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Preface
This booklet summarizes the participants on the Deterministic Track of the Interna-
tional Planning Competition (IPC) 2011. Papers describing all the participating plan-
ners are included.

After a 3 years gap, the 2011 edition of the IPC involved a total of 55 planners,
some of them versions of the same planner, distributed among four tracks: the sequen-
tial satisficing track (27 planners submitted out of 38 registered), the sequential multi-
core track (8 planners submitted out of 12 registered), the sequential optimal track (12
planners submitted out of 24 registered) and the temporal satisficing track (8 planners
submitted out of 14 registered). Three more tracks were open to participation: temporal
optimal, preferences satisficing and preferences optimal. Unfortunately the number of
submitted planners did not allow these tracks to be finally included in the competition.

A total of 55 people were participating, grouped in 31 teams. Participants came
from Australia, Canada, China, France, Germany, India, Israel, Italy, Spain, UK and
USA.

For the sequential tracks 14 domains, with 20 problems each, were selected, while
the temporal one had 12 domains, also with 20 problems each. Both new and past
domains were included. As in previous competitions, domains and problems were
unknown for participants and all the experimentation was carried out by the organizers.
To run the competition a cluster of eleven 64-bits computers (Intel XEON 2.93 Ghz
Quad core processor) using Linux was set up. Up to 1800 seconds, 6 GB of RAM
memory and 750 GB of hard disk were available for each planner to solve a problem.
This resulted in 7540 computing hours (about 315 days), plus a high number of hours
devoted to preliminary experimentation with new domains, reruns and bugs fixing.

The detailed results of the competition, the software used for automating most
tasks, the source code of all the participating planners and the description of domains
and problems can be found at the competition’s web page:

http://www.plg.inf.uc3m.es/ipc2011-deterministic

Leganés, Spain, June 2011

Angel Garcı́a-Olaya, Sergio Jiménez and Carlos Linares López,
The IPC 2011 chairs
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The ACOPlan Planner

Marco Baioletti, Alfredo Milani, Valentina Poggioni, Fabio Rossi
Universit̀a degli Studi di Perugia
Dip. di Matematica e Informatica

Perugia Italy

Abstract

ACOPlan is a planner based on the ant colony opti-
mization framework, in which a colony of planning ants
searches for near optimal solution plans with respect to
an overall plan cost metric. This approach is motivated
by the strong similarity between the process used by ar-
tificial ants to build solutions and the methods used by
state–based planners to search solution plans. Planning
ants perform a stochastic and heuristic based search by
interacting through a pheromone model.

Introduction
The main idea underlying ACOPlan system is to use the
well known Ant Colony Optimizationmetaheuristic (ACO)
(Dorigo and Stuetzle 2004) to solve planning problems with
the aim of optimizing the quality of the solution plans. The
approach is based on the strong similarity between the pro-
cess used by artificial ants to build solutions and the way
used by state–based planners to find solution plans. There-
fore, we have defined an ACO algorithm which handles a
colony of planning ants with the purpose of solving plan-
ning problems by optimizing solution plans with respect to
the overall plan cost. According to the main features of ACO
the ant–planners of the colony are stochastic and heuristic–
based.

ACO is a metaheuristic inspired by the behavior of nat-
ural ants colony which has been successfully applied to
manyCombinatorial Optimizationproblems. Being ACO a
stochastic incomplete algorithm, there is no guarantee that
optimal solutions are ever found, but a number of successful
applications confirm ACO as a generally promising meta-
heuristic to find efficiently and effectively good suboptimal
solutions.

In this paper theACOPlansystem for planning with ac-
tion costs is briefly described. For a more detailed paper re-
fer to (Baioletti et al. 2010) where an experimental evalua-
tion and some comparisons with other state-of-art planners
are presented.

In the next sections a brief introduction to the metaheuris-
tic ACO, the ACOPlan model and the ACOPlan algorithm
in the framework of planning with non uniform action costs
are described.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ant Colony Optimization
ACOis a well–known metaheuristic to tackle Combinatorial
Optimization problems introduced since early 90s by Dorigo
et Al. (Dorigo and Stuetzle 2004). It is inspired by the for-
aging behavior of natural ant colonies. When walking, nat-
ural ants leave on the ground a chemical substance called
pheromonethat other ants can smell. This stigmergic mech-
anism implements an ”indirect communication way” among
ants, in particular when looking for the shortest path to reach
food.

ACO is usually applied to optimization problems whose
solutions are composed by discrete components. A Combi-
natorial Optimization problem is described in terms of aso-
lution spaceS, a set of (possibly empty)constraintsΩ and
anobjective functionf : S → R+ to be minimized (maxi-
mized).

The colony of artificial ants builds solutions in an incre-
mentally way: each ant probabilistically chooses a compo-
nent to add to a partial solution built so far, according to the
problem constraints. The random choice is biased by thear-
tificial pheromone valueτ related to each componentc and
by a heuristic functionη. Both terms evaluate the desirability
of each component. The probability that an ant will choose
the componentc is

p(c) =
[τ(c)]α[η(c)]β

∑

x[τ(x)]α[η(x)]β
(1)

where the sum onx ranges on all the components which
can be chosen, andα and β are tuning parameters which
differentiate the pheromone and heuristic contributions.

The pheromone values represent a kind of memory shared
by the whole ant colony and are subject toupdate and
evaporation. In the most applications only the best solutions
are considered in the pheromone update phase: the global
best solution found so far (best–so–far) and/or the best so-
lution found in the current iteration (iteration–best). More-
over, most ACO algorithms use the following update rule
(Blum 2005):

τ(c)← (1− ρ) · τ(c) + ρ ·
∑

s∈Ψupd : c∈s

F (s) (2)

whereΨupd is the set of solutions involved in the update,
F is the so calledquality function, which is a decreasing
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function of the objective functionf (increasing iff is to
be maximized), andρ ∈]0, 1[ is the pheromone evaporation
rate.ρ is a typical ACO parameter which was introduced
to avoid a premature convergence of the algorithm towards
sub–optimal solutions.

The simulation of the ant colony is iterated until a satis-
factory solution is found, a termination criterion is satisfied
or a given number of iterations is reached.

Planning by ACO
We have defined an ACO algorithm which handles a colony
of planning ants with the purpose of solving planning prob-
lems by optimizing solution plans with respect to the a given
metric. According to the main features of ACO the ants–
planners of the colony are stochastic and heuristic–based.

Each ant–planner executes a forward search, starting from
the initial stateI and trying to reach a state in which the goal
G is satisfied. The solution is built step by step by adding
components. At each step, the ant–planner search process
performs a randomized weighted selection of a solution
componentc which takes into account both the pheromone
value τ(c) associated to the component and the heuristic
value η(a) computed for each actiona executable in the
current state and related to the chosen solution component.
Once an actiona has been selected, the current state is up-
dated by means of the effects ofa.

The construction phase stops when at least one of the fol-
lowing termination condition is verified

1. a solution plan is found, i.e. a state where all the goals are
true is reached;

2. a dead end is met, i.e. no action is executable in the current
state;

3. an upper boundLmax for the number of execution steps
is reached.

In the ACOPlan algorithm here described, all the ant–
planners in the colony are homogeneous and they can fully
share information about the pheromone values distribution.
In general, it is possible to define colonies composed by het-
erogeneous planners with different degrees and types of in-
formation sharing.

The algorithm
The generic ACOPlan algorithm (Baioletti et al. 2009a;
2009b; 2009c; 2009d) is described in Fig. 1. Both the two
versions of ACOPlan partepating at the IPC-2011 imple-
ments the same algorithm; they differ in the implementa-
tion and in the plan evaluation function. Let(I,G,A) be
the planning problem, the optimization process is iterated
for a given numberN of iterations, in which a colony ofna

ants build plans with a maximum number of stepsLmax. At
each step, each ant chooses an action among the executable
ones by theChooseActionfunction that encodes the tran-
sition probability function previously described. When all
ants have completed the search phase, the best planπiter

of the current iteration is selected and the global best plan
πbest is possibly updated. Finally, the pheromone values of

the solution components are updated by means of the func-
tion UpdatePheromonethat implements the updating rules
2. Relevant parameters arec0 which denotes the initial value
for the pheromone,ρ which represents the evaporation rate
andσ that is a parameter of the pheromone update rule (see
5).

Algorithm 1 The algorithm ACOPlan

1: πbest ← ∅
2: InitPheromone(c0)
3: for g ← 1 to N do
4: for m← 1 to na do
5: πm ← ∅
6: s← I
7: A1 ← executable actions inI
8: for i← 1 to Lmax while Ai 6= ∅ and G * s do
9: a← ChooseAction(Ai)

10: extendπm with a
11: s← Res(s, a)
12: Ai+1 ← executable actions ons
13: end for
14: end for
15: find πiter

16: updateπbest

17: UpdatePheromone(πbest, πiter, ρ, σ)
18: end for

The Pheromone Model
The effectiveness of an ACO algorithm firstly depends on
the choice of the pheromone model and its data structures. A
good model should be simple to compute but enough infor-
mative to characterize the context in which an ant–planner
can choose a specific action. Moreover it should allow them
to distinguish the context of most successful choices from
the worst ones. On the other hand the characterization of the
component should not be too much detailed in order to allow
the pheromone to deposit in a significant quantity.

In (Baioletti et al. 2010) several pheromone models
have been proposed and empirically compared by system-
atic experiments. In the ACOPlan setting for IPC2011 the
pheromone modelAction–Action (AA)is used. In this model
a notion oflocal history is introduced: the pheromone de-
pends both on the actiona under evaluation and on the last
executed actiona′, i.e. the pheromone is a functionτ(a, a′).
Considering only the previous action is the simplest way in
which the action choice can be directly influenced by history
of previous decisions. The pheromone modelAA allows a
manageable representation and defines a sort of local first
order Markov property.

The heuristic FFAC for actions costs
The heuristic function is a key feature of ACOPlan because
it directly affects the transition probability function (1) used
to synthesized the solution plan. The heuristic value for a
componentc is defined by

η(c) =
1

h(sc)
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whereh is an heuristic function which evaluates the statesc

resulting from the execution of the actionac associated to
the componentc in the current state.

The versions of ACOPlan partecipating at IPC-2011 use
a heuristic function which takes into account of the action
costs and which is very similar to the heuristic function used
in SAPA (Do and Kambhampati 2003) with the sum propa-
gation for action cost aggregation.

This heuristic exploits the idea of FF to use therelaxed
planning graphstructure to compute a relaxed solution plan
and use the provided information to estimate the cost of the
actual solution. The relaxed planning graph is derived by
the classical planning graph introduced in (Blum and Furst
1997) by ignoring the delete list, i.e. the negative effectsof
the actions.

To compute the heuristic value of a states, first a relaxed
planning graph froms to G is built, then a relaxed planπ+

is extracted from it by a backward search. The technique
used for theπ+ extraction is different to the one used in the
FF system because the concept ofaction difficultyhas been
redefined taking into account the action costs. The cost of
the relaxed planc(π+) is the heuristic value that estimates
the cost needed to reach the goals by the current states:

c(π+) =
∑

a∈π+

c(a)

During the graph construction phase a minimum estimated
cost ck is assigned to each fact and each action for every
levelk of the graph in the following way:
for eacha ∈ Ak

ck(a) = c(a) +
∑

f∈pre(a)

ck(f). (3)

for eachf ∈ Fk

ck(f) = min{c(a)+
∑

b∈pre(a)

ck−1(b) : a ∈ Ak−1, f ∈ add(a)}.

