ab-
stract away important variables last.

These orderings are computed by adding goal variables to
the ordering (Goal first strategies) or variables causally con-
nected to variables already in the ordering (CG first strate-
gies). Tie-breaking is performed either randomly (Random)
or by taking Gamer’s ordering (Gamer) or its reverse (Re-
verse Gamer). The SymBA∗ planner makes use of three dif-
ferent strategies, derived from the previously described cri-
teria:

• CG Goal Random: Adds variables causally connected to

106

variables already in the ordering. If there is none, a goal
variable is added. Ties are broken randomly.

• Goal CG Gamer: Goal variables are added first. Then,
variables causally connected to variables already in the
ordering are added. Ties are broken by adding to the or-
dering variables lower in Gamer’s ordering.

• Reverse Gamer: The ordering is the same as Gamer’s, but
reversed. This aims to obtain abstractions that are effi-
ciently computable, as the variables are abstracted away
from the top of the BDD. Goals and causal links are ex-
plicitly ignored, although they are taken into account in
Gamer’s ordering. Also, at some point the abstraction may
not contain goal variables, although this is fine as long as
we work with a perimeter.

The SymBA∗ Planner Configuration
The SymBA∗ planner is implemented on top of the Fast
Downward planning system (Helmert 2006). We have pre-
sented two different configurations of SymBA∗ to the IPC-
2014 competition: SymBA∗-1 and SymBA∗-2. They differ
on the abstraction hierarchies used. They both use PDB ab-
stractions, and SymBA∗-2, additionally, uses M&S abstrac-
tions.

Each call to Select-abstraction returns a different
abstraction, choosing an abstraction from each of the follow-
ing hierarchies in a round robin schema:

1. (only in SymBA∗-2) M&S using bisimulation shrinking,
with a maximum number of 10000 abstract states

2. PDBs with CG Goal Random

3. PDBs with Goal CG Gamer

4. PDBs with Reverse Gamer

The strategies are always used in the same order. We
bound the time available for selecting the abstraction to 500
seconds. Moreover, when the planner has spent 1500 sec-
onds or 3GB, we consider that searching more abstractions
to generate better heuristics will not pay off. In that case, the
search continues only in the original state space, with the
heuristics that have been generated so far.

All symbolic searches use the latest improvements on
image computation (Torralba, Edelkamp, and Kissmann
2013) and h2 constraints for symbolic search (Torralba and
Alcázar 2013). In particular, we use a disjunctive partition-
ing of TRs with a maximum TR size of 100k nodes and a
timeout of 60 seconds to generate the TRs. Constraints from
the state invariants are encoded directly in the TRs.

Searches are considered to be searchable whenever their
frontier has fewer than 10 million nodes and the next step
is estimated to take at most 30 seconds. If the time bound
is surpassed, the bound on the number of frontier nodes is
updated to half of the current frontier. To guarantee that new
abstract searches are searchable, the size of the frontier is
reduced by abstracting away variables from the abstraction
hierarchy until the relaxed frontier has fewer nodes than 80%
of the bound on the number of nodes.

Preprocessing
There are two noteworthy considerations regarding the pre-
processing phase in SymBA∗:

• How the SAS+ variables are selected.

• How to compute h2 (Bonet and Geffner 2001) and prune
spurious operators.

SAS+ Variable Selection
Switching from Gamer’s SAS+ encoding to the Fast Down-
ward version (Helmert 2009), we observed a decrease of per-
formance in some benchmark domains. We changed the se-
lection of which invariant groups are used as SAS+ variables
in order to avoid that degradation in performance.

The Fast Downward planner chooses invariant groups
with the highest cardinality as SAS+ variables, until all the
fluents of the problem have been considered in a variable.
Aiming to further reduce the number of SAS+ variables se-
lected, we prefer to select invariant groups that contain flu-
ents that do not appear in other invariant groups. We base
our criterion on the observation that, since all the fluents of
the problem have to be included in a SAS+ variable, invari-
ant groups that have a fluent which does not appear in other
invariant groups will always be selected anyway.

As an example, think of the following case, based on a
simplified version of the IPC-2011 floortile domain: we have
two robots on a grid such that the robots cannot be at the
same cell at the same time. Two types of invariant groups
are detected:

1. Each robot is at exactly one single cell:
(at robot1 cell1),(at robot1 cell2),. . .

2. Each cell either is clear or has a robot at it:
(clear cell1),(at robot1 cell1),(at robot2 cell1)

Invariants of the first type have larger cardinality, so Fast
Downward would encode this problem with a variable per
robot that represents the location of the robot ({(at robot1
cell1),(at robot1 cell2),. . .}) and a variable of the kind
{(clear cell1),〈none of those〉} per cell. In our case, we pre-
fer to select invariant groups of the second type first because
each fluent (clear cell1) only takes part on a single invariant
group. Thus, we would only have a variable per cell of the
kind {(clear cell1),(at robot1 cell1),(at robot2 cell1)}, which
amounts to fewer variables and fluents.

This leads to the use of “exactly-one” invariant groups as
variables in most cases, avoiding the use of “at-most-one”
invariant groups if possible – which require an additional
〈none of those〉 fluent. With this policy the number of re-
sulting variables and fluents is usually lower. This may be
counterproductive for techniques that depend on the causal
graph, like the abstraction strategies that we use.

Computing h2 Invariants and Pruning Spurious
Operators
We have implemented the computation of the h2 heuris-
tic in Fast Downward’s preprocessor. We also implemented
a backward version of h2 (Haslum 2008), which identifies

107

pairs of propositions that cannot be reached from goal states
in regression.

We use the mutexes obtained from h2 and the “exactly-
one” invariant groups from Fast Downward’s monotonicity
analysis to disambiguate the preconditions and the effects
of the operators of the problem (Alcázar et al. 2013). We
discard operators whose preconditions or effects are spuri-
ous sets of fluents, that is, contradict the previously inferred
state invariants. We do this because the number of ground
operators is significantly reduced in many planning domains
with respect to the standard preprocessor of Fast Downward.

The discovery and use of the state invariants during this
phase is interleaved: whenever new mutexes or spurious op-
erators are discovered in this process, we repeat the compu-
tation of h2 in both directions and the operator disambigua-
tion until no more constraints are inferred. We set a limit of
300 seconds for this phase.

Conditional Effect Support
The Fast Downward planning system partially supports con-
ditional effects. They are correctly handled by the A∗ search,
but the current public version of M&S does not support
them. We chose to disable M&S relaxations in these cases,
so that only Symbolic Perimeter PDBs were used in domains
with conditional effects.

To handle conditional effects in symbolic search, we en-
code them in the TRs. According to the semantics of condi-
tional effects, they are applied in order. If more than one ef-
fect is applied over the same variable, the last one overwrites
all the others. Hence, to generate the TR with conditional
effects we group all the effects by the variable they mod-
ify. Each conditional effect is encoded as the conjunction of
its condition, its effect and the negation of the conditions of
previous effects over the same variable.

For the h2 computation, conditional effects are not com-
piled away, but rather we ignore conditional preconditions
and all the delete effects that are conditional or that delete a
conditional effect.

Technical Details
To perform BDD operations, we used version 2.5 of Fabio
Somenzi’s CUDD library. The planner is compiled in 32-
bit (-m32), using the compiler optimization (-O3) and with
support of c++-11 features (–std=c++11).

Acknowledgements
This work has been partially supported by a FPI grant from
the Spanish government associated to the MICINN project
TIN2008-06701-C03-03, and it has also been supported by
the project TIN2011-27652-C03-02.

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting regression in planning. In International
Joint Conference on Artificial Intelligence, 2254–2260.
Alcázar, V.; Fernández, S.; and Borrajo, D. 2014. Analyzing
the impact of partial states on duplicate detection and colli-

sion of frontiers. In International Conference on Automated
Planning and Scheduling.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Borrajo, D.; Kambhampati, S.; Oddi, A.; and Fratini, S.,
eds. 2013. Proceedings of the Twenty-Third International
Conference on Automated Planning and Scheduling, ICAPS
2013, Rome, Italy, June 10-14, 2013. AAAI Conference on
Artificial Intelligence (AAAI).
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
de Champeaux, D. 1983. Bidirectional heuristic search
again. J. ACM 30(1):22–32.
Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2012. Sym-
bolic A∗ search with pattern databases and the merge-and-
shrink abstraction. In Raedt, L. D.; Bessière, C.; Dubois,
D.; Doherty, P.; Frasconi, P.; Heintz, F.; and Lucas, P. J. F.,
eds., European Conference on Artificial Intelligence (ECAI),
volume 242 of Frontiers in Artificial Intelligence and Appli-
cations, 306–311. IOS Press.
Edelkamp, S. 2006. Automated creation of pattern database
search heuristics. In MoChArt, 35–50.
Eyerich, P., and Helmert, M. 2013. Stronger abstraction
heuristics through perimeter search. In Borrajo et al. (2013).
Felner, A., and Ofek, N. 2007. Combining perimeter search
and pattern database abstractions. In Symposium on Abstrac-
tion, Reformulation and Approximation (SARA), 155–168.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI Con-
ference on Artificial Intelligence (AAAI), 1007–1012. AAAI
Press.
Haslum, P. 2008. Additive and reversed relaxed reachabil-
ity heuristics revisited. Proceedings of the 6th International
Planning Competition.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Helmert, M. 2009. Concise finite-domain representations
for pddl planning tasks. Artificial Intelligence 173(5-6):503–
535.
Holte, R. C.; Grajkowski, J.; and Tanner, B. 2005. Hierarchi-
cal heuristic search revisited. In Symposium on Abstraction,
Reformulation and Approximation (SARA), 121–133.
Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic
search reconsidered. Journal of Artificial Intelligence Re-
search (JAIR) 7:283–317.
Kissmann, P., and Edelkamp, S. 2011. Improving cost-
optimal domain-independent symbolic planning. In Bur-
gard, W., and Roth, D., eds., AAAI Conference on Artificial
Intelligence (AAAI). AAAI Press.

108

Kwa, J. B. 1989. BS*: An admissible bidirectional staged
heuristic search algorithm. Artif. Intell. 38(1):95–109.
Larsen, B. J.; Burns, E.; Ruml, W.; and Holte, R. 2010.
Searching without a heuristic: Efficient use of abstraction.
In AAAI Conference on Artificial Intelligence (AAAI).
Leighton, M. J.; Ruml, W.; and Holte, R. C. 2011. Faster
optimal and suboptimal hierarchical search. In SOCS.
McMillan, K. L. 1993. Symbolic model checking. Kluwer
Academic publishers.
Pohl, I. S. 1969. Bi-directional and Heuristic Search in
Path Problems. Ph.D. Dissertation, Stanford, CA, USA.
AAI7001588.
Torralba, Á., and Alcázar, V. 2013. Constrained sym-
bolic search: On mutexes, bdd minimization and more. In
Helmert, M., and Röger, G., eds., Symposium on Combina-
torial Search (SoCS). AAAI Press.
Torralba, Á.; Edelkamp, S.; and Kissmann, P. 2013. Tran-
sition trees for cost-optimal symbolic planning. In Borrajo
et al. (2013).
Torralba, Á.; Linares López, C.; and Borrajo, D. 2013. Sym-
bolic merge-and-shrink for cost-optimal planning. In Rossi,
F., ed., International Joint Conference on Artificial Intelli-
gence (IJCAI). IJCAI/AAAI.

109

New Encoding Methods for SAT-based Temporal Planning

Masood Feyzbakhsh Rankooh and Gholamreza Ghassem-Sani
Sharif University of Technology

Tehran, Iran

Abstract

Although satisfiability checking is known to be an effec-
tive approach in classical planning, it has scarcely been
investigated in the field of temporal planning. Most no-
tably, the usage of ∃-step semantics for encoding the
problem into a SAT formula, while being demonstra-
bly quite efficient for decreasing the size of the encod-
ings in classical planning, has not yet been employed
to tackle temporal planning problems. In this report,
we describe ITSAT that uses temporal versions of clas-
sical ∀-step and ∃-step plans. We show that when the
casual and temporal reasoning phases of a SAT-based
temporal planner are separated, these semantics can be
used to translate a given temporal planning problem into
a SAT formula. We describe two different types of
∃-step encodings in temporal planning. The first en-
coding method is a temporal version of the classical
∃-step encoding. Like its classical counterpart, in the
new encoding we suppose a few restrictive simplify-
ing assumptions. On the other hand, by relaxing one
of these assumptions, the second type of ∃-step encod-
ings, which is often more compact than the first one, is
explained. Our experiments indicate that by embedding
the proposed encodings into ITSAT, a SAT-based tem-
poral planner based on the ∀-step encoding, a consid-
erable improvement is achieved in terms of both speed
and memory usage of the planner.

Introduction
Previous research in the field of temporal planning has enor-
mously benefited from employing well-developed classi-
cal planning strategies. In fact, many classical planning
methods have already been used to tackle temporal plan-
ning problems, too. For instance, many successful tempo-
ral planners have utilized the ideas of partial order planning
e.g., VHPOP (Younes and Simmons 2003) and CPT (Vidal
and Geffner 2006). Planning graph analysis has also been
adopted by temporal planners such as TGP (Smith and Weld
1999) and TPSYS (Garrido, Fox, and Long 2002). Some
other temporal planners have embedded temporal reasoning
into heuristic state space search. TFD (Eyerich, Matmuller,
and Roger 2009) and POPF (Coles et al. 2010) are two suc-
cessful instances of this latter approach.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Employing satisfiability checking is another important
trend of classical planning research. In this approach, a
given planning problem is encoded into a SAT formula. In
order to make the corresponding SAT formula finite, the po-
tential plan is assumed to have a finite number of steps. The
formula is given as the input to an off-the-shelf SAT solver.
The SAT solver tries to find a model for the formula. If such
a model exists, the final plan is extracted from it. Otherwise,
the number of steps is increased and the whole process is
repeated.

SAT-based classical planning was first used to find op-
timal plans, i.e., plans with minimum number of actions
(Kautz and Selman 1992). To guarantee the optimality of
the output plan, the formulae must include certain clauses to
ban each step from containing more than one action. How-
ever, if optimality is not the objective of the planner, forc-
ing single-action steps is not necessary. In an alternative
approach, which has been shown to be quite effective (Rin-
tanen, Heljanko, and Niemelä 2006), the planning problem
is encoded in such a way that each step of the final plan can
have several parallel actions. The usage of multiple-action
steps results in a smaller number of steps in SAT formulae,
which in turn reduces the number of SAT variables. Since
the speed of SAT solvers may exponentially decrease as the
number of variables is increased, employing this idea of-
ten results in considerably faster planners. Several encod-
ing methods have been introduced to take advantage of such
a parallelism. The research in this area is mainly focused
on the so-called ∀-step and ∃-step semantics of valid plans
(Rintanen, Heljanko, and Niemelä 2006).

The ∀-step semantics allows each step of a plan to include
a particular set of actions, only if those actions can be exe-
cuted in every possible order without affecting the validity
of the plan. On the other hand, the ∃-step semantics is based
on some weaker requirements: for each step of a plan, there
must exist at least one possible ordering in which the actions
of that step can be arranged without falsifying the validity of
the plan. It should be clear that the ∃-step semantics poten-
tially allows more parallelism than what is permitted by the
∀-step semantics. In fact, ∃-step encoding has been shown
to be one of the most efficient methods for converting clas-
sical planning problems to SAT formulae (Rintanen, Hel-
janko, and Niemelä 2006).

Satisfiability checking has also been used to tackle tem-

110

poral planning problems. STEP (Huang, Chen, and Zhang
2009) and T-SATPLAN (Mali and Liu 2006) are two SAT-
based planners that handle temporal constraints by assign-
ing explicit discrete time labels to each step of the encod-
ing. TM-LPSAT (Shin and Davis 2005), which has been de-
signed to solve planning problems defined by PDDL+ (Fox
and Long 2002), is another SAT-based planner that can han-
dle temporal planning problems. However, in TM-LPSAT,
the steps of the SAT formula do not possess predefined time
labels. Instead, the execution time of each step will be stored
in a variable whose value is to be determined by an SMT
solver (Armando and Giunchiglia 1993).

ITSAT (Rankooh, Mahjoob, and Ghassem-Sani 2012) is
yet another example of SAT-based temporal planners. Like
TM-LPSAT, ITSAT does not assign explicit time labels to
the steps of its encoding. Besides, ITSAT first abstracts out
the durations of actions. It then finds a plan that is only
causally valid. The plan is then refined in such a way that
satisfies temporal constraints imposed by the durations of
actions.

The latest version of ITSAT generalizes the concepts of
single-action-step, ∀-step, and ∃-step plans to the temporal
planning context. In this reporst, we show that according
to our definition of parallel plans, STEP, T-SATPLAN, and
TM-LPSAT are all using a temporal version of the single-
action-step encoding. We also show that the separation of
causal and temporal reasoning has enabled ITSAT to some-
how use the temporal version of ∀-step semantics for its en-
coding. We also describe a temporal version of ∃-step se-
mantics used by ITSAT in its encoding phase.

Preliminaries
In this section, we define basic concepts such as temporal
states, actions, problems, and plans. Our definitions of these
concepts here are consistent with the level 3 of PDDL2.1
(Fox and Long 2003), and have been inspired by the formal-
ization used for TEMPO (Cushing et al. 2007). We assume
that the reader is familiar with the definitions of states, ac-
tions, and problems of classical planning.

Definition 1 (temporal states) A temporal state, s, is a
pair (state(s), agenda(s)) , where state(s) is a classical
planning state and agenda(s) contains all the actions that
are started but not yet finished before reaching s.

Definition 2 (temporal actions and events)
A temporal action, a, is a quadruple
(start(a), end(a), over(a), dur(a)) where start(a)
and end(a) are two classical planning actions denoting the
starting and ending events of a, over(a) is a set of classical
preconditions representing the over-all conditions of a, and
dur(a) is a positive rational number specifying the duration
of a.

Definition 3 (mutual exclusion) Two events, ei and ej ,
are mutually exclusive in the temporal sense if either of the
following conditions holds:

• ei and ej are mutually exclusive in the classical sense
(Blum and Furst 1997).

• ei (or ej) is the staring event of action a, and ej (or ei)
deletes a member of over(a).

Definition 4 (applicability) A set of events, E =
{e1, ..., en}, is applicable in state s, if all following condi-
tions hold:

• For each i, ei is applicable to state(s) in the classical
sense.

• If ei is the starting event of action a, then over(a) ⊆⋃
e∈E add(e) ∪ state(s)

• If ei is a starting event, then it does not delete an over-all
condition of any member of agenda(s).

• If ei is the ending event of action a, then a is a member of
agenda(s) and ei does not delete an over-all condition of
any other member of agenda(s).

• For all i and j, ei and ej are not mutually exclusive.

We say that members of E are simultaneously applied to
state s.

Definition 5 (successors) If a set of events E =
{e1, ..., en} is applicable to state s, it will change s to
s′ where state(s′) is the result of applying all members
of E to state(s) in the classical sense and in an arbi-
trary order, and agenda(s′) is determined by the follow-
ing rule: agenda(s′) = agenda(s) ∪ {a|start(a) ∈ E} −
{a|end(a) ∈ E}. s′ is also denoted by succ(s, E). Ap-
plying a sequence of sets of event to step s is defined
by the following recursive rule: succ(s, 〈E1, ..., En〉) =
succ(succ(s, E1), 〈E2, ..., En〉).
Definition 6 (temporal problems) A temporal problem,
P , is a triple (I,G,A) where I is a temporal state such that
agenda(I) = φ representing the initial state, G is a set of
classical goal conditions, andA is the set of all possible tem-
poral actions of P .

Definition 7 (temporal plans) A temporal plan π is a
sequence E1, ..., En, where each Ei is a set of simulta-
neously executed events representing a step of π. π is
valid for problem P = (I,G,A) if there exist a se-
quence s0, ..., sn of temporal states, such that s0 = I ,
G ⊆ state(sn), agenda(sn) = φ, and for every i, si =
succ(si−1, Ei). Moreover, there must exist a scheduling
function τ : {1, ..., n} → Q with the following properties:

• For all i, τ(i) < τ(i+ 1).

• For each a ∈ A, if start(a) ∈ Ei and end(a) ∈ Ej , then
τ(j) = τ(i) + dur(a).

It should be noted that by Definition 7, a valid temporal
plan is a sequence of steps where each step includes several
simultaneously executed events. In other words, all events
of any particular step must be executed at the same time.
We call this semantics, 1-step semantics for temporal plans.
This is in fact a generalization of classical single-action-step
semantics.

Simultaneity of events is necessary for solving some tem-
poral problems. For instance, consider the plan shown in
Figure 1(a). In this plan, we have two temporal actions a

111

and b, where the starting event of each is providing the over-
all conditions of the other. Consequently, if the goal state
is reached by either a or b, both actions have to be started
simultaneously. Another example of situations where simul-
taneity of events is necessary is depicted in Figure 1(b). In
this example, the over-all condition of a is added and deleted
respectively by the starting and ending events of b. The fact
that a and b have equal durations necessitates the simultane-
ous execution of these two actions.

Figure 1. Plans with simulataneous events

ITSAT Planning System
In this section, an older version of ITSAT planning system is
briefly described. ITSAT was the first SAT-based temporal
planner in which the causal and temporal reasoning tasks
were performed in two separate phases. Such a separation
is critical for the feasibility of our ∃-step encoding methods
discussed later.

To solve a temporal planning problem, ITSAT first ab-
stracts out the durations of actions. In other words, it is as-
sumed that actions can have arbitrary durations. It then en-
codes the abstract problem into a SAT formula. This abstrac-
tion causes the encoding to be very similar to that of classi-
cal SAT-based planners. However, beside ordinary clauses
used by classical SAT-based planners, ITSAT needs a num-
ber of extra clauses to satisfy the over-all conditions of ac-
tions. Moreover, there are several clauses to appropriately
manipulate the agendas of states before and after each step.

By using the encoding method explained above, ITSAT
may find plans that are not temporally valid. However, all

the obtained plans are guaranteed to be what we call causally
valid.

Definition 8 (causally valid temporal plans) A temporal
plan π is causally valid for temporal problem P , if it admits
all requirements of definition 7, except for the existence of
the scheduling function τ , which is optional.

Figure 2. Negative cycle detection in ITSAT

Figure 2(a) represents a causally valid temporal plan that
is not temporally valid. That is because action b is to be
executed during the execution of action a, while the duration
of b is greater than that of a.