(4)
while, for eachf ∈ F0, we havec0(f) = 0.

It is worth to note that the preliminary costs estimation in-
troduced by the formulas (3) and (4) depends on the level in
the relaxed planning graph, i.e. we do not have static costs as
in the heuristic proposed by Keyder and Geffner in (Keyder
and Geffner 2008) but dynamic costs depending on the level
at hand.

The entire process of computation of the heuristic func-
tion is shown in Algorithm 2 where the core technique used
to compute the relaxed planπ+ relies in functionsλ and
BestAction. The functionλ, applied to an actiona or to
a fact f , returns the first levelk in which ck(a) or ck(f)
gets the minimum value, while the functionBestAction(g,k)
returns the actiona ∈ Ak−1 with the minimumdifficulty
which can addsg at the levelk. The concept of action diffi-
culty is defined in this context by the cost of the action, i.e.
difficultyk−1(a) = ck−1(a).

Note that when an actiona is added to the planπ+, the
effects ofa are deleted fromGk. This feature allows to take
into account the so calledpositive interactions, i.e. it avoids

Algorithm 2 Computing FFAC
1: function FFAC(s)
2: build the relaxed planning graph froms and com-

puteck’s
3: for k ← 0 to L do Gk ← {g ∈ G : λ(g) = k}
4: π+ ← ∅
5: for k ← L downto 0 do
6: while Gk 6= ∅ do
7: takeg from Gk

8: a← BestAction(g, k)
9: adda to π+

10: for each p ∈ pre(a) do addp to Gλ(p)

11: for each e ∈ add(a) do removee from Gk

12: end while
13: end for
14: return c(π+)
15: end function

to use a new actiona′ to reach a goalg, when an already
selected another action also reachesg. This feature is one of
the most important inheritance we receive by FF: it allows to
the heuristic FFAC to differ in one more point to the heuristic
hsa used inFF(ha) (Keyder and Geffner 2008) that cannot
take into accountpositive interactions. As FF, alsoFFAC
can compute the set ofHelpful Actions.

Since the computation of the heuristic function is com-
putationally demanding and the number of evaluation forh
is huge (each ant at each step should computeh for each
reachable state), astate–cache data structure is used to store
heuristic values and some other informations for each vis-
ited state. This structure is implemented through a hash table
to speed up the search process. Moreover in order to avoid
memory problems the size of the hash table is bounded and
table entries are eventually removed using a Least Recently
Used strategy.

Plan comparison and Pheromone updating
A critical point of the optimization process is the ability of
comparing plans found by the colony of planner ants. This is
particularly important in pheromone updating phase where
the best plan of the iteration must be selected, as well as in
the general ACOPlan which returns the best plan found in
all the iterations.

Any comparison criteria should obviously prefer asolu-
tion plan to a non solution plan. On the other hand com-
parison of twosolution plansπ, π′ can be easily based on
actions costs, because it is possible to compute their respec-
tive costs and prefer the plan with the lowest cost or, when
they are equal in cost, let prevail the one with the lesser plan
length metric, either sequential or parallel.

A comparison criteria cannot be easily defined when both
plansπ andπ′ are not solution plans. In this case a planπ is
evaluated by a combination of the heuristic value on the best
states ever reached byπ with the cost of reachings. The two
versions of ACOPlan partecipating at IPC-2011 implement
two different evaluation schema that use two different com-
binations of the heuristic valueh(s) and the cost of reaching
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s.
The pheromone update phaseevaporates all the

pheromone values and increases the pheromone value
of the components belonging toπiter andπbest according
to the formula

τ(c)← (1− ρ) · τ(c) + ρ ·∆(c) (5)

where

∆(c) =











σ if c belongs toπiter

1− σ if c belongs toπbest

1 if c belongs to both
0 otherwise

andσ is usually set to2
3 which increases a component be-

longing to the best plan in the iteration by a double quantity
with respect to a component belonging to the best plan so far,
thus enforcing the exploration, instead of the exploitation.

Conclusions
ACOPlan employs a colony of stochastic and heuristic–
based ants–planners in the framework of ACO metaheuris-
tic. The two versions of the planner run in the IPC-2011
use theFFAC cost-based heuristic and theAction–Action
pheromone model. They differ for the implementation and
the plan evaluation function.

The comparison of ACOPlan with state of the art planners
shows that the stochastic ACO based approach is optimal in
many hard problems, and is competitive with respect to the
percentage of solved problems and from the point of view of
distribution of solution quality.
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Abstract

Arvand is a stochastic planner that uses Monte Carlo random
walks (MRW) planning to balance exploration and exploita-
tion in heuristic search. Herein, we focus on the latest de-
velopments of Arvand submitted to IPC’11: smart restarts,
the online parameter learning system, and the integration of
Arvand and the postprocessing system Aras.

Introduction
Most of the state of the art heuristic planners such as FF
(Hoffmann and Nebel 2001), the top performer at IPC’00;
Fast Downward (FD) (Helmert 2006), the top performer at
IPC’04; and LAMA (Richter et al. 2008), the top performer
at IPC’08, use variations of greedy search algorithms such as
best first search and enforced hill climbing. These methods
totally exploit the heuristic information and do not do much
exploration in the search space. While this exploitive nature
contributes to very fast performance in many IPC bench-
marks, it can lead to serious inefficiencies where the heuris-
tic values are misleading. For example, most of the current
planners have poor performance on problems involving re-
source management (Nakhost et al. 2010).

Arvand (Nakhost and Müller 2009) is among the new
wave of heuristic planners such as identidem (Coles et al.
2007) and the planner introduced by (Lòpez and Borrajo
2010), that try to use more explorative search algorithms to
handle heuristic deficiencies. Arvand’s main idea is to com-
bine the exploration power of fast random walks with the
strength of the available heuristic functions. Although still
the heuristic function is the main guiding engine of the al-
gorithm, local exploration using random walks and fast tran-
sition in the search space using long jumps are significantly
helpful in regions such as plateaus where heuristic values do
not help much.

The Arvand Planner
Arvand uses a forward-chaining local search algorithm.
Each run of Arvand consists of one or more “search
episodes”. Each episode starts from the initial state, and
transitions through the search space by jumping to the states
found in the local neighborhood until a termination criterion
is met. At each transition or search step the next state s is
chosen from a set of random samples obtained by random

walks. Before each transition, n bounded random walks,
sequences of randomly selected actions, are run and the ob-
tained states are evaluated. Since usually the heuristic eval-
uation is orders of magnitude slower than state generation,
only the endpoints of random walks are evaluated using a
heuristic function. The current Arvand uses the FF heuris-
tic function. This enables the algorithm to get a large set
of samples in a short period of time. After running n ran-
dom walks, the planner jumps to the endpoint with minimum
heuristic value. The episode terminates if either a goal state
is found, or it fails to improve the minimum heuristic value
reached for several jumps. After termination a new search
episode starts by restarting from the initial state. For the de-
tails of the algorithms that control the number and length of
random walks see (Nakhost and Müller 2009). Arvand is
implemented based on Fast Downward (FD) code base.

Smart Restarts
In the original version of Arvand, the search always restarts
from the initial state (basic restarts). However, it is shown
that in more constrained problems a more evolved restarting
mechanism called smart restarts (SR) is helpful (Nakhost et
al. 2010). In SR a pool of most promising search episodes
are kept in the memory and each time that the algorithm
restarts, a state visited by one of the episodes in the pool
is selected as the next restarting point. Search episodes are
compared based on the minimum heuristic value they have
reached. Each time an episode fails, it can replace the worst
episode in the pool if the minimum heuristic value reached
by the new episode is lower. To select the restarting point,
first an episode e is selected from the pool randomly and
then a state visited by e is randomly selected. Therefore,
the states that are repeated in several episodes have a higher
chance to be chosen. If SR is used from the beginning, then
the information inside the pool get too biased to the first
episode. In Arvand, SR gets activated after N restarts. Be-
fore that basic restarting is used. Therefore when SR is ac-
tivated the pool contains N episodes. The parameter N and
the size of the pool are both set to 50 for the competition.

Biasing the Random Walks
Two different methods are used to bias the random action se-
lection inside Arvand: Monte Carlo Helpful Actions (MHA)
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and Monte Carlo Deadlock Avoidance (MDA) (Nakhost and
Müller 2009). The main idea is to use the statistics from
the earlier random walks to bias the action selection towards
more promising actions and away from non-promising ones.
MHA uses Gibbs sampling to give priority to actions that
have been more often selected as a helpful action at an end-
point. Helpful actions are computed as a by product of the
heuristic function at the endpoints. MDA keeps track of the
number of times that each action has appeared in a failed
random walk (a walk that reaches a state with no applicable
actions) and tries to sample actions with higher failure rate
less often.

Parameter Learning
(Nakhost and Müller 2009) showed that different configura-
tions of Arvand perform well in different types of domains.
In the current version of Arvand an online learning algo-
rithm is used to find the best configuration of the parameters
for the given problem. The problem of selecting the best
configuration from a set of possible configurations C can
be viewed as a multi-armed bandit problem, where pulling
an arm corresponds to using the corresponding configura-
tion for the next search episode of Arvand. Each time that
Arvand restarts, a bandit algorithm is used to select one of
the configurations and then based on the minimum heuris-
tic value (hmin) obtained in the search episode a reward is
assigned to the corresponding arm. Let hi be the heuristic
value of the initial state, then the reward r is computed as
follows: r = max(0, 1 − (hi/hmin)). Arvand uses the up-
per confidence bounds (UCB) algorithm (Auer et al. 2002)
to balance the exploration and the exploitation in the config-
uration selection.

Currently, C includes three configurations: two MHA
versions with initial length of random walks 1 and 10; and
one MDA with initial length 1. Since in some problems run-
ning a search episode might be quite slow, and in the initial
phase of UCB all the configurations are tried once, the best
configuration might not be selected enough times to be able
to solve the task. To remedy this problem, for the initial
episodes a smaller number of random walks n per search
step is used to speed up the learning process. Specifically,
for the first three episodes n is set to 100 and for the next
episodes n is doubled up until it reaches the maximum 2000.

Integration with Aras
Since IPC’08 there has been an emphas on the quality of
the generated plans. This has been perfectly reflected in the
competition’s scoring function: the cost of the best known
plan divided by the cost of the plan. Aras (Nakhost and
Müller 2010) is a fast postprocessing tool that is able to im-
prove the quality of a given plan generated by any planner.
Aras uses simple fast techniques to locally search the neigh-
borhood of the given plan and works well for a wide range
of planners including LAMA, which is designed to generate
high-quality plans. The most effective technique in Aras,
called Plan Neighborhood Graph Search (PNGS), builds a
graph encapsulating the search space close to the original
plan and then finds the lowest-cost path inside the graph.

The anytime version of Aras starts with a small initial size
for the graph and then iteratively increases the size of the
graph until the memory limit is reached.

An alternation of Aras and Arvand is used to obtain high-
quality plans. First Arvand is run until a solution is found.
The solution is saved and fed into anytime Aras to be im-
proved. After Aras reaches the memory limit, which is set
to 2 GB, a new search episode of Arvand is used to find
another plan and again it is fed into Aras. This process con-
tinues until the time limit is reached. In the whole process,
as soon as a plan with better quality is found it is saved.

Arvand also uses a bounding mechanism to stop episodes
or random walks that already exceed the cost of a previously
found solution. However, the solution bound is only updated
by plans generated by Arvand itself. The reason is that usu-
ally the bounds obtained from Aras’ solution are too tight
for Arvand and significantly lower the probability of reach-
ing any solution. As the result the number and diversity of
the plans that are fed into Aras gets much lower and this has
a detrimental effect in the best quality plan reached by the
system.
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Abstract

This paper describes the planner BRT (Biased Rapidly-
exploring Tree). This planner is basically a Rapidly-
exploring Random Tree (RRT) adapted to automated plan-
ning that employs Fast-Downward as the base planner. The
novelty in this case is that it does not sample the search space
in a random way; rather, it estimates which propositions are
more likely to be achieved along some solution plan and uses
that estimation (called bias) in order to sample more relevant
intermediates states. The bias is computed using a message-
passing algorithm on the planning graph with landmarks as
support.

Overview
Landmarks are disjunctive sets of propositions or actions of
which at least one component must be achieved or executed
at least once in every solution plan to a problem (Richter,
Helmert, and Westphal 2008). However, computing the
complete set of landmarks or even proving that a proposition
or action is indeed a landmark is PSPACE-complete (Hoff-
mann, Porteous, and Sebastia 2004).

A notable similarity exists between landmarks in auto-
mated planning and backbone variables (Kilby et al. 2005)
in CSPs. A backbone variable is defined as a variable that
takes the same value in every solution for a given prob-
lem. Again, determining which are the backbone variables
in a problem is intractable in general. In order to overcome
this, approximate methods that compute an estimation of the
probability that a variable has of taking a given value - also
known as bias - have been proposed. In particular, message-
passing algorithms appear to be well suited to this kind of
probabilistic environment.

Biases can be seen in automated planning as the probabil-
ity of a proposition or an action being respectively achieved
or executed in a solution plan. Extending the links between
these two cases, just like backbones variables are variables
with a bias of 1 for a given value, landmarks could also be
defined as having also a bias of 1. Because of the character-
istics of planning problems, though, a straightforward corre-
lation between variable bias and proposition/action bias does
not exist. In particular, the fact that it is relevant at which
time step variables and actions must be achieved or executed
invalidates these assumptions. To take into account this fact,
a planning graph (Blum and Furst 1997) is used so the bias

is computed for every variable and action at each time step
in which they can appear.

The constraints encoded by the planning graph alone may
not suffice to find a good bias. To solve this, landmarks
are added to the planning graph as sources of probability.
This requires first having an estimation of where landmarks
should appear in the planning graph, which is obtained by
turning the landmark graph into a SAT problem that encodes
time steps and using a SAT solver to get a possible assign-
ment.

The general process is as follows:

• First, the landmark graph is encoded as a SAT problem
and an estimation of when the landmarks are needed is
obtained.

• Second, a planning graph enriched with the landmarks at
the aforementioned estimated positions is generated and
a message-passing algorithm is used to compute the bias
- in this case Expectation Maximization Survey Propaga-
tion (Hsu and McIlraith 2009).

• Finally, biases are used to introduce probabilities in the
sampling process of the RRT.

A SAT Compilation of the Landmark Graph
Current methods for computing landmarks are able not only
to find landmarks, but also to establish partial orders be-
tween them. These orderings connect the landmarks form-
ing a directed graph, the landmark graph. Figure 1 shows
the landmark graph of the Sussman’s anomaly slightly sim-
plified for the sake of clarity. There are several order-
ing relationships between landmarks propositions (Richter,
Helmert, and Westphal 2008):

• Natural ordering: A proposition a is naturally ordered be-
fore b if a must be true at some time before b is achieved

• Necessary ordering: A proposition a is necessarily or-
dered before b if a must be true one step before b is
achieved

• Greedy-necessary ordering: A proposition a is greedy
necessarily ordered before b if a must be true one step
before b when b is first achieved

• Reasonable ordering: A proposition a is reasonably or-
dered before b if, whenever b is achieved before a, any
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Figure 1: Simplified landmark graph of the Sussman’s
anomaly.

plan must delete b on the way to a, and re-achieve b after
or at the same time as a

This representation does not take into account that a land-
mark may be needed at several time steps and does not pro-
vide an insight of the total order of the landmarks, as it only
considers relative orders between them. Besides, it usually
underestimates the minimum parallel length of the solutions
to the problem. Figure 1 illustrates these facts: (arm-empty)
should appear at every even level as opposed to only at level
0; the number of propositional layers is four, meaning that in
theory a solution plan with only three actions may be possi-
ble, whereas the shortest parallel plan has 6 actions; (holding
a) and (holding b) appear at consecutive levels, despite need-
ing 2 actions to achieve either proposition from a state in
which the other is true,... An earlier work that tried to group
landmarks into layers in order to partition the problem (Se-
bastia, Onaindia, and Marzal 2006) partially addressed these
issues, although not in an explicit way and with the inconve-
nience of being computationally expensive in some planning
domains.

To solve this, a SAT compilation of the landmark graph is
proposed. It is inspired by the SAT-compilation process of
optimal makespan planners, in which propositions and ac-
tions are represented by a different variable at every time
step. In this case the landmark propositions at the different
levels are variables, and the clauses represent the different
constraints that exist between them. Constraints are either
the orderings that define the landmark graph or relations of
binary mutual exclusivity. In particular, long distance mu-
texes (Chen, Xing, and Zhang 2007), which are a general-
ization of regular mutexes, will be used. The different types
of clauses are the following (ini represents the time step at
which a given proposition can be true for the first time):

• Existential clauses: Every landmark must be true at at
least one time step (aini ∨ ... ∨ an)

• Natural orderings: a must be true at some time step before
b is true (aini ∨ ... ∨ at−1 ∪ ¬bt)

• Necessary orderings: Either a or b must be true at the time
step before b is true (at−1 ∨ bt−1 ∨ ¬bt)

• Greedy-necessary orderings: Either a or b must be true at
some time step before b is true (aini ∨ ... ∨ at−1 ∨ bini ∨
... ∨ bt−1 ∨ ¬bt)

• Reasonable orderings: If a and b are true at the same level,
a must be true at the time step before that level (at−1 ∨
¬at ∨ ¬bt)

• Distance between londexes: a cannot be true at a time step
t’ if b is true at t such that t − distance(a, b) > t′ ≤ t
(¬at−(distance−1) ∨ ¬bt) ∧ ... ∧ (¬at ∨ ¬bt)

The resulting encoding is solved using the ”ramp-up”
method most SAT-based planners employ: compile the prob-
lem with a given maximum length, try to find a solution us-
ing a SAT solver and, if no solution is found, repeat the pro-
cess incrementing the maximum length. The solution may
not be unique, so the final position of the landmarks is not
sound and should be used only as an estimate.

By solving the problem, a time-stamped landmark graph
is obtained. The first consequence is that the depth of the
graph is a lower bound on the parallel length of the original
problem. The second is that landmarks may appear as true
several times, meaning that they must be true at different
time steps. The third is that an intuition about the time steps
at which a landmark may be necessary is obtained. It should
be noted that the total order obtained does not have to be
respected by every solution plan.

Table 1 represents the output of this process in the Suss-
man’s anomaly. The table shows at which levels landmarks
must be true to satisfy the constraints. The opposite is not
true; a landmark does not have to be false when it appears as
not required. That a landmark must be false may be useful
in some cases, although this is trivially computable using the
original constraints along with the solution.

Level: 0 1 2 3 4 5 6
(arm-empty) x - x - x - -

(on a b) - - - - - - x
(on b c) - - - - x x x
(on c a) x - - - - - -
(clear a) - x x x x - -
(clear b) x - x - - x -
(clear c) x - x x - - -

(on-table a) x - - - - - -
(on-table b) x - - - - - -
(holding a) - - - - - x -
(holding b) - - - x - - -
(holding c) - x - - - - -

Table 1: Output of the solution of the SAT problem gener-
ated from the landmark graph

This solution is a good example of how some of the short-
comings of the landmark graph can be overcome. First, the
number of levels is the minimum required; second, trivial
landmarks like (arm-empty) being required on every even
level but the last one are detected; third, the positions at
which landmarks appear as needed offer a great deal of in-
formation with regards to possible solutions.
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Figure 2: An example of bias computation. In this case the
positive bias of p2 is higher than the bias of the other propo-
sitions, as it appears as true in a higher number of solutions.

Estimating the Bias of Propositions and
Actions

Message-passing compute the marginal distribution on the
set of variables by relying on the structure of a factor graph,
a bipartite graph whose nodes are either variables or con-
straints. Message-passing algorithms send values along the
edges of the graph representing the influence between vari-
ables given the constraints that affect them. The method
used in this work is Estimation-Maximization Survey Propa-
gation (EMSP) with a global update rule (Hsu and McIlraith
2009). EMSP is a set of update rules derived using the Es-
timation Maximization framework for maximum-likelihood
parameter estimation that has proved to be effective to solve
random SAT problems. Survey propagation is essentially
a variation of belief propagation in which the bias, instead
of being split as positive or negative, accepts a third value,
the ”joker” or ”don’t care” one. This value represents the
probability of the value of the variable not being critical for
the satisfiability of the solution; this is, whether a solution
remains valid when changing the value of the variable. On
the other hand, the Estimation-Maximization framework has
the advantage of guaranteeing convergence even in graphs
with loops, unlike regular message-passing algorithms. This
way, EMSP initializes the bias of the variables with random
values and iterates by doing a two-step process: first, every
variable sends its bias to the constraints it appears in, allow-
ing the computation of the probability of those constraints
to be satisfied. Second, every variable updates its bias based
on the previously computed probability.

Figure 2 shows an example of what biases mean in a SAT
problem. In this case, there are three actions a1, a2, a3 that
achieve a goal and five propositions p1, p2, p3, p4, p5 that are
the preconditions of the actions as represented by the ar-
rows. Only one action can be executed, which means that
they are mutex between them. Every action and proposition
besides the goal is a variable. The clauses are (a1∨a2∨a3),
(¬ai ∨ ¬aj) for each i 6= j and (pi ∨ ¬aj) for each
pi ∈ pre(aj). If EMSP is used, the positive bias of p2 is
0.5 whereas the bias of the rest of the propositions is around
0.3 This is because out of all the possible solution assign-
ments to the problem, p2 appears as true in more cases. Also
this example shows why choosing Survey Propagation in-
stead of regular Belief Propagation may be useful: let’s sup-
pose a1 was chosen as the supporting variable for the clause

(a1 ∨ a2 ∨ a3). In that case the values of p1, p2, a2, a3 are
enforced by the constraints. However, the value of the rest of
the propositions does not matter - they could be true or false
and the assignment would still satisfy the constraints. Sur-
vey Propagation captures this notion, which allows to com-
pute the positive and negative biases without being affected
by situations like the one described.