To find a temporally valid plan, ITSAT tries to schedule
the events of the obtained causally valid plan by solving a
particular Simple Temporal Problem (STP) (Dechter, Meiri,
and Pearl 1991) that enforces the temporal constraints of the
planning problem. If the STP is inconsistent, there must
exist a negative cycle in the corresponding Simple Tempo-
ral Network (STN). The STN of the plan in Figure 2(a) is
shown in Figure 2(b), where the cycle asbsbeaeas is a neg-
ative cycle. The sequence of events that lead to such nega-
tive cycles can be detected by simple Finite State Machines
(FSMs). The transition of these FSMs can then be turned
into appropriate caluses that collectively prevent such nega-
tive cycles from reoccurring. The FSM that detects the cycle
asbsbeaeas is depicted in Figure 2(c). It has been shown that
ITSAT is capable of solving problems with the required con-
currency property (Cushing et al. 2007), and is competitive
with the state-of-the-art temporally expressive planners.

112

Semantics for Causally Valid Temporal Plans
According to definition 7, although planners such as STEP,
T-SATPLAN, and TM-LPSAT allow parallel execution of
actions, they are in fact using the 1-step encoding. That is
because these planners assume simultaneous execution of all
events in each step.

As we mentioned before, the classical ∀-step semantics
permits the execution of more than one action in each step,
only if the validity of the plan is not dependent on the exe-
cution order of those actions. This can simply be guaranteed
by adding a particular clause for each pair of mutually exclu-
sive actions to ensure that those actions will not be included
in the same step. However, such a strategy does not work
for temporal planning. In temporal planning, because of the
temporal constraints between the starting and ending events
of actions, the validity of a particular ordering of events of a
step, also depends on the ordering of events of other steps.
Nevertheless, in ITSAT this problem has been tackled by
separating the causal and temporal reasoning phases. In gen-
eral, if we focus on finding causally valid plans, and post-
pone the scheduling phase, the mentioned problem about
checking the feasibility of imposing different orderings of
events in each step will no longer exist.

We now describe our semantics for causally valid ∀-step
and ∃-step temporal plans.

Definition 9 (temporal ∀-steps and ∃-steps) Let S =
{E1, ..., En} be a set of sets of events, and s1 and s2 be two
temporal states. S is a temporal ∀-step from s1 to s2 if for all
one-to-one ordering functions O : {1, ..., n} → {1, ..., n},
we have: s2 = succ(s1, 〈EO(1), ..., EO(n)〉).
S is a temporal ∃-step from s1 to s2 if for some one-to-one
ordering functions O : {1, ..., n} → {1, ..., n}, we have:
s2 = succ(s1, 〈EO(1), ..., EO(n)〉)
Definition 10 (causally valid ∀-step and ∃-step temporal
plans) Let P = (I,G,A) be a temporal planning prob-
lem. Suppose s0, ..., sn is a sequence of temporal states such
that s0 = I , G ⊆ state(sn), and agenda(sn) = φ. If for
each 1 ≤ i ≤ n, Stepi is a ∀-step (∃-step) from si−1 to
si, then we call the sequence 〈Step1, ..., Stepn〉, a causally
valid ∀-step (∃-step) temporal plan for P .

∃-step Encodings for Causally Valid Temporal
Plans

Classical ∃-step encoding, which has been introduced in
(Rintanen, Heljanko, and Niemelä 2006), is based on the
∃-step semantics for classical valid plans. However, for the
sake of improving the efficiency of the planner, the follow-
ing restrictive rules have been also enforced on it.

• Rule 1: Instead of accepting all possible orderings among
the actions of each step, only a fixed arbitrary ordering
was allowed. Executing a step means executing its actions
according to this fixed ordering.

• Rule 2: Preconditions and effects of all actions of each
step must be consistent with the states before and after
that step, respectively.

The second rule causes an action a to be excluded from a
step if there is a contradiction between its effects and that of
any other action in that step. Also, a is prevented from being
in a step if its precondition is deleted in that step by any
other action that according to the predefined fixed ordering
is located before a.

In this section, we explain two ∃-step encodings for tem-
poral planning. Both proposed encodings are based on the ∃-
step semantics for causally valid temporal plans (definition
10). By considering events, instead of actions, both rules
mentioned above can be applied to temporal planning, too.
While in our first encoding, we respect both rules, our sec-
ond encoding relaxes the second one. Besides, we also use
a third restrictive rule in both proposed encodings. We will
later discuss the benefits of the third rule.

• Rule 3: The ending event of each action must be located
next to the starting event of that action in the fixed order-
ing mentioned in Rule 1.

It should be noted that since we are using a total order be-
tween all events, our encodings are not completely coherent
with the ∃-step semantics defined by definition 10. In fact,
for the sake of simplicity, we have assumed that no pair of
actions can happen simultaneously in a causally valid plan.
This assumption does not render our encodings incomplete
unless the problem has a certain property that we call re-
quired causal simultaneity.

Definition 11 (required causal simultaneity) We say a
temporal plan π = 〈E1, ..., En〉 has simultaneity if for some
i, we have |Ei| > 1. If every causally valid plan of a tem-
poral problem P has simultaneity, we say that P requires
causal simultaneity.

Note that while the plan in Figure 1(a) requires causal si-
multaneity, this is not the case in the plan presented in Fig-
ure 1(b). Moreover, while required simultaneity entails re-
quired concurrency (Cushing et al. 2007), the reverse is not
true. In other words, required simultaneity is more specific
than required concurrency. We now show that the existence
of the required causal simultaneity has some necessary (but
not sufficient) conditions that can be detected in polynomial
time.

Let P be a temporal planning problem. Associated with
P , we construct a precedence graph G(P) =< V,E > as
follows:

• For each event ei of P , there is a vertex vi ∈ V .

• If ei is the starting event of action a, and ej adds an over-
all condition of a, we add a directed edge (vj , vi) to E.

• If ei is the ending event of action a, and ej deletes an
over-all condition of a, we add a directed edge (vi, vj) to
E.

The precedence graphs of the problems corresponding to
the plans of Figure 1(a) and Figure 1(b) are presented in
Figure 3(a) and Figure 3(b), respectively.

Theorem 1. Let P be a temporal planning problem for
which there exist a causally valid temporal plan. If P re-
quires causal simultaneity, then G(P) must have a cycle.

113

Figure 3. Precedence graphs

Proof sketch. The proof is given by contradiction. Sup-
pose that G(P) is acyclic. By applying the topological sort
algorithm to G(P), we obtain a total ordering on the ver-
tices of (and consequently on the events of P). Let π be a
causally valid temporal plan for P . We construct a new plan
π′, which is the same as π except for the previously simul-
taneous events that are now totally ordered by the topologi-
cal ordering. The ordering we imposed on the events of π′
prevents it from becoming causally invalid (details are omit-
ted here). This contradicts our assumption that P requires
causal simultaneity.

Since topological sort is a polynomial time algorithm,
we conclude that detecting the necessary conditions of re-
quired causal simultaneity, stated in theorem 1, can be done
in polynomial time. Our investigations show that from all
domains used in different International Planning Competi-
tions, only the rovers domain has this necessary condition.
Therefore, preventing the occurrence of simultaneous events
in the causally valid plans will not seriously damage the gen-
erality of our method.

We now describe the clauses that are to be included in
both new encodings. These are clauses needed for appropri-
ate manipulation of the agendas of states and preventing the
over-all conditions of each action from being deleted during
the execution of that action.

Clauses Shared by Both Proposed Encodings
Assume that the encoding is to represent a ∃-step temporal
plan, 〈Step1, ..., Stepn〉, where members of each Stept are
applied to the temporal state st−1, according to a predefined
fixed ordering, and map it to state st. Suppose that the index
of each event represents the location of that event in the fixed
ordering. From now on, if we say that an event ei is earlier
(later) than an event ej , we mean that j is greater (less) than
i. We denote the existence of an event e in a step t by the
SAT variable Y t

e . We also use the SAT variableOt
a to denote

that action a is a member of agenda(st). The SAT variable
Xt

p is used to denote the existance of proposition p in state
st.

Encoding the initial state and goal conditions of the prob-
lem is quite standard. The following clauses are introduced
to guarantee that the agendas of states are changed appro-
priately. We give both a verbal description, and a formal
representation of each clause.

• If ei is the starting event of action a, the presence

of ei in step t implies that a is not a member of
agenda(st−1). Besides, if a is a member of agenda(st)
but not agenda(st−1), then ei must be present in step t:
(Y t

ei →∼ Oa
t−1) and (∼ Ot−1

a ∧ Ot
a → Y t

ei). Further-
more, if ei is present in step t, but ei+1, which according
to our third restrictive rule must be the ending event of
a, is not present in step t, then a has to be a member of
agenda(st): Y t

ei∧ ∼ Y t
ei+1
→ Ot

a.

• A description analogous to what is given above also
applies to the ending event of a: (Y t

ei+1
→∼ Oa

t),
(Ot−1

a ∧ ∼ Ot
a → Y t

ei+1
), and (∼ Y t

ei ∧ Y t
ei+1
→ Ot−1

a).

• The agenda of the initial and final state of the plan must
be empty: for each a, (∼ O0

a∧ ∼ On
a).

The following clauses are added to the encoding for pre-
venting the over-all conditions of each action from being
deleted during the execution of that action. These clauses are
representing a schematic message passing strategy, which
is inspired by the chaining method used in (Rintanen, Hel-
janko, and Niemelä 2006). For each step t, proposition p,
and event ei whose corresponding action has p as an over-
all condition, the SAT variable Bt

p,i denotes whether or not
p is deleted in step t, by an event whose index is less than
i (i.e., an earlier event). Similarly, variable At

p,i represents
that whether or not p is deleted in step t by an event whose
index is greater than i (a later event). Finally, variable Dt

p
shows whether or not p is deleted by any event in step t.
• Assume that event ei deletes proposition p, and ej is the

first event after ei with the property that its corresponding
action has p as an over-all condition. If ei is present in
step t, then a message must be sent to ej to indicate that
p has been deleted earlier in step t: (Y t

ei → Bt
p,j) and

(Y t
ei → Dt

p).
• Assume that event ei deletes proposition p, and ej is the

last event before ei with the property that its correspond-
ing action has p as an over-all condition. If ei is present in
step t, then a message must be sent to ej to indicate that p
will be deleted later in step t: (Y t

ei → At
p,j).

• Assume that p is an over-all condition of action a, ei is
the ending event of a, and ej is the first ending event after
ei with the property that its corresponding action has p as
an over-all condition. If ei receives a message implying
that p has been deleted earlier in step t, then it must pass
this message to ej : (Bt

p,i → Bt
p,j).

• Assume that p is an over-all condition of action a, ei is the
starting event of a, and ej is the last starting event before
ei with the property that its corresponding action has p as
an over-all condition. If ei receives a message implying
that p is to be deleted later in step t, then it must pass this
message to ej : (At

p,i → At
p,j).

• Assume that p is an over-all condition of action a. If p
is deleted in step t, then a cannot be a member of both
agenda(st−1) and agenda(st): (Dt

p ∧ Ot
a →∼ Ot−1

a).
In other words, if a is started before and ended after step
t, its overall conditions cannot be deleted in step t.