This planning graph can be easily seen as a factor graph
in which the factor vertices are the constraints that are rep-
resented by the edges and mutexes of the planning graph.
A reasonable formulation of the planning graph as a factor
graph is its compilation to a SAT problem, as done by SAT-
based planners like Blackbox (Kautz and Selman 1999). In
this case, the variables represent the different propositions
and actions at different time steps, and the clauses are the
constraints between them. This choice implies that the esti-
mated bias would be about actions and propositions at given
time steps. This is in opposition to the concept of landmark,
which states that they must be true along every solution plan
without any particularization of when.

To improve the inference process landmarks are inserted
in the positions obtained from the solution of the SAT en-
coding of the landmark graph and given a bias of 1. Fur-
thermore, the number of levels of the solution obtained from
the SAT compilation of the landmark graph is a sound lower
bound on the parallel length of any possible solution plan, so
the planning graph should have at least that many levels. Al-
gorithm 1 gives an outline of the whole process done when
computing the bias of actions and propositions.

Algorithm 1: Computation of biases enhanced by land-
marks

Data: Current problem P = (S, A, I, G)
Result: Survey survey
begin

LandmarkGraph←− computeLandmarks(P )
MinimumLevel←− computeHmax(P )
LandmarkSAT ←− NULL
while notLandmarkSAT do

LandmarkEncoding ←−
compileLandmarks(LandmarksGraph,
MinimumLevel)
LandmarkSAT ←−
solve(LandmarkEncoding)
MinimumLevel←−MinimumLevel + 1

PlanningSAT ←−
generateCNF (P,MinimumLevel − 1)
PlanningSAT ←−
insertLandmarks(PlanningSAT,LandmarkSAT )
survey ←− computeSurvey(PlanningSAT )
return survey

end

Biased RRT
One of the possible uses of the biases is sampling the search
space. The goal is to find intermediate states that may be
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Figure 3: Search phase of the RRT. The local search expands
towards the rightmost sampled state with a limit. When the
limit is reached, qn is added to the tree.

relevant to the search. Doing this the problem can be par-
titioned into several smaller problems, which greatly de-
creases the complexity of the task. An incremental algo-
rithm can be used to try to reach those states and build a
path to the goal state. A baseline planner is used to solve the
different subproblems. In this case, we will use a Rapidly-
Exploring Random Tree (RRT) (Kuffner and LaValle 2000)
adapted to automated planning following some of the ideas
introduced by RRT-Plan (Burfoot, Pineau, and Dudek 2006).
Fast-Downward with the FF heuristic, preferred operators
and greedy best first search with lazy evaluation will be the
base planner.

RRTs try to find a path to the goal by randomly sampling
the search state and trying to join the closest node of the tree
to the sampled state. The algorithm works as follows: first, a
state that is not inside an obstacle is sampled; then, the clos-
est node of the tree is found using a measure of distance.
After having found the closest node, a baseline planner is
called with a limit on time or length that tries to reach the
sampled state. When it is reached or the planner surpasses
the imposed limit, the last expanded state is added as a new
node of the tree with an edge connecting it to the node that
served as initial state for the subproblem. In single-query
RRTs after expanding towards a sampled state often a new
search is invoked trying to join the newly created node with
the goal state. Another approach used to speed up conver-
gence is, instead of sampling, with a probability p the closest
node to the goal is chosen and expanded towards it. Figure 3
shows how the tree is built towards the goal while sampling
at the same time.

Mutexes are used when sampling to avoid selecting un-
reachable steps and a reachability analysis from the sampled
state is done to avoid dead-end states. Besides, sampling
with a random probability may lead to exploring areas of
the search space which are not relevant to the solution of the
problem. To prevent this from happening, the use of biases
is proposed. Sampling is thus a several steps process: first, a
random proposition level of the planning graph is chosen, as
biases differ from level to level. Second, a variable from the
SAS+ formulation of the problem is randomly chosen. After
that, a proposition belonging to the invariant is picked using
roulette wheel selection with the bias as the probability of
selection. When a proposition is chosen all the propositions
belonging to other variables that are mutex with the chosen
one are discarded. This process is repeated until a propo-
sition from each variable has been selected. If a variable
is selected and has no valid propositions the sampled state
is unreachable due to mutexes and the process is restarted
from scratch.
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Abstract
This short paper provides a high-level description of the plan-
ner CBP (Cost-Based Planner). CBP performs heuristic search
in the state space using several heuristics. On one hand it
uses look-ahead states based on relaxed plans to speed-up
the search; on the other hand the search is also guided us-
ing a numerical heuristic and a selection of actions extracted
from a relaxed planning graph. The relaxed planning graph is
built taking into account action costs. The search algorithm
is a modified Best-First Search (BFS) performing Branch and
Bound (B&B) to improve the last solution found.

Introduction
Usually, in cost-based planning the quality of plans is in-
versely proportional to their cost. Many planners that
have been developed for being able to deal with cost-
based planning use a combination of heuristics together
with a search mechanism, as METRIC-FF (Hoffmann 2003),
SIMPLANNER (Sapena & Onaindı́a 2004), SAPA (Do
& Kambhampati 2003), SGPlan5 (Chen, Hsu, & Wah
2006), LPG-td(quality) (Gerevini, Saetti, & Serina 2004) or
LAMA (Richter, Helmert, & Westphal 2008).

One of the problems of applying heuristic search in cost-
based planning is that existing numerical heuristics are in
general more imprecise than heuristics for classical plan-
ning. The magnitude of the error the heuristic commits can
be much larger since costs of actions can be very different.
Therefore, making numerical estimations using the cost of
actions which are not part of the actual optimal solution can
lead to a great difference between the actual optimal value
and the estimation. For this reason, some additional tech-
nique, apart from a numerical heuristic, is needed to help
the search algorithm. In CBP we combine the use of a nu-
merical heuristic with the idea of look-ahead states (Vidal
2004), both extracted from a relaxed planning graph aware
of cost information. There are multiple ways to implement
the idea of look-ahead states: different methods can be de-
fined to compute relaxed plans and to compute look-ahead
states from relaxed plans. Also different search algorithms
can be used. In CBP we test one such combinations. CBP
has been described before in (Fuentetaja, Borrajo, & Linares
2009).

Copyright c© 2011, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The Numerical Heuristic in CBP

To compute the numerical heuristic, we build a relaxed plan-
ning graph in increasing levels of cost. The algorithm (de-
tailed in Figure 1) receives the state to be evaluated, s, the
goal set, G, and the relaxed domain actions, A+. Then, it
follows the philosophy of the Dijkstra algorithm: from all
actions whose preconditions have become true in any Re-
laxed Planning Graph (RPG) level before, generate the next
action level by applying those actions whose cumulative cost
is minimum. The minimum cumulative cost of actions in
an action layer i, is associated with the next propositional
layer (that contains the effects of those actions). This cost
is denoted as cost limiti+1 (initially cost limit0 = 0).
The algorithm maintains an open list of applicable actions
(OpenApp) not previously applied. At each level i, all new
applicable actions are included in OpenApp. Each new ac-
tion in this list includes its cumulative cost, defined as the
cost of executing the action, cost(a), plus the cost of sup-
porting the action, i.e. the cost to achieve the preconditions.
Here the support cost of an action is defined as the cost limit
of the previous propositional layer, cost limiti, that repre-
sents the cost of the most costly precondition (i.e it is a max
cost propagation process). Actions with minimum cumula-
tive cost at each iteration are extracted from OpenApp and
included in the corresponding action level, Ai, i.e. only ac-
tions with minimum cumulative cost are executed. The next
proposition layer Pi+1 is defined as usual, including the add
effects of actions in Ai. The process finishes with success,
returning a Relaxed Planning Graph (RPG), when all goals
are true in a proposition layer. Otherwise, when OpenApp
is the empty set, it finishes with failure. In such a case, the
heuristic value of the evaluated state is∞.

Once we have a RPG we extract a RP using an algo-
rithm similar to the one applied in METRIC-FF (Hoffmann
2003). Applying the same tie breaking policy in the extrac-
tion procedure, and unifying some details, the RPs we obtain
could be obtained with the basic cost-propagation process of
SAPA with max propagation and∞-look-ahead, as described
in (Bryce & Kambhampati 2007). However, the algorithm
to build the RPG in SAPA follows the idea of a breadth-first
search with cost propagation instead of Dijkstra. The main
difference is that our algorithm guarantees the minimum cost
for each proposition at the first propositional level contain-
ing the proposition.

International Planning Competition 2011

21



function compute RPG hlevel (s,G,A+)
let i = 0; P0 = s; OpenApp = ∅; cost limit0 = 0;
while G * Pi do

OpenApp = OpenApp ∪
{
a ∈ A+ \ ∪

j<i
Aj | pre(a) ⊆ Pi

}
forall new action in OpenApp do

cum cost(a) = cost(a) + cost limiti

Ai =

{
a | a ∈ argmin

a∈OpenApp
cum cost(a)

}
cost limiti+1 = min

a∈OpenApp
cum cost(a)

Pi+1 = Pi ∪
a∈Ai

add(a)

if OpenApp = ∅ then return fail
OpenApp = OpenApp \Ai

i = i+ 1
return P0, A0, P1, ..., Pi−1, Ai−1, Pi

Figure 1: Algorithm for building the RPG.

Finally, the heuristic value of the evaluated state is com-
puted as the sum of action costs for the actions in the RP.
Since we generate a relaxed plan, we can use the helpful ac-
tions applied in (Hoffmann 2003) to select the most promis-
ing successors in the search. Helpful actions are the applica-
ble actions in the evaluated state that add at least one propo-
sition required by an action of the relaxed plan and generated
by an applicable action in it.

For the 2011 IPC we present two versions of the planner.
The first one computes the RPG as have been described be-
fore in this section. The second one replaces the max cost
propagation process with an additive propagation process,
which involves to compute the cum cost(a) in the line 5 of
the algorithm in Figure 1 as:

cum cost(a) = cost(a) +
∑

q∈pre(a)

cost limitlevel(q)

where level(q) is the index of the first propositional layer
containing q. Applying the same tie breaking policy in the
extraction procedure this additive version will be equiva-
lent to the cost-propagation process of SAPA with additive
propagation and ∞-look-ahead, as described in (Bryce &
Kambhampati 2007) and also to the heuristic ha (Keyder &
Geffner 2008).

Computing Look-ahead States
Look-ahead states are obtained by successively applying the
actions in the RP. There are several heuristic criteria we ap-
ply to obtain a good look-ahead state. Some of these con-
siderations have been adopted from Vidal’s work in the clas-
sical planning case (Vidal 2004), as: (1) we first build the
RP ignoring all actions deleting top level goals. Relaxed ac-
tions have no deletes. So, when an action in the RP deletes
a top-level goal, probably there will not be another posterior
action in the RP for generating it. In this case, the heuristic
value will be probably a bad estimate; and (2) we gener-
ate the look-ahead state using as many actions as possible
from the RP. This allows to boost the search as much as
possible. We do not use other techniques applied in clas-
sical planning as the method to replace one RP action with

another domain action, when no more RP actions can be ap-
plied (Vidal 2004). Initially, we wanted to test whether the
search algorithm itself is able to repair RPs through search.