• Assume that p is an over-all condition of action a, and ei
is the starting event of a. If ei is present in step t, and p

114

has been deleted by an event later than ei in step t, then
ei+1 (the ending event of a) must be present in step t, too:
(Y t

ei ∧At
p,i → Y t

ei+1
). This implies that if a is started but

not ended in step t, its over-all condition cannot be deleted
later in step t. This is where we are taking advantage of
our third restrictive rule: if a is both started and ended in
the same step, because its starting and ending events are
next to each other, no other event can delete its over-all
conditions while a is being executed.

• Assume that p is an over-all condition of action a, and ei
is the ending event of a. If ei is present in step t, and p
is deleted by an event earlier than ei in step t, then ei−1
(i.e., the starting event of a) must be present in step t, too:
(Y t

ei ∧ Bt
p,i → Y t

ei−1
). This implies that if a is ended

but not started in step t, its over-all condition cannot be
deleted in step t by an earlier event.
In addition to the shared clauses stated above, there are

other necessary clauses exclusive to each of our new encod-
ings. We present these clauses in their corresponding sub-
section. We say that an event e requires a proposition p if p
is a precondition of e, or e is the starting event of an action
that has p as an over-all condition. We say that the a propo-
sition p is relevant to an event e if e requires, adds, or deletes
p.

A Natural Extension to the Classical ∃-step
Encoding
Our first proposed encoding is a natural extension to the clas-
sical ∃-step encoding, as it uses all three restrictive rules
stated above. According to the second rule, the precondi-
tions and effects of events of each step must be consistent
with the states before and after that step, respectively. There-
fore, this part of the encoding, which also includes explana-
tory frame axioms, is very similar to its corresponding part
in the standard classical encodings. However, when we are
dealing with temporal planning problems, the over-all con-
ditions of actions must be encoded, too:
• Assume that e is the starting event of an action a, p is an

over-all condition of a, and e does not add p. If e is present
in any step t, then p must be true in st−1: (Y t

e → Xt−1
p).

Similar to the classical ∃-step encoding, for any i < j, if
ei deletes p and ej requires p, then ei and ej cannot be both
present in any step. To ensure this, a schematic message
passing strategy very similar to the one mentioned before, is
employed.

For each step t, proposition p, and event ei that requires
p, Zt

p,i denotes if p is deleted in step t by an event earlier
than ei.
• Assume that ei deletes p, and ej is the first event after ei

with the property of requiring p. If ei is present in step t,
then a message must be sent to ej to indicate that p has
been deleted earlier in step t: (Y t

ei → Zt
p,j).

• Assume that ei requires proposition p, and ej is the first
event after ei with the property of requiring p. If ei re-
ceives a message implying that p has been deleted earlier
in step t, then ei cannot be present in step t, and it must
pass this message to ej : (Zt

p,i →∼ Y t
ei ∧ Zt

p,j).

Relaxed ∃-step Encoding
The second restrictive rule presented before, prevents a
proposition from being both produced and used in the same
step of the final plan. It also does not allow the deletion
and production of any particular proposition to happen in
the same step. By relaxing these restrictions the encod-
ings can be further compressed, i.e., the relaxation permits
more events in each steps. In classical planning, a less re-
laxed form of Rule 2 has been used in (Wehrle and Rintanen
2007), where the effects of actions in each step can be used
by other actions in that step. However, here we totally re-
lax Rule 2 and allow each proposition to be required, added,
and deleted in each step as many times as is needed. In the
first encoding, explained in the previous subsection, we in-
form events if any of their requirements is deleted earlier in
the same step. In the relaxed encoding, however, the events
are informed about the very last change in the truth value
of their requirements. No event can occur in the final plan
unless the last change in the truth value of any of its require-
ments has caused the requirement to become true. For each
step t, event ei, and proposition p that is relevant to ei, V t

p,i
represents the truth value of p just before the hypothetical
execution of ei.

• Assume that ei deletes p, and ej is the first event after ei
with the property of having p as a relevant proposition.
If ei is present in step t, then a message must be sent to
inform ej that the last change in p has been performed
to delete it: (Y t

ei →∼ V t
p,j). An analogous discussion

is valid when ei adds p: (Y t
ei → V t

p,j). Moreover, if ei is
not present in step t, it must pass any received information
regarding the value of p to ej : (∼ Y t

ei ∧ V t
p,i → V t

p,j) and
(∼ Y t

ei∧ ∼ V t
p,i →∼ V t

p,j).

• Assume that ei is the last event in the ordering with the
property of having p as a relevant preposition. If ei is
not present in step t, the value of p just before ei must be
transferred to the next step: (∼ Y t

ei ∧ V t
p,i → Xt

p) and
(∼ Y t

ei∧ ∼ V t
p,i →∼ Xt

p). Moreover, If ei deletes p we
add the clause (Y t

ei →∼ Xt
p) to ensure that the presence

of ei in step t, implies that p is not true in st. Again,
an analogous discussion is valid when ei adds p: (Y t

ei →
Xt

p).

• Assume that ei is the first event in the ordering with the
property of having p as a relevant proposition. ei must be
informed of the value of p in st−1: (Xt−1

p ↔ V t
p,i).

• Assume that ei requires p. If ei is present in step t, then p
must be true just before the execution of ei: (Y t

ei → V t
p,i).

Implementation Details and Empirical Results
We have incorporated our new encoding methods into the
older verrsion of ITSAT. ITSAT has been slightly modi-
fied so that our new encodings can coherently work with it.
These modifications have been applied to mutual exclusion
analysis and negative cycle detection parts of ITSAT.

It is known that SAT-based planners can significantly ben-
efit from inference about mutually exclusive propositions
(Kautz, Selman, and Hoffmann 2006). Any two propositions

115

that remain mutually exclusive after the planning graph has
been leveled off (Blum and Furst 1997), cannot be both true
in the same state of a valid plan. These are the only mutual
exclusion relations that are included in our new encodings.

The second minor modification of ITSAT is related to its
FSMs that detect certain negative cycles. As we mentioned
before, the negative cycles are prevented by encoding the
transitions of a particular FSM to the SAT formula. In our ∃-
step encodings, the events of each step are assumed to be ex-
ecuted according to a predefined ordering. We have slightly
modified the encoding of ITSAT to impose the correspond-
ing order on the transitions of each FSM in each step.

For evaluating the proposed encoding methods, we have
tested three versions (i.e., the original ∀-step, the ∃-step, and
the relaxed ∃-step version) of ITSAT on the problem sets of
previous International Planning Competitions. The experi-
ments have been conducted on a 3.1GHz corei5 CPU with
4GB main memory. Precosat (Biere 2009), which is a free
off-the-shelf SAT solver, has been used for satisfying SAT
formulae in all three versions of ITSAT. For each problem
and each version of ITSAT, several SAT formulae with in-
creasing number of steps were produced. Some of the results
are shown in Table 1.

The columns of Table 1 represent: the name of the do-
main, the problem number, the used encoding method, the
number of steps in the encoding, the result of precosat
in terms of satisfiability or unsatisfiability of the formula,
the number of clauses and variables divided by 1000, the
amount of time taken by precosat to determine the result,
and the amount of memory needed for saving the formula.
For each problem and each encoding method, the results are
presented for two cases: unsatisfiable formula with the high-
est number of steps, and satisfiable formula with the lowest
number of steps. We have used symbol ∃∗ as an abbrevi-
ation for the relaxed ∃-step encoding. Symbol ∞ is used
in the time column for cases in which precosat has not de-
termined the satisfiability of the formula in 1800 seconds.
Please note that in the sokoban domain, an extra comparison
between ∃∗ and ∃ configurations has been presented in Table
1 for problem no. 1 in which the ∀ configuration could not
find a plan.

As it is shown in Table 1, using our proposed encodings
causes a considerable improvement in terms of both speed
and memory usage of the planner. Furthermore, the relaxed
∃-step encoding is faster than the other two in almost all
domains. Although the results presented in table 1, does
not cover all the domains used in previous IPCs, we should
mention that the same pattern has been observed in nearly
all of those domains, too.

time mem
domain prob enc steps res C

1000
V

1000
(s) (MB)

∀ 29 F 1907 60 ∞ 134
∃ 13 F 349 86 7 45

4 ∃∗ 6 F 219 101 11 62
∀ 30 T 1973 63 465 138

sokoban ∃ 14 T 378 93 12 47
(2011) ∃∗ 7 T 256 118 11 64

∃ 12 F 765 187 233 95
1 ∃∗ 4 F 346 157 7 70

∃ 13 T 835 203 120 99
∃∗ 5 T 435 197 48 124
∀ 52 F 8080 153 10 509
∃ 31 F 1442 220 1.4 134

parcprint. 12 ∃∗ 13 F 689 74 1.4 139
(2011) ∀ 53 T 8233 156 8 518

∃ 32 T 1929 293 2.1 137
∃∗ 14 T 744 83 1.7 142
∀ 30 F 250 22 139 21
∃ 11 F 67 18 0.5 10

floortile 10 ∃∗ 8 F 69 27 1.3 16
(2011) ∀ 31 T 257 22 169 21

∃ 12 T 74 20 0.7 11
∃∗ 9 T 78 31 1.1 17
∀ 41 F 80 10 ∞ 8
∃ 41 F 59 17 ∞ 10

crewplan. 1 ∃∗ 9 F 241 74 0.7 39
(2011) ∀ 42 T 83 10 2.9 8

∃ 42 T 60 18 2.2 10
∃∗ 10 T 269 83 0.7 45
∀ 26 F 73 6 ∞ 7
∃ 12 F 23 6 ∞ 4

pegsol 20 ∃∗ 5 F 15 7 0 4
(2011) ∀ 27 T 77 6 5 8

∃ 13 T 25 7 11 6
∃∗ 6 T 19 8 0.4 4
∀ 9 F 25155 145 6 1533
∃ 5 F 864 215 1.3 97

depots 10 ∃∗ 4 F 977 483 2 250
(2004) ∀ 10 T 28741 163 11 1745

∃ 6 T 1058 260 4.7 103
∃∗ 5 T 1237 607 4 266
∀ 17 F 15365 217 15 939
∃ 8 F 739 199 2.3 97

driverlog 15 ∃∗ 6 F 647 246 1 187
(2004) ∀ 18 T 16606 232 9 1058

∃ 9 T 841 225 8 104
∃∗ 7 T 763 266 2 240

Table 1. Comparing Different Encoding Methods

Conclusion
In this paper, we explained ITSAT planner that by sepa-
rating the casual and temporal reasoning phases of a SAT-
based temporal planner, can employ compact semantics to
construct effective encodings. Two different types of ∃-step
encodings were described for temporal planning. We have

116

embedded our new ∃-step encodings into ITSAT. We empir-
ically showed the new encodings to be more efficient than
the ∀-step encoding employed previously in ITSAT.

References
Armando, A.; and Giunchiglia E. 1993. Embedding Com-
plex Decision Procedures inside an Interactive Theorem
Prover. Annals of Mathematics and Articial Intelligence,
8(34), 475502.
Biere, A. 2009. P{re,i}coSAT@SC’09. Solver description
for SAT Competition 2009. In SAT 2009 Competitive Event
Booklet.
Blum, A.; and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial intelligence. 90:281-300.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. Proceedings of
20th International Conference on Automated Planning and
Scheduling, 42-49, AAAI press.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is temporal planning really temporal? Proceed-
ings of 20th International Joint Conference on Artificial In-
telligence, 1852-1859, AAAI press.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks. Artificial Intelligence 49(1-3): 61-95.
Eyerich, P.; Mattmuller, R.; and Roger, G. 2009. Unifying
Context-Enhanced Additive Heuristic for Temporal and Nu-
meric Planning. Proceedings of 19th International Confer-
ence on Automated Planning and Scheduling, AAAI press.
Fox, M.; and Long, D. 2002. PDDL+: Modelling Contin-
uous Time-dependent Effects. In Proceedings of the Third
International NASA Workshop on Planning and Scheduling
for Space.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61-124.
Garrido, A.; Fox, M.; and Long, D. 2002. A temporal plan-
ning system for durative actions of PDDL2.1. Proceedings
of 15th European Conference on Artificial Intelligence, 586-
590, IOS press.
Huang, R.; Chen, Y.; and Zhang, W. 2009. An optimal
temporally expressive planner: Initial results and application
to P2P network optimization. Proceedings of 19th Interna-
tional Conference on Automated Planning and Scheduling,
AAAI press.
Kautz H.; and Selman, B. 1992. Planning as Satisfiability.
Proceedings of 10th European Conference on Artificial In-
telligence, 359-363, IOS press.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. SatPlan:
Planning as Satisfiability. International Planning Competi-
tion.
Mali, A. D.; and Liu, Y. 2006. T-SATPLAN: A SAT-based
Temporal Planner. International Journal of Artificial Intelli-
gence Tools 15(5): 779-802.
Rankooh, M. F.; Mahjoob, A.; and Ghassem-Sani, G. 2012.
Using Satisfiability for Non-Optimal Temporal Planning.

Proceedings of the 13th European Conference on Logics in
Artificial Intelligence, Springer.
Rintanen, J.; Heljanko, K.; and Niemelä. 2006. Planning as
satisfiability: parallel plans and algorithms for plan search.
Artificial Intelligence, 170(12-13): 1031-1080.
Shin, J.; and Davis, E. 2005. Processes and continu-
ous change in a SAT-based planner. Artificial Intelligence,
166(1-2): 194-253.
Smith, D. E.; and Weld D. S. 1999. Temporal planning with
mutual exclusion reasoning. Proceedings of 16th Interna-
tional Joint Conference on Artificial Intelligence, 326-337,
AAAI press.
Vidal, V.; and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artificial Intelligence, 170(3): 298-335.
Wehrle, M.; and Rintanen, J. 2007. Planning as Satisfia-
bility with Relaxed ∃-step Plans. Proceedings of 20th Aus-
tralian Joint Conference on Artificial Intelligence, 244-253,
Springer-Verlag.
Younes, H. L. S.; and Simmons, R. G. 2003. VHPOP: Ver-
satile Heuristic Partial Order Planner. Journal of Artificial
Intelligence Research, 20: 405-430.

117

tBurton: A Divide and Conquer Temporal Planner

David Wang and Brian Williams
Model-based Embedded and Robotic Systems Group

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Abstract

tBurton is a temporal planner designed to solve model-
based control problems involving time. Unlike purely
heuristic-based planning strategies, tBurton first uses
causal graph decomposition to divide the problem into
factors, and then plans for each factor using an off-
the-shelf heuristic forward search planner. These ‘sub-
plans’ are then re-combined in a conflict directed search
which also learns sub-plans for each factor that can be
quickly re-applied. Problems for tBurton are formulated
in terms of Timed Concurrent Automata, a variation on
timed-automata theory. In this paper we briefly describe
the formalism, the algorithm, and the translation neces-
sary to apply tBurton to problems expressed in PDDL.

Introduction
tBurton is a model-based planner designed as a progression
of the reactive model-based planner, Burton, to handle prob-
lems with time. As such, tBurton is capable of planning for
systems that have indirect-effects (as a result of interactions
between machines), irreversible actions, timed, possibly pe-
riodic behavior, and imprecise execution times. The plan
tBurton produces is temporally least-commitment: provid-
ing time-bounds within which imprecise execution times can
be tolerated. Furthermore, the user can specify goals with
deadlines and time-windows (time-evolved goals) in order
to constrain the space of possible plans considered. These
problem features are natively expressed in tBurton using
Timed Concurrent Automata (TCA).

In terms of PDDL, tBurton is capable of solving PDDL
problems through the use of the translator from PDDL
to TCA (subsection). with timed initial literals, durative-
actions with duration inequalities, but not numeric flu-
ents, . Additional PDDL features such as state-trajectory-
constraints are theoretically supportable, but not currently
implemented.

The overarching approach used in tBurton is Divide and
Conquer: We use causal-graph analysis to ‘divide’ the prob-
lem into factors suitable to be ‘conquered’ by an off-the-
shelf sequential heuristic search planner. The resulting plans
for each factor are then unified in a conflict directed search,
which also learns re-usable planfragments.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

While the importance of causal graphs in planning has
been established (Williams and Pandurang Nayak 1997;
Chen and Giḿenez 2010; Brafman and Domshlak 2006;
Helmert 2004), this conflict-directed unification of causal
graphs and heuristic forward search is new.

In this paper we review the tBurton planner. We begin
by presenting the TCA formalism and then sketch the al-
gorithm. Finally, we close by providing the translation from
PDDL to TCA.

Problem Formulation
tBurton operates over two formalisms: Timed Concurrent
Automata (TCA), which expresses the behavior of the sys-
tem, encoded as a set of automata with guarded transitions;
and State Plans (SP) which uses a temporal network to ex-
press when automata states need to be achieved.

Given aTCA and a partial state planSPpart (which ex-
presses only the initial state and goals), tBurton’s objective is
to elaborateSPpart by adding transitions until all open goals
are closed and the plan is consistent with theTCA. We refer
to the resulting plan as the Total State Plan,SPtotal.

Formally, aTCA consists of a set of automata,A, whose
operation is defined by the interaction of three different
classes variables: location variables, control variables, and
clock variables.

Definition 1. An automaton,A is the 5-tuple〈l, C, u,T, I〉.

• l is a location variable, whose finite-domain represent the
locations over which this automata transitions.

• C is set of clock variables uniquely used by this automa-
ton. A clock variable,c, is a positive, real-valued variable
that acts as a stop-watch to track time.

• u is the unique control variable for this automaton. The
control variable has a finite-domain of values, that repre-
sent control values which can be selected externally to the
automaton to affect its transitions.

• T is a transition function, that associates with a start and
end locationls, le a guardg and a subset ofC to be reset to
0. A guard is expressed in terms of propositional formulas
with equality,ϕ, where:ϕ ::= true | false | (lo =
v) | (u = v) | (c op r) | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2. The
guard can be expressed only in terms of location variables
not belonging to this automaton,lo ∈ L\l, and the control

118

and clock variables of this automaton. The automaton is
said to instantaneously transition fromls to le and reset
its clock variables when the guard is first evaluated true.

• I is a function that associates with each location an in-
variant, a clock comparison of the formc < r or c ≤ r
that bounds the maximum amount of time an automata
can stay in that location.

An automaton iswell formedif there exists a next-state
for all possible combination of assignments to location, con-
trol, and clock variables. With regards to the transitions, an
automaton is said to bedeterministicif for any ls only the
guardg of one transition can be true at any time. tBurton can
only reason over TCA models consisting of well-formed, de-
terministic automata.
Definition 2. A State PlanSP consists of a set of episodes
ep = 〈ei, ej , lb, ub, sc〉, which express for a pair of time-
points,ei andej , the temporal separation allowed between
themlb ≤ ej −ei ≤ ub, and a state constraintsc, (expressed
in propositional state logic over location, clock, and control
variables) that must hold over that interval.

We further categorize the episodes of the State Plan
into Goal Histories, Value Histories, and Justifications. An
episode participating in a Goal History is called a goal-
episode. It’s state constraint expresses a desired state. A
value-episode expresses a state that should be achieved.

A justification-episode expresses a temporal relation be-
tween goal and value episodes. An important function of
justification episodes is to indicate that a value-episode has
closeda goal-episode. Informally, a value episode closes a
goal episode, if there is a justification relating the start events
of each episode, a justification relating the end events of each
episode, and the state constraint on the value episode entails
that of the goal.

tBurton Planner
tBurton depends on many component algorithms, but for the
purposes of this presentation we focus on the two most sig-
nificant in understanding its operation. The first is causal-
graph decomposition and how we use it to induce a search
ordering. The second is the high-level search, for which we
will spend the bulk of this section describing.

Causal Search Ordering
Given a TCA, tBurton first builds an acyclic causal
graph which orders the automata based on their inter-
dependencies. The graph imposes a ’causal’ search order-
ing, in which tBurton will first plan for goals involving the
children before its parents.

The construction is straight-forward. EachA ∈ TCA be-
comes an graph embedded in a vertex of the causal graph. If
automatonA1 has a guard that uses the location variable of
automatonA2, we add a directed edge from the vertex con-
tainingA2 to the vertex containingA1. To make the causal
graph acyclic, any automata involved in cycles are replaced
by their automata product. Finally, the graph is walked in a
depth-first manner, numbering children before parents. This
numbering can be used later to ensure goals on children au-
tomata are closed before their parents.

Search as Regression through Histories
tBurton’s high-level search algorithm inherits ideas from
Burton (Williams and Pandurang Nayak 1997), UCPOP
(Penberthy and Weld 1992), and conflict-directed search
(Chen and Van Beek 2011).

As a partial order planner, tBurton searches over plan
space. This space is defined by permutations ofSPpart. To
move in this space, tBurton can perform three different plan-
space actions, or choices that modifySPpart.:

1. Select a goal ordering within each Automaton.When
tBurton starts planning, it has a set of goal-episodes to
close. While the causal graph tells us we should plan for
one automaton before another, it does not tell us how to
order a subset of those goals if they occur over a single
automaton. Since actions are not reversible and reachabil-
ity checking is hard, the order in which goals are achieved
matters. tBurton must impose a total ordering on the goals
involving the location of a single automaton. Recall that
since an automaton can have no concurrent transitions, a
total order does not restrict the space of possible plans for
any automaton.
Relative to SPpart, imposing a total order involves
adding episodes to the goal history of the formep =
〈ei, ej , 0,∞, true〉, for eventsei andej that must be or-
dered.

2. Select a value to close a goal.Since goals can have con-
straints expressed as propositional state-logic, it is possi-
ble we may need to achieve disjunctive subgoals. In this
case, tBurton must select a value that entails the goal.
To properly close the goal, tBurton must also represent
this value selection as an episode added to the value his-
tory of the appropriate automata or control variable, and
introduce two justifications which honor the bounding
constraints.

3. Select a sub-plan to achieve a value.The sub-plan tBur-
ton must select need only consider the transitions in a
single automaton,A. Therefore, the sub-plan must be se-
lected based on two sequential episodes,eps epg, in the
value history ofA (which will be the initial state and
goal for the sub-plan), and the set-bound temporal con-
straint that separates them. The method tBurton uses to
select this sub-plan can be any blackbox, but we will use
a heuristic forward search, temporal planner. To properly
add this sub-plan toSPpart, tBurton must add the plan to
the value history and introduce any new goals this plan
requires of parent automata.

These three choices form the basis of the high level
search. But, there are two additional details that have a sig-
nificant impact on tBurton’s performance.