Determining the best order to execute the actions in the
RP is not an easy task. One can apply the actions in the
same order they appear in the RP. However, the RP comes
from a graph built considering that actions are applicable in
parallel and they have no deletes. So, following the order in
the RP can generate plans with bad quality. The reason is
that they may have many useless actions: actions applied to
achieve facts other actions delete. We have the intuition that
delaying the application of actions as much as possible (un-
til the moment their effects are required) can alleviate this
problem. So, we follow a heuristic procedure to give prior-
ity to the actions of the RP whose effects are required before
(they are subgoals in lower layers).1 To do this, during the
extraction process, each action selected to be in the RP is
assigned a value we call level-required. In the general case,
this value is exactly the minimum layer index minus one of
all the selected actions for which the subgoal is a precondi-
tion.

The RPGs built propagating costs differs from the RPGs
built for classical planning. One of the differences is that
in the former we can have a sequence of actions to achieve
a fact that in the classical case can be generated using just
one action. The reason is that the total cost of applying the
sequence of actions is lower than the cost of using only one
action. In such a case, all the intermediate facts in the se-
quence are not really necessary for the task. They only ap-
pear for cost-related reasons. The only necessary fact is the
last one of the sequence. In this case, the way of computing
the level-required differs from the general case: we assign
the same level-required to all actions of the sequence, that
is the level-required of the action that generate the last (and
necessary) fact. The justification of this decision is that once
the actions have been selected to be in the RP we want to ex-
ecute as more actions as possible of the RP, so we have to
attend to causality reasons and not to cost-related reasons.

The level-required values provide us a partial order for the
actions in the RP. We generate the look-ahead state execut-
ing first the actions with lower level-required. In case of ties
we follow the order of the RP.

The Figure 2 shows a high-level algorithm describing
the whole process for computing the look-ahead state given
the source state and the relaxed plan (RP). The variables
min order and max order represent the minimum and
maximum level-required for the actions in the RP respec-
tively. Initially, all the actions in the RP are marked as no
executed, and the variable current order is set to the mini-
mum level required. The for sentence covers the relaxed
plan executing the actions applicable in the current state and
not yet executed, whose level required equals the current or-
der. The execution of one action implies to update the cur-
rent state and to initialize the current order to the minimum
level required. After covering the relaxed plan, if no new ac-

1The heuristic procedure described here slightly differs from
the one described in (Fuentetaja, Borrajo, & Linares 2009).
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function obtain lookahead state(state, RP)
let min order = minimum level required(RP )
let max order = maximum level required(RP )
let executed[a] = FALSE, ∀a ∈ RP
let current order = min order
let current state = state
while current order <= max orden do

new action applied = FALSE
forall a ∈ RP do

if not executed[a] ∧ applicable(a, current state)∧
level required(a) = current order then
new state = apply(a, current state)
executed[a] = TRUE
new action applied = TRUE
current state = new state
current order = min ordern

if not new action applied then
current order = current order + 1

if current state 6= state
return current state

else
return fail

Figure 2: High-level algorithm for computing the look-
ahead state.

tion has been executed, the current order is increased by one.
This process is repeated until the current order is higher than
the maximum level required (while sentence). Finally the
algorithm returns the last state achieved (i.e. the look-ahead
state).

The Search Algorithm

The search algorithm we employ is a weighted-BFS with
evaluation function f(n) = g(n) + ω · h(n), modified in
the following aspects: first, the algorithm performs a Branch
and Bound search. Instead of stopping when the first solu-
tion is found, it attempts to improve this solution: the cost
of the last solution plan found is used as a bound such that
all states whose g-value is higher than this cost bound are
pruned. As the heuristic is non-admissible we prune by g-
values to preserve completeness; second, the algorithm uses
two lists: the open list, and the secondary list (the sec-non-
ha list). Nodes are evaluated when included in open, and
each node saves its relaxed plan. Relaxed plans are first built
ignoring all actions deleting top-level goals (when this pro-
duces an∞ heuristic value, the node is re-evaluated consid-
ering all actions). When a node is extracted from open, all
look-ahead states that can be generated successively starting
from the node are included in open. Then, its helpful succes-
sors are also included in open, and its non-helpful successors
in the sec-non-ha list. When after doing this, the open list is
empty, all nodes in sec-non-ha are included in open. The al-
gorithm finishes when open is empty. Figure 3 shows a high-
level description of the search algorithm (BB-LBFS, Branch
and Bound Look-ahead Best First Search). For the sake of
simplicity the algorithm does not include the repeated states
prune and the cost bound prune for the Branch and Bound.
Repeated states prune is performed pruning states with the
same facts and higher g-values.

function BB-LBFS ()
let cost bound =∞; plans = ∅; open = I; sec non ha = ∅
while open 6= ∅ do

node← pop best node(open)
if goal state(node) then /* solution found */

plans← plans ∪ {node.plan}
cost bound = cost(node.plan)

else
lookahead = compute lookahead(node)
while lookahead do

open← open ∪ {lookahead}
if goal state(lookahead) then

plans← plans ∪ {lookahead.plan}
cost bound = cost(lookahead.plan)
lookahead = compute lookahead(lookahead)

open← open ∪ helpful successors(node)
sec non ha← sec non ha ∪ non helpful successors(node)
if open = ∅ do

open← open ∪ sec non ha
sec non ha = ∅

return plans

Figure 3: High-level BB-LBFS algorithm.

Summary
This paper described the main parts of the CBP planner: (1)
the computation of the relaxed planning graph to obtain a
numerical heuristic and the helpful actions; (2) the genera-
tion of lookahead states based on the same relaxed planning
graphs, and (3) the search algorithm. As aforementioned,
the relaxed planning graphs are built making use of action
costs. The search algorithm is a best first algorithm modi-
fied to give priority to helpful actions and to include it look-
ahead states. Instead of stopping at first solution it continues
the search performing Branch and Bound until a time bound
is reached. For the competition we have set the ω value in
the evaluation function to three. CBP has been implemented
in C, reusing part of the code of METRIC-FF.
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Overview
Once again, in the 7th International Planning Competition
(IPC) of 2011, the optimal temporal track has been cancelled
due to a lack of competitors: CPT4, the fourth version of the
CPT planner (Vidal and Geffner 2006), was the only sub-
mitted planner. This already happened in 2008 for the 6th

IPC where CPT3 was alone, while in 2006 for the 5th IPC
CPT2 had been compared with CPT1 only and awarded with
a “Distinguished Performance” in temporal domains of the
optimal track (but well, was it useful?. . . ). In that compe-
tition, SAT-based planners were the most efficient for par-
allel domains, a special case of temporal planning with the
conservative semantics first introduced in (Smith and Weld
1999) where actions have uniform durations and overlapping
of mutex actions is forbidden.

The only meaningful comparison with other temporal
planners, during a planning competition, has been made in
2004 for the 4th IPC, where the first version of CPT had been
ranked second in the optimal track (SATPLAN’04 being
ranked first), generally being the more efficient in temporal
domains against TP4 and HSP∗

a (Haslum and Geffner 2001;
Haslum 2004).

We think that optimal temporal planning is a meaningful
problem, and that more planners should be submitted to the
International Planning Competition in order to try to charac-
terize some “state-of-the-art” among implemented systems.
One difficulty is perhaps to follow the full PDDL2.1 seman-
tics, which makes temporal planning EXPSPACE-complete
(Rintanen 2007). Actually, the submitted version of CPT4
does not follow PDDL2.1 semantics, but rather the conser-
vative one (Smith and Weld 1999). We think that temporal
planning with the conservative semantics is difficult enough,
and more closely related to typical scheduling problems.
From some preliminary experiments with CPT4 on classi-
cal open-shop and job-shop problems, we can say that CPT4
is a relatively good scheduler (i.e. it solves some instances
generally considered as difficult).

We decided to enter CPT4 into the 7th International Plan-
ning Competition in all tracks, in order to evaluate how far
an optimal temporal planner can be from specialized plan-
ners in each track. But to make things clear, even if CPT4
participates to this IPC, it should not: the only track for
which it has been designed for, the optimal temporal track,
has been cancelled. . .

Implementation

The actual implementation of CPT is based on the version
written in C described in (Vidal and Tabary 2006). It in-
cludes some additional pruning rules that first appeared in
(Vidal and Geffner 2005), as well as the last conflict based
reasoning (Lecoutre et al. 2009). The improvements brought
to CPT4 are mostly minor: a few bug fixes and slight im-
provements in the way the constraint propagation rules are
written.

One notable improvement is the use of a conflict count-
ing heuristic, inspired by the wdeg heuristic (Boussemart
et al. 2004). Each time a contradiction occurs in the con-
straint propagation engine, a weight attached to the variables
and constraints in relation with the violated constraint is in-
cremented. Branching rules are then tweaked to always fol-
low branches that constrain more variables with the highest
weights.

Another improvement is a slightly better way of produc-
ing optimal sequential plans. As in CPT3, the cost associated
to an action (1 for optimal length, any positive value for cost-
based planning) is treated as a duration. But instead of forc-
ing all actions to be pairwise mutex, an additional constraint
is enforced: an action is excluded from any subsequent par-
tial plan during search, when the sum of the costs of the
actions that belong to the current partial plan plus the cost
of the considered action exceeds the current bound on the
makespan (interpreted as length or cost sum). This means
that CPT4 still explores the space of partially ordered plans
with concurrent actions, with a constraint that guarantees op-
timality.