In order to maintain search state, the algorithm uses a
queue to keep track of the partial plans,SPpart, that it
needs to explore. For simplicity, one can assume this queue
is FIFO, although in practice, a heuristic could be used to
sort the queue. We make two additional modifications to the
SPpart we store on the queue, to make search more efficient.
First, we annotateSPpart with which of the three choices it
needs to make next. The second addition involves the use

119

Figure 1: An example TCA automaton for a generic PDDL
grounded action.

of an Incremental Temporal Order (ITO) algorithm. When
tBurton needs to select a goal ordering for a given partial
plan, it could populate the queue with partial plans repre-
senting all the variations on goal ordering. Since storing all
of these partial plans would be very memory intensive, we
add to the partial plan a data structure from ITO, which al-
lows us to store one partial plan, and poll it for the next tem-
porally consistent variation in total goal ordering.

As a consequence of using plans to close goals instead of
actions, we can take advantage of memorizing and conflict
learning. In particular, a sequential plan for a timed automa-
ton is defined by its initial location, goal, and bounds on the
temporal duration between the two. We can associate with
these pieces of information, a plan (or lack of a plan) that
can satisfy it. In the future when a similar situation arises,
we can lookup these cached results faster than generating
another sequential plan.

PDDL to TCA
In order to run tBurton on PDDL problems, we developed a
PDDL (without fluents) to TCA translator. Here, we provide
only a sketch of this translator.

In order to maintain as much concurrency as possible in
the domain, the translator first uses temporal invariant syn-
thesis (Bernardini and Smith 2008) to compute a set of in-
variants. An instance of an invariant identifies a subset of
ground predicates in which only one can be true at the same
time. We select a subset of these invariant instances that pro-
vide a covering of the state-space, and encode each invariant
instance into an automaton. Each possible grounding of the
invariant instance becomes a location in the automata.

Each ground durative action is also translated into an au-
tomaton (Figure 1). Three of the transitions are guarded by
conditions from the corresponding PDDL action, translated
into propositional state logic over location variables. An-
other transition usesε to denote a small-amount of time to
pass for the start-effects of the action to take effect prior to
checking for the invariant condition. A fifth transition is used
to reset to the action.

Finally, the transitions of each invariant-instance based
automata is labeled with a disjunction of the states of the
ground-action automata that effects its transition.

Discussion
In order to complete the process of applying tBurton to
PDDL, there are two additional pieces necessary: An au-
tomaton to PDDL translator is needed to interface with the

heuristic forward search planner. This can be derived by
translating each TCA transition to a simple durative action,
while exploiting the reverse of the mapping described in the
preceding subsection where possible. There also needs to be
a scheduling algorithm to choose specific times for each ac-
tion from the least-commitment plan (Dechter, Meiri, and
Pearl 1991). Since dynamic scheduling is not necessary any
APSP algorithm is sufficient. Note that all of these decora-
tions are necessary because tBurton was designed to solve
problems with an emphasis on a different set of features.
While we can apply tBurton to PDDL problems, it is still
uncommon for PDDL problems to have time-evolved goals
and actions with duration inequalities, the features for which
tBurton was really designed to solve.

tBurton’s use of the causal graph to factor the problem
provides many indirect benefits: The ability to use sequen-
tial planners to plan for each factor, (for which the fastest
seem to be heuristic forward search planners); The causal,
child-to-parent search order; And the ability to learn and ap-
ply concise plan fragments. In practice, we find that these
approaches greatly reduce the time required for plan-space
search, and makes tBurton not only an effective TCA plan-
ner, but an effective PDDL planner as well.

References
Bernardini, S., and Smith, D. 2008. Translating pddl2. 2.
into a constraint-based variable/value language. InProc. of
the Workshop on Knowledge Engineering for Planning and
Scheduling, 18th International Conference on Automated
Planning and Scheduling (ICAPS08).
Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when, and when not. InAAAI, volume 6, 809–814.
Chen, H., and Giḿenez, O. 2010. Causal graphs and struc-
turally restricted planning.Journal of Computer and System
Sciences76(7):579–592.
Chen, X., and Van Beek, P. 2011. Conflict-directed back-
jumping revisited.arXiv preprint arXiv:1106.0254.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks.Artificial intelligence49(1-3):61–95.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. ICAPS.
Penberthy, J., and Weld, D. 1992. Ucpop: A sound, com-
plete, partial order planner for adl. Inproceedings of the
third international conference on knowledge representation
and reasoning, 103–114. Citeseer.
Williams, B., and Pandurang Nayak, P. 1997. A reactive
planner for a model-based executive. InInternational Joint
Conference on Artificial Intelligence, volume 15, 1178–
1185. LAWRENCE ERLBAUM ASSOCIATES LTD.

120

Preferring Preferred Operators in Temporal Fast Downward

Patrick Eyerich and Thomas Keller and Johannes Aldinger and Christian Dornhege
University of Freiburg, Germany

{eyerich,tkeller,aldinger,dornhege}@informatik.uni-freiburg.de

Abstract

Temporal Fast Downward (TFD) is a temporal planning sys-
tem that is capable of dealing with numerical values. In
this paper, we briefly describe the main improvement of the
version of TFD that participates at IPC-14 over the version
from IPC-08: the incorporation of new methods of deciding
whether certain operators should be preferred during search.

Temporal Fast Downward
Temporal Fast Downward (TFD) (Eyerich, Mattmüller, and
Röger 2009) is a domain-independent progression search
planning system built on top of the classical planner Fast
Downward (Helmert 2006). It extends the original system
by supporting durative actions as well as numeric and ob-
ject fluents. The main improvement of the version of TFD
that participates at IPC-14 over the original version is the
incorporation of new methods of deciding whether certain
operators should be preferred during search (Eyerich 2012).
In this paper, we briefly describe these methods.

In the following, we use the definition of Eyerich et. al.
of a temporal SAS+ planning task (Eyerich, Mattmüller, and
Röger 2009), a tuple Π = 〈V, s0, s?,A,O〉, where V is a set
of state variables. The initial state s0 is given by a vari-
able assignment (a state) over all fluents in V and the set of
goal states s? is defined by a partial state (a state restricted
to a subset of fluents) over V . Analogously to the Boolean
setting, we identify such variable mappings with the set of
atoms v=w that they make true. For an atom x we write
var(x) to denote the variable associated with x. A is a finite
set of axioms and O is a finite set of durative actions.

A time-stamped state S = 〈t, s,E ,C↔,Ca〉 consists of a
time stamp t ≥ 0, a state s, a set E of scheduled effects, and
two sets C↔ and Ca of persistent and end conditions.

A durative action is applicable in a time-stamped state S
if it can be integrated into S in a consistent way (Eyerich,
Mattmüller, and Röger 2009). The successors of a time-
stamped state are generated by either inserting an applicable
durative action at the current time point or by increasing the
time-stamp to the earliest time point where a scheduled ac-
tion ends.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Context-enhanced additive heuristic
For guiding the search, TFD uses a variant of the (inadmis-
sible) context-enhanced additive heuristic (hcea) (Helmert
and Geffner 2008) extended to cope with numeric vari-
ables and durative actions. To make hcea useful for tem-
poral planning, Eyerich et. al. show how to transform du-
rative actions to several types of so-called instant actions
(Helmert and Geffner 2008), which we assume to be given
in this paper. Instant actions are sets of effects of the form
v=w′, z → v=w, where v is a variable, z is a partial state
not mentioning v, and w and w′ are values for v. Such an
effect means that if the current state s satisfies z and maps
v to w′, then the successor state s′, resulting from the appli-
cation of the operator, maps v to w (while all mappings that
are not changed by any effect of the operator stay the same).
We also write a : v=w′, z → v=w to make clear that the
rule is an effect of the instant action a.

Given a state s and an atom v=w, we denote with s[v=w]
the state that is like s except for variable v, which it maps
to w. Similarly, we write s[s′] where s′ is a partial state to
denote the state that is like s′ for variables defined in s′ and
like s for all other variables.

For a time-stamped state s and a goal specification s?, the
cost-sensitive variant of hcea is defined as

hcea(s)
def
=
∑

x∈s?
hcea(x|xs),

where xs is the atom that refers to var(x) in state s and
hcea(x|xs) estimates the costs of changing the value of
var(x) from the value it has in s to the one required in s?.

The context-enhanced additive heuristic makes the under-
lying assumption that for any atom x conditions referring
to var(x) are achieved first, while all other conditions are
evaluated in the resulting state s′′, leading to the following
definition:

hcea(x|x′) def
=





0 if x = x′

min
o:x′′,z→x

(
c(o, s′′) +

hcea(x′′|x′) +∑

xi∈z
hcea(xi|x′′i)

)
else

where c(o, s) is the cost of applying operator o in state s.
The state s′′ is the state after reaching x′′ from x′. Note that

121

with the minimum of the empty set being infinity, hcea(x|x′)
might also be infinity and if it is, there is no plan that satisfies
the goal in the original task.

In this definition, the first case is trivial. In the second
case, the first summand, c(o, s′′), captures the cost of ap-
plying the minimizing operator o in state s′′, the second one
estimates the cost of achieving x′′ from x′, and the third one
the cost of making all other conditions z of the rule true. In
this third term, atom x′′i is the atom associated with var(xi)
in the state that results from achieving x′′ from x′.

To reschedule solutions in order to reduce their makespan,
the TFD version used for this paper features a partial-order
lifting procedure that is inspired by the work of Do and
Kambhampati and Coles et. al. (Do and Kambhampati
2003; Coles et al. 2009) and extended to be able to deal with
conditional effects.

Preferred Operators
Conceptually, the idea of preferred operators is to transfer
information about which operator’s application seems to be
promising from the heuristic abstraction to the actual search.
This concept was first realized by McDermott by deter-
mining favored actions in the context of greedy regression
graphs as those applicable actions that are part of the min-
imal cost subgraph achieving the goals (McDermott 1996;
1999). Hoffmann and Nebel defined helpful actions in their
FF planner as those actions that achieve a fact required by an
action in the relaxed plan that appears in the first layer of the
planning graph (Hoffmann and Nebel 2001). FF considers
only helpful actions in its first attempt of finding a solution
and switches to a complete greedy best-first search if it fails.
Another approach is used in Fast Downward, where be-
sides the usual open list containing all applicable operators
there is a separate open list containing only preferred oper-
ators. Different strategies of how to best combine these two
open list have been investigated (Richter and Helmert 2009;
Röger and Helmert 2010).

Using the definition of the context-enhanced additive
heuristic, the set P(s) of preferred operators is defined as

P(s)
def
=
⋃

x∈s?
P(x|xs),

where

P(x|x′) def
=





{} if x = x′ or hcea(x|x′)=∞

{o} if ∃ o : x′, w → x :

hcea(x|x′) = c(o, s′)
⋃

xi∈w
P(xi|x′i) if ∃ o : x′, w → x :

hcea(x|x′) =
(
c(o, s′)+

∑

xi∈w
hcea(xi|x′i)

)

P(x′′|x′) if ∃x′′ : hcea(x′′|x′)
+hcea(x|x′′) = hcea(x|x′)

Each condition additionally requires the previous condi-
tions to be unsatisfied. We furthermore assume that no ac-
tion with zero cost exists and that, if the existentially quan-
tified conditions are satisfied for more than one operator or
atom, an arbitrary one is chosen according to a fixed tie-
breaking strategy.

The first case is trivial. The second case defines an opera-
tor o that transforms x′ to x and where all preconditions are
satisfied as preferred. In the third case, some of the opera-
tor’s preconditions are not satisfied. In that case, preferred
operators are recursively defined over those preconditions.
In the last case, x′ cannot be changed to x by a single opera-
tor but only via an intermediate state, so preferred operators
are recursively defined over this state.

In its default configuration, TFD uses a straight-forward
adaptation of the boosted dual queue approach for preferred
operators of Fast Downward (Helmert 2006). Preferred op-
erators work best in the context of deferred evaluation. How-
ever, there are certain domain characteristics for which that
is not the case. Especially in problems where goals are con-
flicting, requiring mutex operators, the preferred operator
handling of TFD does not yield good results in the context
of deferred evaluation.

The main reason for this poor behavior is that hcea com-
putes costs of subgoals independently from each other. In
that way, a set of preferred operators might contain mutex
operators each leading to a successor state with the same
heuristic estimate (due to deferred evaluation) while the suc-
cessors of each successor have a higher heuristic estimate.
To see this, think of a problem in an elevators domain where
we have two goals g1 and g2 to transport two passengers p1
and p2 from their common starting location f5 to their de-
sired floors f1 and f10, respectively. When investigating the
subproblems independently from each other, as hcea does,
it might be meaningful to use the same elevator e1, located
at f5, to transport both p1 and p2. In such a situation, both
the operators move-down(e1, f5, f1), leading to state s1, and
move-up(e1, f5, f10), leading to state s2, are preferred, and
since we use deferred evaluation, s1 and s2 share the same
heuristic estimation. When s1 is expanded, however, e1 has
started to move to f1 in order to satisfy g1, and the heuris-
tic realizes that g2 becomes more expensive (potentially to
a higher degree than the amount that g1 becomes cheaper),
leading to a worse overall state evaluation for all successors
of s1. Expansion of s2 is analogous. In such a situation a
potentially very large set of states has to be visited before
the search actually progresses in the right direction.

Narrowing strategies
Our new selection strategies are basically methods to intel-
ligently narrow the set of preferred operators, motivated by
examples like the one above: If by using only preferred op-
erators a planning task is rendered incomplete anyway, and
if generating preferred operators for all subgoals at once can
lead to situations where the search gets stuck, why not limit
ourselves to generating preferred operators for only up to n
subgoals? Of course, the obvious questions are which and
how many operators out of a set of preferred ones we should
choose. We have found three narrowing strategies to be use-

122

ful in practice: To utilize only the preferred operators that
correspond to the first n yet unsatisfied goals, calledO, or to
choose the preferred operators corresponding to the n goals
that are cheapest or most expensive to satisfy according to
the heuristic, called C and E , respectively. More concretely,
a narrowing strategy Xn(s) is defined as

Xn(s)
def
=

⋃

x∈X⊆s?
P(x|xs)

with an appropriate X of cardinality n chosen according to
the selection strategy of X . For O, this strategy is defined
such that x ≤O y for all x ∈ X, y ∈ (s? \ X) holds for
some appropriate ordering relation ≤O. For C it has to hold
that hcea(x|xs) ≤ hcea(y|ys) for all x ∈ X, y ∈ (s? \ X),
and for E it has hold that hcea(x|xs) ≥ hcea(y|ys) for all
x ∈ X, y ∈ (s? \X).

Basically, all narrowing strategies examine the current
state s and choose up to n goals xi from s? to compute
preferred operators for: O determines the first n unsatisfied
goals (according to an appropriate ordering relation ≤O),
while C and E determine the heuristic cost of each subgoal
as if it would be the only goal to satisfy (as said, this is done
by hcea anyway) and choose the n that are cheapest and most
expensive, respectively. Note that with small n the search is
driven to satisfy the goals more sequentially, however, each
goal might be satisfied by parallel action applications.

Finding a good ordering relation for O is very much re-
lated to the more general task of detecting goal orderings
(Köhler and Hoffmann 2000). In this paper, we only use
the natural ordering that is defined by the order in which
variables occur in the problem description for that purpose
and defer the interesting question of how to combine our
technique with goal ordering detection techniques to future
work.

Priority based multi-queue search with restarts
As we will show in the experiments section, utilizing our
new techniques in TFD pays off in terms of coverage. Un-
fortunately, the produced solutions are typically of a lower
quality than those of the original definition as the search is
driven to satisfy goals more sequentially. Additionally, it
can be observed that the different narrowing strategies have
strengths in different domains. Motivated from these two
facts, we have developed an algorithm that incorporates sev-
eral narrowing strategies into a best-first search framework
that uses an own open list for each strategy, as outlined in
Algorithm 1.

The algorithm is based on the boosted dual-queue best-
first search approach of Fast Downward (Helmert 2006). It
maintains a set of open lists, each associated with a corre-
sponding selection method. It has been shown that alternat-
ing between different open lists is a good idea if the open
lists contain operators ordered by different heuristics (Röger
and Helmert 2010). In our context, however, alternating
did not work well, so we have chosen a priority based ap-
proach where each open list is associated with a priority and
at each search step the algorithm selects the non-empty list
with the highest priority (line 28). The search keeps track of

Algorithm 1: Best-first search with restarts, deferred
evaluation, and several open lists in a priority based
multi-queue approach.

activeList = chooseOpenListToStartWith()1
forall open in openLists do2

open.priority = 03
activeList.priority += V4
activeList.add(s0)5
closedList← ∅6
lastProgressAtStep = 0, currentStep = 07
while activeList is not empty do8

currentStep += 19
if (currentStep - lastProgressAtStep) >K then10

activeList = nextOpenListToBoost()11
restartAtLine2() or switchToRoundRobinMode()12

s← activeList.pop()13
activeList.priority -= 114
if s 6∈ closedList then15

closedList.add(s)16
if s |= G then17

return s as solution18
h = s.compute heuristic()19
f = s.timestamp + h20
if makes progress(s) then21

activeList.priority += V22
lastProgressAtStep = currentStep23

forall child states s′ of s do24
forall open in openLists do25

if open.matches(s′) then26
open.add(s′, f)27

activeList = selectList()28
return no solution found29

the number of steps that were performed since the last time
progress has been made (progress is made if a state is ex-
tracted from a list that has a lower heuristic estimate than
each other state that has previously been taken from that
list). If more than K steps have been made without mak-
ing progress, the search restarts (lines 10–12), boosting a
different open list each time by giving it a high initial prior-
ity while all other lists start with priority zero. If the search
has restarted with each open list being boosted initially once,
it switches to a round robin selection mode (line 12, details
have been omitted from the pseudocode to ensure readabil-
ity). During successor generation, nodes are inserted into the
appropriate open lists according to their associated selection
strategies (lines 24–27). Note that using a regular open list
containing all applicable successors (which is done in our
implementation) ensures completeness of the algorithm on
temporally simple problems.

For the two parameters of the algorithm we have found
K = 3000 and V = 1000 to work well in practice (these
parameters, however, are quite robust and we got reasonable
results for a wide range of values for both K and V). Note
that the algorithm can be called from outside in an anytime
fashion where the makespan of previously found solutions
can be used to prune the search space.

123

IPC 2011 C1 C2 C3 E1 E2 E3 O1 O2 O3

CREWPLANNING 14.2 15.5 15.6 0.0 2.4 1.6 0.0 2.4 4.2
19 20 20 0 3 2 0 3 5

ELEVATORS 15.1 10.5 7.5 0.0 0.0 0.0 13.4 7.0 4.5
18 12 8 0 0 0 18 10 6

FLOORTILE 4.3 4.9 4.7 4.4 5.2 4.5 4.8 4.8 4.0
5 5 5 5 6 5 5 5 4

MATCHCELLAR 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6
20 20 20 20 20 20 20 20 20

OPENSTACKS 3.6 5.0 6.4 14.2 14.4 15.3 4.0 6.1 7.8
20 20 20 20 20 20 20 20 20

PARCPRINTER 1.0 0.0 0.0 0.0 0.0 0.0 9.4 2.7 1.7
1 0 0 0 0 0 10 3 2

PARKING 14.0 14.9 11.4 8.9 8.6 9.0 6.7 8.5 7.5
17 19 14 12 12 12 9 11 10

PEGSOL 17.7 17.4 18.5 18.6 18.8 18.8 18.4 19.0 19.3
18 18 19 19 19 19 19 20 20

SOKOBAN 3.8 3.9 2.9 2.9 2.9 2.9 3.8 3.9 2.9
4 4 3 3 3 3 4 4 3

STORAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TMS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TURNANDOPEN 10.1 10.0 10.8 8.8 8.6 8.6 11.0 8.4 8.6
20 20 20 12 12 12 19 14 14

Overall 99.5 97.7 93.3 73.4 76.5 76.2 87.2 78.5 76.1
142 138 129 91 95 93 124 110 104

Table 1: Performance of new selection strategies on IPC
2011 benchmarks. Gray rows show IPC scores, white rows
coverage.

Experiments
In our first experiment we simply replace the basic pre-
ferred operator strategy of TFD by one of the three pre-
sented narrowing methods. Results for Cn, En, andOn with
1 ≤ n ≤ 3 are shown in Table 1.

It can be seen that C and O yield very promising results
with a higher coverage compared to the original method, es-
pecially in ELEVATORS and PARCPRINTER. The reason for
the good performance in ELEVATORS seems to be that by
narrowing the set of preferred operators the weakness of the
heuristic to switch between subgoals during search can be
overcome by focusing on a specific goal. In doing so, it is
better to focus on the cheapest goal (C) than on an arbitrary
one (O). It is useless, however, to focus on the most expen-
sive goal (E), as this changes to often during search. In PAR-
CPRINTER both the cheapest and the most expensive goal
vary a lot during search, so it is best to focus on a fixed goal
like O does. Unfortunately, O does yield very bad results
in CREWPLANNING, where a specific goal ordering needs
to be respected that O is not aware of. Here, techniques to
detect goal orderings (Köhler and Hoffmann 2000) might be
very helpful. While coverage can be increased using our new
techniques, their produced solutions are typically of lower
quality than those of the original method as they drive the
search to satisfy goals more sequentially. This fact becomes
apparent especially in OPENSTACKS, a domain for which
it is very easy to find a solution but the range of quality is

IPC 2011 PC1O1 PC1E1 PO1E1 TFD+

CREWPLANNING 19.9 (20) 19.9 (20) 19.9 (20) 19.9 (20)
ELEVATORS 13.4 (18) 15.4 (18) 13.4 (18) 13.4 (18)
FLOORTILE 4.8 (5) 4.6 (5) 4.7 (5) 4.8 (5)
MATCHCELLAR 15.6 (20) 15.6 (20) 15.6 (20) 15.6 (20)
OPENSTACKS 17.9 (20) 18.2 (20) 18.3 (20) 17.9 (20)
PARCPRINTER 9.5 (10) 0.9 (1) 9.5 (10) 9.5 (10)
PARKING 14.1 (18) 13.8 (17) 12.0 (16) 14.6 (19)
PEGSOL 18.6 (19) 18.5 (19) 18.3 (19) 18.6 (19)
SOKOBAN 2.9 (3) 3.0 (3) 2.9 (3) 2.9 (3)
STORAGE 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
TMS 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
TURNANDOPEN 14.0 (20) 13.2 (19) 14.1 (20) 14.0 (20)
Overall 130.7 (153) 123.1 (142) 128.7 (151) 131.2 (154)

Table 2: IPC scores and coverage (in parentheses) of com-
bining several narrowing strategy via restarting as described
in Algorithm 1. TFD+ is an abbreviation for PC1O1E1.