Some Experiments

CPT has been designed with two objectives in mind: to
match the performance of the best parallel planners, and to
be a powerful planner for optimal temporal planning. While
the former can be easily checked by a comparison with SAT-
based planners, the latter is a bit more problematic due to the
lack of recent efficient optimal temporal planners: we only
compared CPT4 with its previous version, CPT3. All exper-
iments are performed on an Intel Xeon X5670 running at
2.93GHz with 4GB of memory and a timeout of 30 minutes.
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IPC domain #pbs
#solved

CPT3 CPT4 MAXPLAN Mp SASE SATPLAN

1

grid 5 1 (2) 1 (2) 1 (2) 2 (1) 3 2 (1)
gripper 20 4 (1) 4 (1) 3 (2) 3 (2) 5 3 (2)
logistics 35 26 (1) 25 (2) 11 (16) 18 (9) 27 23 (4)
mprime 35 19 (14) 24 (9) 28 (5) 33 33 25 (8)
mystery 30 29 28 (1) 18 (11) 19 (10) 21 (8) 19 (10)
total

125
79 (10) 82 (7) 61 (28) 75 (14) 89 72 (17)

% solved 63.2% 65.6% 48.8% 60.0% 71.2% 57.6%

2

blocks 60 37 (1) 38 15 (23) 34 (4) 31 (7) 35 (3)
elevator 150 43 (9) 44 (8) 20 (32) 33 (19) 46 (6) 52
freecell 60 12 (19) 12 (19) 16 (15) 14 (17) 31 19 (12)
logistics 198 38 (7) 42 (3) 29 (16) 27 (18) 44 (1) 45
total

468
130 (22) 136 (16) 80 (72) 108 (44) 152 151 (1)

% solved 27.8% 29.1% 17.1% 23.1% 32.5% 32.3%

3

depots 22 15 (1) 15 (1) 12 (4) 15 (1) 15 (1) 16
driverlog 20 15 (2) 15 (2) 12 (5) 15 (2) 17 16 (1)
freecell 20 3 (3) 3 (3) 5 (1) 4 (2) 6 4 (2)
rovers 20 13 (5) 13 (5) 15 (3) 18 16 (2) 15 (3)
zenotravel 20 15 (1) 16 12 (4) 14 (2) 16 15 (1)
total

102
61 (9) 62 (8) 56 (14) 66 (4) 70 66 (4)

% solved 59.8% 60.8% 54.9% 64.7% 68.6% 64.7%

4
pipesworld-notankage 50 16 (24) 16 (24) 26 (14) 19 (21) 40 37 (3)
pipesworld-tankage 50 8 (18) 8 (18) 10 (16) 10 (16) 26 16 (10)
psr-small 50 49 (1) 49 (1) 50 49 (1) 50 50
total

150
73 (43) 73 (43) 86 (30) 78 (38) 116 103 (13)

% solved 48.7% 48.7% 57.3% 52.0% 77.3% 68.7%

5

openstacks 30 0 (5) 0 (5) 0 (5) 0 (5) 5 5
pathways 30 5 (4) 8 (1) 9 7 (2) 5 (4) 9
tpp 30 17 (6) 23 20 (3) 14 (9) 16 (7) 20 (3)
trucks 30 2 (8) 2 (8) 3 (7) 3 (7) 10 5 (5)
total

120
24 (15) 33 (6) 32 (7) 24 (15) 36 (3) 39

% solved 20.0% 27.5% 26.7% 20.0% 30.0% 32.5%

6

elevators 30 5 (9) 5 (9) 5 (9) 4 (10) 14 10 (4)
openstacks 30 3 3 3 3 3 3
parcprinter 30 27 (3) 28 (2) 28 (2) 25 (5) 30 29 (1)
pegsol 30 10 (14) 10 (14) 11 (13) 18 (6) 24 19 (5)
scanalyzer 30 14 (4) 15 (3) 12 (6) 17 (1) 18 14 (4)
transport 30 9 (4) 9 (4) 6 (7) 6 (7) 13 11 (2)
woodworking 30 30 30 30 30 5 (25) 30
total

210
98 (18) 100 (16) 95 (21) 103 (13) 107 (9) 116

% solved 46.7% 47.6% 45.2% 49.0% 51.0% 55.2%
total

1175
465 (105) 486 (84) 410 (160) 454 (116) 570 547 (23)

% solved 39.6% 41.4% 34.9% 38.6% 48.5% 46.6%

Table 1: Number and percentage of solved problems in selected parallel domains of the IPCs from 1998 to 2008. Numbers in
bold indicate the best results and numbers in parenthesis indicate the number of unsolved problems with respect to the best
result.

Parallel Planning
The first version of CPT had been ranked second in the 4th,
after SATPLAN’04; since then, SAT-based planners have
been greatly improved. The first reason is that SAT solvers
are more and more efficient; and the second, because bet-
ter encodings have been found. We compare six state-of-
the-art planners on parallel planning problems: MAXPLAN
(Xing, Chen, and Zhang 2006), Mp (Rintanen 2010), SASE
(Huang, Chen, and Zhang 2010), SATPLAN’06 (Kautz, Sel-
man, and Hoffmann 2006), and the last two versions of CPT.
We took many domains from the 1st to the 6th IPC, for a total
of 1175 planning problems. The domains that do not appear
in these results (e.g. airport and sokoban) make the available
version of SASE (v0.1) crash: to be fair, we have not in-
cluded them. All planners optimize the parallel plan length.

As can be seen from Table 1, the recent SASE planner,

which is based on a SAS+ encoding, is the most efficient
one: it solves 570 problems (48.5%). SATPLAN’06 is the
next best planner, with 547 problems solved (46.6%). Then
come CPT4 and CPT3, which solve 486 problems (41.4%)
and 465 problems (39.6%) respectively. Finally, comes Mp
with 454 solved problems (38.6%) and MAXPLAN with
410 problems (34.9%). Although CPT4 is not the most ef-
ficient parallel planner, it is able to outperform some SAT-
based planners on this set of benchmarks. However, the dif-
ference between CPT and the best SAT-based planner is per-
haps higher than what it was a few days ago: CPT has not
evolved a lot over the last few years.

Figure 1 shows the cumulated number of solved problems
in function of the total running time. For each CPU time t
on the x axis, the corresponding value on the y axis gives
the number of problems solved in under t seconds. We can

International Planning Competition 2011

26



 0

 100

 200

 300

 400

 500

 600

 0.1  1  10  100  1000

n
u
m

b
e
r 

o
f 
s
o
lv

e
d
 p

ro
b
le

m
s

CPU time (sec.)

CPT3
CPT4

MAXPLAN
Mp

SASE
SATPLAN

Figure 1: Cumulated number of solved problems in function
of the search time for parallel planners.
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Figure 3: Comparison of the total running time between
CPT3 and CPT4 on temporal planning problems.

see that CPT3, CPT4 and Mp solve more problems than the
other planners with very small running times, but solve sig-
nificantly fewer problems that require longer running time.
Figure 2, which makes pairwise comparisons between CPT4
and the other planners, confirms this view.

Temporal Planning
CPT3 and CPT4 are then compared on all temporal prob-
lems without numerical fluents from all past IPCs, for a
total of 664 planning problems. Table 2 shows the num-
ber of solved problems within the time limit. CPT4, which
solves 316 problems (47.6%), clearly outperforms CPT3
which solves 271 problems (40.8%). Only one problem in
the domain pipesworld-tankage is solved by CPT3 and not
by CPT4. Figure 3, which compares the total running time
of both planners, shows that CPT4 generally outperforms
CPT3.

Acknowledgments
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search Agency (ANR) through COSINUS program (project

IPC domain #pbs
#solved

CPT3 CPT4

3

depots 22 8 (2) 10
driverlog 20 11 11
rovers 20 5 (1) 6
satellite 20 12 (1) 13
zenotravel 20 14 14
total

102
50 (4) 54

% solved 49.0% 52.9%

4

airport 50 41 (3) 44
airport-timewindows 50 34 (10) 44
pipesworld-notankage-deadlines 30 14 (4) 18
pipesworld-notankage 50 15 (2) 17
pipesworld-tankage 50 9 8 (1)
satellite-time 36 17 17
satellite-time-timewindows 36 7 (5) 12
total

302
137 (23) 160

% solved 45.4% 53.0%

5
openstacks 20 0 0
storage 30 15 15
trucks 30 2 (5) 7
total

80
17 (5) 22

% solved 21.2% 27.5%

6

crewplanning 30 5 (10) 15
elevators 30 2 2
openstacks 30 4 4
parcprinter 30 22 (3) 25
pegsol 30 29 29
sokoban 30 5 5
total

180
67 (13) 80

% solved 37.2% 44.4%
total

664
271 (45) 316

% solved 40.8% 47.6%

Table 2: Number and percentage of solved problems in all
temporal domains of the IPCs from 1998 to 2008. Numbers
in bold indicate the best results and numbers in parenthesis
indicate the number of unsolved problems with respect to
the best result.
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Abstract
DAEX, the concrete implementation of the Divide-and-
Evolve paradigm, is a domain-independent satisficing plan-
ning system based on Evolutionary Computation. The basic
principle is to carry out a Divide-and-Conquer strategy driven
by an evolutionary algorithm. The key components of DAEX
are a state-based decomposition principle, an evolutionary al-
gorithm to drive the optimization process, and an embedded
planner X to solve the sub-problems. The release that has
been submitted to the competition is DAEYAHSP, the instan-
tiation of DAEX with the heuristic forward search YAHSP
planner. The marriage of DAE and YAHSP matches a clean
role separation: YAHSP gets a few tries to find a solution
quickly whereas DAE controls the optimization process.

Introduction
DAEX, the concrete implementation of the Divide-and-
Evolve paradigm, is a domain-independent satisficing plan-
ning system based on Evolutionary Computation (Schoe-
nauer, Savéant, and Vidal 2006). The basic principle is to
carry out a Divide-and-Conquer strategy driven by an evo-
lutionary algorithm. The algorithm is detailed in (Bibaı̈ et al.
2010a) and compared with state-of-the-art planners. In order
to solve a planning task PD(I, G), the basic idea of DAEX
is to find a sequence of goals S1, . . . , Sn, and to rely on an
embedded planner X to solve the series of planning tasks
PD(Sk, Sk+1), for k ∈ [0, n] (with S0 = I and Sn+1 = G).
A DAEX individual is thus a sequence of goals which de-
fine a sequence of subproblems to be solved (a decompo-
sition). These subproblems are submitted successively to
an embedded planner X and the global solution is obtained
after the compression of these intermediate solutions. The
overall optimization process is controlled by an evolution-
ary algorithm.

The decomposition principle of DAEX is very general
and could be applied to any type of planning tasks. The
scope of the planner is of course the one of the embed-
ded planner X . The release that has been submitted to the
competition is DAEYAHSP, the instantiation of DAEX with
the heuristic forward search YAHSP planner (Vidal 2004;
2011). The target is thus temporal satificing planning with
conservative semantics, cost planning and classical STRIPS

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

planning. The marriage of DAE and YAHSP matches a
clean role separation: YAHSP gets a few tries to find a solu-
tion quickly whereas DAE controls the optimization process.
In the current release we have introduced an initial estima-
tion processing of the maximum number of tries allowed to
YAHSP for all individual evaluations. This parameter is cru-
cial for the time consumption of the algorithm.

The Evolutionary Engine
Figure 1 depicts the standard evolutionary loop which mim-
ics a biological evolution. The fitness implements a gradient
towards feasibility for unfeasible individuals and a gradient
towards optimality for feasible individuals. Feasible indi-
viduals are always preferred to unfeasible ones. Population
initialization as well as variation operators are driven by the
critical path h1 heuristic (Haslum and Geffner 2000) in or-
der to discard inconsistent state orderings, and atom mutual
exclusivity inference in order to discard inconsistent states.
These two computations are done by YAHSP in an initial
phase.

Parental Selection

Population

a e ta Se ect o

Parents

Crossover,
S i l S l i DAEX

,
MutationsSurvival Selection

OffspringStop?

Evaluation
Best IndividualBest Individual

Initialisation

Planner X

Figure 1: The standard evolutionary loop

Beside a standard one-point crossover for variable length
representations, four mutations have been defined: addition
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(resp. removal) of a goal in a sequence, addition (resp. re-
moval) of an atom in a goal. Variation operators relax the
strictly h1 ordering of atoms within individuals, since it is
only a heuristic estimate.

The selection is a comparison-based deterministic tourna-
ment of size 5.

For the sequential release, Darwinian-related parameters
of DAEX have been fixed after some early experiments
(Schoenauer, Savéant, and Vidal 2006) whereas parameters
related to the variation operators have been tuned using the
Racing method (Bibaı̈ et al. 2010b). It should be noted that,
due to the conditions of the competition, the parameter set-
ting is global to all domains. In (Bibaı̈ et al. 2010b) we
showed that a specific tuning for an instance provides better
results as expected and that what we would do for a real-life
planning task.

We added two novelties to the version described in (Bibaı̈
et al. 2010a). One important parameter is the maximum
number of expanded nodes allowed to the YAHSP sub-
solver which defines empirically what is considered as an
easy problem for YAHSP. As a matter of fact, the minimum
number of required nodes varies from few nodes to thou-
sands depending of the planning task. In the current release
this number is estimated during the population initialization
stage. An incremental loop is performed until the ratio of
feasible individuals is over a given threshold or a maximum
boundary has been reached. By default this number is dou-
bled at each iteration until at least one feasible individual is
produced or 100000 has been reached.

Furthermore we add the capability to perform restarts
within a time contract in order to increase solution quality.

The fitness used for the competition differs from the one
described in (Bibaı̈ et al. 2010a). The fitness for bad indi-
viduals has been simplified by withdrawing the Hamming
distance to the goal. The new fitness depends only on the
“decomposition distance”: the number of intermediate goals
reached and more specifically the one that are “useful”. A
useful intermediate goal is a goal that require a non-empty
plan to be reached.

Implementation
The implementation of DAEX has been made with the STL-
based Evolving Objects framework1 which provides an ab-
stract control structure to develop any kind of evolutionary
algorithm in C++. YAHSP is written in the C language.

In order to speed up search, a memozation mechanism
has been introduced in YAHSP and carefully controlled to
leave memory space for DAE. Indeed, most of the time dur-
ing a run of YAHSP, and as a consequence during a run
of DAEYAHSP, is spent in computing the hadd heuristic for
each encountered state (see (Vidal 2011) for more details
about the algorithms of the new version of the YAHSP plan-
ner). During a single run of YAHSP, duplicate states are dis-
carded; but during a run of DAEYAHSP, the same state can
be encoutered multiple times. We therefore keep track of the
hadd costs of all atoms in the problem for each state, in order
to avoid recomputing these values each time a duplicate state

1http://eodev.sf.net

is reached. This generally leads to a speedup comprised be-
tween 2 and 4. When DAEYAHSP runs out of memory, which
obviously happens much faster with the memoization strat-
egy, all stored states and associated costs are flushed. More
sophisticated strategies may be implemented, e.g. flushing
the oldest or less often encountered states; but we found that
the simplest solution of completely freeing the memoized
information was efficient enough.

Several biases have been introduced in YAHSP, in order
to help DAEYAHSP finding better solutions. The main one
is that actions of lower duration are preferred to break ties
between several actions of same hadd cost, when computing
relaxed plans and performing the relaxed plan repair strat-
egy. Another bias is that the cost incrementation made dur-
ing hadd, which is usually equal to 1 for each applied action,
is made equal to either the duration or the cost of the action.
Although these biases do not change a lot the quality of the
plans produced by YAHSP alone, we found that they are of
better help to DAEYAHSP. However, introducing such biases
is not very satisfactorily; it would be better to exactly use
the version described in (Vidal 2011). We still have to better
investigate the relationships between the evolutionnary en-
gine and the embedded planner, in order to determine how
to manage such kind of biases and other tie-breaking strate-
gies.
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Schoenauer, M.; Savéant, P.; and Vidal, V. 2006.
Divide-and-Evolve: a New Memetic Scheme for Domain-
Independent Temporal Planning. In Gottlieb, J., and
Raidl, G., eds., 6th European Conference on Evolutionary
Computation in Combinatorial Optimization (EvoCOP’06).
Springer Verlag.
Vidal, V. 2004. A Lookahead Strategy for Heuristic Search
Planning. In 14th International Conference on Automated
Planning and Scheduling (ICAPS-2004), 150–159. AAAI
Press.
Vidal, V. 2011. YAHSP2: Keep It Simple, Stupid. In 7th

International Planning Competition (IPC-2011), Determin-
istic Part.

International Planning Competition 2011

30



FD-Autotune: Automated Configuration of Fast Downward
Chris Fawcett

University of British Columbia
fawcettc@cs.ubc.ca

Malte Helmert
Albert-Ludwigs-Universität Freiburg
helmert@informatik.uni-freiburg.de

Holger Hoos
University of British Columbia

hoos@cs.ubc.ca

Erez Karpas
Technion

karpase@technion.ac.il

Gabriele Röger
Albert-Ludwigs-Universität Freiburg
roeger@informatik.uni-freiburg.de

Jendrik Seipp
Albert-Ludwigs-Universität Freiburg

seipp@informatik.uni-freiburg.de

Abstract

The FD-Autotune submissions for the IPC-2011 sequential
tracks consist of three instantiations of the latest, highly
parametric version of the Fast Downward Planning Frame-
work. These instantiations have been automatically config-
ured for performance on a wide range of planning domains,
using the well-known ParamILS configurator. Two of the in-
stantiations were entered into the sequential satisficing track
and one into the sequential optimising track. We describe
how the extremely large configuration space of Fast Down-
ward was restricted to a subspace that, although still very
large, can be managed by state-of-the-art automated configu-
ration procedures, and how ParamILS was then used to obtain
performance-optimised configurations.

Introduction
Developers of state-of-the-art, high-performance algorithms
for combinatorial problems, such as planning, are frequently
faced with many interdependent design choices. These
choices can include the heuristics to use during search, op-
tions controlling the behaviour of these heuristics, as well as
which search techniques to use and in what combination.

Recent work in other combinatorial problem domains
such as satisfiability (SAT) and mixed-integer program-
ming (MIP) suggests that by exposing these design choices
as parameters, developers can leverage generic tools for
automated algorithm configuration to find performance-
optimising configurations of the resulting highly parame-
terised algorithm (Hutter et al. 2007; Hutter, Hoos, and
Leyton-Brown 2010). In fact, the configurations resulting
from this process often perform substantially better than
those found manually through exploration by human ex-
perts.

These results suggest the following new approach to
building planning algorithms. Given a highly-parametric,
general purpose planner P , a representative set I of planning
instances from one or more domains, and a performance
metric m to be optimised, we can obtain a configuration of
the parameters of P optimised for performance on I with
respect to m using a generic automated algorithm configu-
ration tool.

For this submission, we applied the above approach using
a new, highly-parameterised version of the Fast Downward

planning system (Helmert 2006) and the state-of-the-art au-
tomated algorithm configurator ParamILS (Hutter, Hoos,
and Stützle 2007; Hutter et al. 2009) to obtain three con-
figurations of Fast Downward: FD-Autotune-satisficing.1,
FD-Autotune-satisficing.2, and FD-Autotune-optimizing.
FD-Autotune-satisficing.1 was optimised using mean plan
cost after a fixed runtime as the optimisation metric,
while the FD-Autotune-optimizing configurations were ob-
tained by using mean runtime to find an optimal plan.
FD-Autotune-satisficing.2 is a hybrid planner obtained by
inserting a phase at the beginning of search that has been
configured to find satisficing plans as quickly as possible.
Due to the highly structured and potentially infinite config-
uration space of Fast Downward, we carefully limited the
number of parameters in order to comply with the require-
ments of ParamILS and to retain as many potential plan-
ner configurations as possible. All of our configuration and
analysis experiments were performed using HAL, a recently
developed software environment for work in empirical algo-
rithmics (Nell et al. 2011).

The Fast Downward Planning Framework

In this section we describe the capabilities of the IPC-2011
version of the Fast Downward planning system. Since Fast
Downward incorporates many different algorithms and ap-
proaches, which have each been published separately in
peer-reviewed conferences and/or journals, we will simply
list the available components with pointers to further infor-
mation for the interested reader.

The Fast Downward planning system (Helmert 2006) is
composed of three main parts: the translator, the preproces-
sor, and the search component, which are run sequentially
in this order. The translator (Helmert 2009) is responsible
for translating the given PDDL task into an equivalent one
in SAS+ representation. This is done by finding groups of
propositions which are mutually exclusive and combining
them into a single SAS+ variable. The preprocessor per-
forms a relevance analysis and precomputes some data struc-
tures that are used by the search and certain heuristics. The
search component, whose capabilities we will describe in
detail here, searches for a solution to the given SAS+ task.
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Search
The search component features three main types of search
algorithms:

• Eager Best-First Search — the classic best-first search.
The same search code is used for greedy best-first search,
A∗, and weighted A∗ by plugging in different f functions.
The multi-path-dependent LM-A∗ (Karpas and Domshlak
2009) is also implemented here.

• Lazy Best-First Search — this is best-first search with de-
ferred evaluation (Richter and Helmert 2009). Here as
well, the same search code is used for lazy greedy best-
first search and lazy weighted A∗ by using a different f
function.

• Enforced Hill-Climbing (Hoffmann and Nebel 2001) —
an incomplete local search technique. This has been
slightly generalised from classic EHC to allow preferred
operators from multiple heuristics, as well as enabling or
disabling preferred operator pruning.

Each of these search algorithms can take several param-
eters and use one or more heuristics (heuristic combination
methods will be discussed next). In addition, these algo-
rithms can be run in an iterated fashion. This can be used,
for example, to produce RWA∗ (Richter, Thayer, and Ruml
2010), the search algorithm used in LAMA (Richter and
Westphal 2010).

Heuristic Combination
As mentioned previously, the search algorithms described
above can work with multiple heuristic evaluators. There
are several heuristic combination methods available in the
Fast Downward planning system, which are implemented as
different kinds of open lists.

Some of these combination methods amount to simple
arithmetic combinations of heuristic values and can use a
standard (“regular”) open list implementation, while others
treat the different heuristic estimates 〈h1(s), . . . , hn(s)〉 as
a vector that is not reduced to a single scalar value (Röger
and Helmert 2010).1 As a result, some of these latter meth-
ods do not necessarily induce a total order on the set of open
states. The following combination methods are available in
Fast Downward, in addition to performing a regular search
using a single heuristic:

• Max — the maximum of several heuristic estimates:
max{h1(s), . . . , hn(s)}.

• Sum — the sum or weighted sum of several heuristic es-
timates: w1h1(s) + · · ·+ wnhn(s).

• Selective Max (Domshlak, Karpas, and Markovitch 2010)
— a learning-based method which chooses one heuristic
to evaluate at each state: hi(s) where i is chosen on a per-
state basis using a naive Bayes classifier trained on-line.

1To simplify discussion, this description assumes that search al-
gorithm behaviour only depends on heuristic values, but all these
algorithms can also take into account path costs, as in A∗ or
weighted A∗.

• Tie-breaking — considers the heuristics in fixed order:
first, consider h1(s); if ties need to be broken, consider
h2(s); and so on.

• Pareto-optimal — all states whose heuristic value vector
is not Pareto-dominated by another heuristic value vec-
tor are candidates for expansion, with selection between
multiple candidates performed randomly.