IPC 2011 C
PT

4

L
M

T
D

YA
H

SP
2

YA
H

SP
2-

m
t

PO
PF

2

D
A

E
-Y

A
H

SP

T
FD

T
FD

+

CREWPLANNING 7.0 0.0 16.0 15.9 20.0 20.0 19.9 19.9
7 0 20 20 20 20 20 20

ELEVATORS 0.0 6.7 8.6 8.9 2.2 12.3 1.0 13.4
0 9 20 20 3 15 1 18

FLOORTILE 12.1 4.8 6.9 8.3 0.0 7.3 4.9 4.8
15 5 13 15 0 12 5 5

MATCHCELLAR 0.0 12.5 0.0 0.0 15.3 0.0 15.6 15.6
0 15 0 0 20 0 20 20

OPENSTACKS 0.0 0.0 12.6 12.1 15.0 19.9 17.7 17.9
0 0 20 19 20 20 20 20

PARCPRINTER 2.0 0.0 3.7 4.7 0.0 2.0 0.0 9.5
5 0 7 8 0 4 0 10

PARKING 0.0 0.0 11.0 12.7 14.7 15.9 12.2 14.6
0 0 20 20 20 20 16 19

PEGSOL 19.0 19.9 17.2 18.0 18.6 20.0 17.9 18.6
19 20 20 20 19 20 18 19

SOKOBAN 0.0 0.0 10.9 11.6 2.5 4.5 2.9 2.9
0 0 12 12 3 6 3 3

STORAGE 0.0 0.0 2.7 7.2 0.0 15.5 0.0 0.0
0 0 5 11 0 19 0 0

TMS 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0
0 0 0 0 5 0 0 0

TURNANDOPEN 0.0 7.0 0.0 0.0 7.8 0.0 13.3 14.0
0 13 0 0 9 0 20 20

Overall 40.1 50.9 89.6 99.3 101.1 117.2 105.3 131.2
46 62 137 145 119 136 123 154

Table 3: Gray rows show IPC scores, white rows coverage of
participants of IPC 2011. The two rightmost columns show
results of original TFD and TFD enhanced the techniques
presented in this paper (TFD+).

124

very high and it is important to start the right actions first in
order to create concurrent solutions. Interestingly, E works
quite well in this domain, as the actions that are needed to
be started first in order to create a compact solution are also
the most expensive ones.

Another interesting observation is that in the good per-
forming methods C and O it is advantageous to concentrate
on a smaller set of subgoals, while the converse holds for the
poor performing method E . This is due to the fact that with
increasing size of the preferred operators set the original set
is resembled more and more.

The most important observation that can be made from
this experiment has motivated the design of the search pro-
cedure presented in the previous section: Different selection
strategies have strengths in different domains and it appears
to be very desirable to combine these strengths in a gen-
eral way. Table 2 shows results of an implementation of
Algorithm 1 combining several narrowing strategies, with
PO1C1E1, abbreviated as TFD+ in the table, achieving both
the highest coverage and IPC score.

To see how these improvements affect the performance of
TFD relatively to other temporal planning systems, we com-
pared both the original TFD and TFD+, a version of TFD
that implements Algorithm 1 with queues for P , O1, C1,
and E1 to the participants of the temporal satisficing track of
IPC 2011 that achieved at least one point in the competition.
For this experiment, we did not re-run the other planning
systems, but use the raw results of the competition directly.1
Table 3 presents IPC scores (gray rows) and coverage (white
rows). It can be seen that TFD+ clearly outperforms all com-
petitors both in terms of coverage and IPC score.

Note that for some planners the scores presented in this
paper vary from the scores they received in the competi-
tion as we did find better plans for many problems and used
them as reference plans to compute all scores. For exam-
ple, CPT4, which is optimal for the conservative semantics
of Smith and Weld (Smith and Weld 1999), produced some
non-optimal plans in Floortile and Parcprinter. This was not
recognized as its plans were the best of those generated dur-
ing the competition.

In another experiment, presented in Table 4, we focus on
quality by comparing TFD featuring our techniques, called
TFD+, pairwise to all other planners of IPC 2011, only con-
sidering problems where both planners have found a solu-
tion by computing the ratio between the makespan of those
solutions. Scores greater than 1.0 therefore indicate that we
found plans of higher quality. It can be seen that our plans
offer the highest quality throughout all domains.

Finally, in our last experiment we show that the good per-
formance of our techniques is not only a phenomenon on
a specific benchmark set, but occurs on a wider range of
domains. Therefore, we use the benchmark suites of IPCs
2006 and 2008 (excluding Pathways and TPP, where not

1IPC 2011 has been run on INTEL Xeon 2.93 GHz Quad Core
processors with a memory limit of 6 GB and a timeout of 30 min-
utes. Note that TFD (like most processes) generally runs faster on
such a system than on the system we used to generate our results, so
the comparison is in favor of the planning systems that participated
in the competition.

IPC 2011 C
PT

4

L
M

T
D

YA
H

SP
2

YA
H

SP
2-

m
t

PO
PF

2

D
A

E
-Y

A
H

SP

T
FD

CREWPLANNING 71.00 – 201.29 201.29 200.99 200.99 201.00
ELEVATORS – 90.94 182.08 181.98 31.01 150.93 10.59
FLOORTILE 51.67 20.99 42.38 52.22 – 42.36 50.96
MATCHCELLAR – 151.06 – – 201.25 – 201.24
OPENSTACKS – – 201.47 191.46 201.23 200.92 201.04
PARCPRINTER 21.76 – 71.88 71.88 – 41.95 –
PARKING – – 191.50 191.35 191.12 191.11 161.03
PEGSOL 180.99 190.98 191.16 191.11 181.00 190.98 181.00
SOKOBAN – – 31.02 31.03 21.17 31.10 31.00
STORAGE – – – – – – –
TMS – – – – – – –
TURNANDOPEN – 131.38 – – 90.61 – 201.03
OVERALL 321.15 581.08 1101.54 1101.48 1111.08 1041.08 1231.05

Table 4: Pairwise quality comparisons to a version of TFD
that implements all techniques presented in this paper. Only
instances that are solved by both approaches (the small num-
ber states their number) are considered. Scores greater than
1.0 indicate that TFD+ generates plans of higher quality.

TFD TFD+ Quality
IPC 2006
OPENSTACKS 17.5 (18) 20.0 (20) 18 1.03
PIPESWORLD 17.7 (18) 15.1 (16) 15 0.96
ROVERS 11.9 (12) 16.8 (17) 12 0.99
STORAGE 16.7 (17) 16.7 (17) 17 1.01
TRUCKS 13.5 (14) 29.4 (30) 14 1.00
IPC 2008
CREWPLANNING-strips 29.9 (30) 29.9 (30) 30 1.00
ELEVATORS-numeric 16.7 (20) 25.2 (30) 20 1.02
ELEVATORS-strips 13.0 (16) 20.8 (30) 16 0.96
MODELTRAIN-numeric 1.0 (1) 5.3 (7) 1 1.00
OPENSTACKS-adl 27.1 (30) 27.6 (30) 30 1.02
OPENSTACKS-strips 27.1 (30) 28.1 (30) 30 1.04
PARCPRINTER-strips 9.0 (13) 22.4 (23) 13 1.77
PEGSOL-strips 28.3 (29) 29.3 (30) 29 1.01
SOKOBAN-strips 11.9 (12) 11.9 (12) 12 1.00
TRANSPORT-numeric 4.9 (6) 11.0 (18) 6 1.05
WOODWORKING-numeric 16.6 (28) 21.6 (30) 28 1.36
Overall 262.9 (294) 331.1 (370) 291 1.08

Table 5: The two columns in the middle show IPC scores
and coverage (in parentheses) of regular TFD and TFD+ on
the benchmarks suites of IPC 2006 and 2008. TFD+ fea-
tures separate queues for C1, O1, and E1, as well as restart-
ing according to Algorithm 1. The last column shows pair-
wise plan quality comparisons between TFD and TFD+ on
all instances that were solved by both approaches (the small
number states their number). Scores greater than 1.0 indi-
cate that TFD+ generates plans of higher quality.

125

only makespan but a more complex metric needs to be op-
timized, a feature TFD cannot deal with yet). Results are
presented in Table 5. Note that only for the benchmark set
of 2008 reference plans are used. TFD+ has a higher cov-
erage in all domains but PIPESWORLD. (In PIPESWORLD,
hcea fails to mark certain relevant operators as preferred, re-
quiring to extract those operators from the regular open list.
While regular TFD also uses preferred operators, it expands
nodes from the regular open list more often as the number
of lists is smaller than in TFD+.) In this experiment the title
of this paper is reflected very well: Coverage is increased
drastically (from 294 to 370) while the average plan quality
is not only maintained, but even slightly improved.

Conclusion
In this paper we have presented novel methods to narrow
sets of preferred operators. Embedding these methods in
the search framework of TFD increases its coverage at the
price of quality. This drawback, however, can be overcome
by utilizing a restarting strategy that is incorporated into a
priority-based multi-queue best-first search framework. We
have implemented these techniques and have shown empir-
ically that combining them increases the coverage of TFD
by a huge amount and preserves the average quality of the
produced plans.

Acknowledgments
This work was supported by the German Aerospace Center
(DLR) as part of the Project “Kontiplan” (50 RA 1221).

References
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing Concurrency in Temporal Planning Us-
ing Planner-Scheduler Interaction. Artificial Intelligence
173(1):1–44.
Do, M. B., and Kambhampati, S. 2003. Improving Tem-
poral Flexibility of Position Constrained Metric Temporal
Plans. In Giunchiglia, E.; Muscettola, N.; and Nau, D., eds.,
Proceedings of the Thirteenth International Conference on
Automated Planning and Scheduling, 42–51.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
Context-Enhanced Additive Heuristic for Temporal and Nu-
meric Planning. In Gerevini, A.; Howe, A.; Cesta, A.; and
Refanidis, I., eds., Proceedings of the Nineteenth Interna-
tional Conference on Automated Planning and Scheduling,
130–137.
Eyerich, P. 2012. Preferring properly: Increasing coverage
while maintaining quality in anytime temporal planning. In
Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI).
Helmert, M., and Geffner, H. 2008. Unifying the Causal
Graph and Additive Heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling, 140–147.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14:253–302.
Köhler, J., and Hoffmann, J. 2000. On Reasonable and
Forced Goal Orderings and their Use in an Agenda-Driven
Planning Algorithm. Journal of Artificial Intelligence Re-
search 12:338–386.
McDermott, D. 1996. A Heuristic Estimator for Means-
Ends Analysis in Planning. In Drabble, B., ed., Proceedings
of the Third International Conference on Artificial Intelli-
gence Planning Systems, 142–149.
McDermott, D. 1999. Using Regression-Match Graphs to
Control Search in Planning. Artificial Intelligence 109(1–
2):111–159.
Richter, S., and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the Nineteenth International Conference on Automated
Planning and Scheduling, 273–280.
Röger, G., and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the Twenty International Conference on
Automated Planning and Scheduling, 246–249.
Smith, D. E., and Weld, D. S. 1999. Temporal Planning with
Mutual Exclusion Reasoning. In Dean, T., ed., Proceedings
of the Sixteenth International Joint Conference on Artificial
Intelligence, 326–337. Morgan Kaufmann.

126