• Alternation (Dual Queue) — heuristics are used in round-
robin fashion: the first expansion uses h1(s), the second
uses h2(s), etc., up to hn(s), followed again by h1(s). Al-
ternation can also be enhanced by boosting (Richter and
Helmert 2009).

Each combination method can take several parameters.
One important parameter is whether the open list contains
only states which have been reached via preferred operators,
or all states.

Moreover, wherever this makes sense, instead of using
different heuristics as their components, these combination
methods can also combine the results of different open lists
which can themselves employ combination methods, and
this nesting can even be performed recursively. For exam-
ple, it is possible to use alternation over one regular heuris-
tic, one Pareto-based open list, and one open list that uses
tie-breaking over various weighted sums.

Such combinations allow us to build the ‘classic’ boosted
dual queue of Fast Downward: use an alternation approach,
which combines two standard open lists, one of which holds
all states, and the other only preferred states, both of which
are based on a single heuristic estimate. To use two heuristic
estimates as in Fast Diagonally Downward (Helmert 2006)
or LAMA (Richter and Westphal 2010), alternation over
four open lists would be used (for each heuristic, one hold-
ing all states and one holding only preferred states).

Heuristics
So far, we have discussed the search algorithms and heuristic
combination methods available in the Fast Downward plan-
ning system. We now turn our attention to the heuristics
available in Fast Downward. Due to the number of heuris-
tics, we simply list the available heuristics, with pointers to
relevant literature.

Admissible Heuristics
• Blind — 0 for goal states, 1 (or cheapest action cost for

non-unit-cost tasks) for non-goal states

• hmax (Bonet, Loerincs, and Geffner 1997; Bonet and
Geffner 1999) — the relaxation-based maximum heuristic

• hm (Haslum and Geffner 2000) — a very slow implemen-
tation of the hm heuristic family

• hM&S (Helmert, Haslum, and Hoffmann 2007; 2008) —
the merge-and-shrink heuristic

• hLA (Karpas and Domshlak 2009; Keyder, Richter, and
Helmert 2010) — the admissible landmark heuristic

• hLM-cut (Helmert and Domshlak 2009) — the landmark-
cut heuristic
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Algorithm Categorical Numeric Total Configurations
FD-Autotune-satisficing 64 13 77 1.935× 1026

FD-Autotune-optimizing 20 6 26 6.99× 108

Table 1: The number of categorical and numeric parameters in the
reduced configuration space for both FD-Autotune-satisficing and
FD-Autotune-optimizing, as well as the total number of distinct
configurations for each.

Inadmissible Heuristics
• Goal Count — number of unachieved goals

• hadd (Bonet, Loerincs, and Geffner 1997; Bonet and
Geffner 1999) — the relaxation-based additive heuristic

• hFF (Hoffmann and Nebel 2001) — the relaxed plan
heuristic

• hcg (Helmert 2004) — the causal graph heuristic

• hcea (Helmert and Geffner 2008) — the context-enhanced
additive heuristic (a generalisation of hadd and hcg)

• hLM (Richter, Helmert, and Westphal 2008; Richter and
Westphal 2010) — the landmark heuristic

Apart from Goal Count, all heuristics listed above are
cost-based versions (that is, they support non-unit cost ac-
tions). This also allows another option for these heuristics:
action-cost adjustment. It is possible to instruct the heuris-
tics (as well as the search code) to treat all actions as unit-
cost (regardless of their true cost) or to add 1 to all action
costs. This has been found to be helpful in tasks with 0-cost
actions (Richter and Westphal 2010).

Configuration Space
The configuration space of Fast Downward poses a chal-
lenge in formulating the parameter space to be explored by
an automated configurator: structured parameters. For ex-
ample, it is possible to configure an ‘alternation’ open list
that alternates between two internal alternation open lists,
each of which alternates between their own internal alterna-
tion open lists, and so on. Since neither ParamILS (Hutter
et al. 2007) nor any other configuration procedure we are
aware of handles such structured parameters, we had to limit
the configuration space somewhat.

The configuration spaces used for the competition (as
shown in Tables 2, 3, and 4) contain a Boolean parame-
ter for each heuristic (all heuristics for satisficing planning,
only admissible heuristics for optimal planning), indicating
whether that heuristic is in use or not. The other parameters
of the heuristic (if any) are conditional on the heuristic being
used.

For optimal planning, the search algorithm is predeter-
mined (A∗), and so our only other choice is, when more than
one heuristic is used, how the heuristics are combined (the
relevant options are max and selective max). This is con-
trolled by another parameter, which is conditional on more
than one heuristic being chosen.

For satisficing planning, the theoretical configuration
space is much more complex, since combination methods

such as alternation and weighted sums introduce an infinite
set of possibilities.

To keep this configuration space manageable, we only al-
low one layer of alternation, and its components must be
standard open lists (sorted by scalar ranking values), one
for each heuristic that was selected, and possibly more if
preferred operators are used. In addition, we can com-
bine search algorithms using iterated search as in RWA∗.
Here, we limit the number of searches to a maximum of
5, in order to avoid an infinitely large structured configu-
ration space. As shown in Table 1, FD-Autotune-optimizing
and FD-Autotune-satisficing have many parameters, with
6.99× 108 and 1.935× 1026 distinct configurations, respec-
tively. The configuration space of FD-Autotune-satisficing
is one of the largest ever experimented with using automated
algorithm configuration tools.

Automated Configuration
For the configuration task faced in the context of this work,
we chose to use the FocusedILS variant of ParamILS (Hut-
ter, Hoos, and Stützle 2007; Hutter et al. 2009), because it
is the only procedure we are aware of that has been demon-
strated to perform well on algorithm configuration problems
as hard as the one encountered here. ParamILS is fun-
damentally based on Iterated Local Search (ILS), a well-
known, general stochastic local search method that inter-
leaves phases of simple local search – in particular, iterative
improvement – with so-called perturbation phases that are
designed to escape from local optima.

In the FocusedILS variant of ParamILS, ILS is used to
search for high-performance configurations of a given tar-
get algorithm (here: Fast Downward) by evaluating promis-
ing configurations. To avoid wasting CPU time on poorly-
performing configurations, FocusedILS carefully controls
the number of target algorithm runs performed for candi-
date configurations; it also adaptively limits the amount of
runtime allocated to each algorithm run using knowledge
of the best-performing configuration found so far. Further
information on ParamILS can be found in earlier work by
Hutter, Hoos, and Stützle (2007) and Hutter et al. (2009),
and interesting applications have been reported by Hutter et
al. (2007), and Hutter, Hoos, and Leyton-Brown (2010).

Experiments and Configurations
For all experiments performed in this work, we took advan-
tage of the features in HAL, a recently developed tool to
support both the computer-aided design and the empirical
analysis of high-performance algorithms (Nell et al. 2011).
We used several meta-algorithmic procedures provided by
HAL, primarily the ParamILS algorithm configurator and
the plug-ins providing support for empirical analysis of one
or two algorithms. We also leveraged the robust support in
HAL for data management and run distribution on compute
clusters. All experiments were performed using a cluster
of identical linux-based machines, each with an Intel Xeon
E5450 quad-core processor and 6GB of RAM.

For optimising planning, we used HAL to run ten inde-
pendent runs of ParamILS on a set of 2000 training instances

International Planning Competition 2011

33



sampled uniformly at random from the IPC-2008 optimisa-
tion track instances located in the Fast Downward bench-
mark set 2, using a maximum runtime cutoff of 600 CPU
seconds for each run of Fast Downward and a total configu-
ration time limit of four CPU days. The objective function
used in ParamILS was mean runtime to find an optimal plan,
with timed-out runs penalised at 10 times the runtime cut-
off. In this case, we were also able to leverage support in
ParamILS for adaptive runtime capping to reduce the run-
time required for each run of Fast Downward. Out of the
ten incumbent configurations produced by ParamILS, we se-
lected the configuration with the best reported training qual-
ity to be FD-Autotune-optimizing. The exact parameter val-
ues for this configuration of Fast Downward are shown in
Table 2.

For satisficing planning, we again performed ten inde-
pendent runs of ParamILS on a set of 2000 training in-
stances sampled from the entire Fast Downward benchmark
set, with instances from the IPC-2008 satisficing track hav-
ing twice the probability of being selected. We again
used a runtime cutoff of 600 CPU seconds for each run of
Fast Downward with a total configuration time limit of four
CPU days. Here, the objective function used in ParamILS
was mean plan cost, with runs that failed to find a satisficing
solution assigned a (dummy) plan cost of 231 − 1 (the de-
fault value for solution quality in HAL). Again, we selected
the configuration with the best reported training quality to
be FD-Autotune-satisficing.1. The exact parameter values
for this configuration are shown in Tables 3 and 4.

Finally, we performed an additional ten independent runs
of ParamILS using the satisficing planning training set, on
a reduced design space containing the parameters from Ta-
ble 3 and only a single set of search parameters from Ta-
ble 4. We again used a runtime cutoff of 600 CPU sec-
onds for each run of Fast Downward with a total configu-
ration time limit of four CPU days. The objective func-
tion used was mean runtime to find an initial satisficing
plan, and Fast Downward was configured to terminate af-
ter this solution was found. The configuration with the
best reported training quality was selected to form the ba-
sis of a hybrid version of the planner, where Fast Downward
uses this configuration to find an initial satisficing plan, at
which point the FD-Autotune-satisficing configuration with
second-best training quality is used. We call this hybrid
scheme FD-Autotune-satisficing.2. The parameter values
for both phases of FD-Autotune-satisficing.2 are indicated
in Tables 3 and 4.

Conclusions and Future Work
We believe that the generic approach underlying our work
on FD-Autotune represents a promising direction for the fu-
ture development of efficient planning systems. In partic-
ular, we suggest that it is worth including many different
variants and a wide range of settings for the various com-
ponents of a planning system, instead of committing at de-
sign time to particular choices and settings, and to use au-

2This benchmark repository is part of the main Fast Downward
repository, accessed from http://www.fast-downward.org

tomated procedures for finding configurations of the result-
ing highly parameterised planning systems that perform well
on the problems arising in a specific application domain, or
set of domains, under consideration. We plan to further in-
vestigate ways in which automated algorithm configurators,
such as ParamILS, can deal more effectively with the highly
structured and potentially infinite space of Fast Downward.

We note that our approach naturally benefits from future
improvements in planning systems (and in particular, from
new heuristic ideas that can be integrated, in the form of
parameterised components, into existing, flexible planning
systems or frameworks) as well as from progress in au-
tomated algorithm configuration procedures. In principle,
planning systems developed in this way can also be used in
combination with techniques for automated algorithm selec-
tion, giving even greater performance than any single config-
uration alone (Xu et al. 2008; 2009; Xu, Hoos, and Leyton-
Brown 2010). We also see much potential in testing new
heuristics and algorithm components, based on measuring
the performance improvements obtained by adding them to
an existing highly-parameterised planner followed by auto-
matic configuration. The results of such experiments should
indicate to which extent new design elements are useful and
also reveal under which circumstances they are most effec-
tive.
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Parameter name Domain Default FD-Autotune-optimizing
blind heuristic enabled {true, false} false false
hm heuristic enabled {true, false} false false
hm heuristic m {1, 2, 3} 2 −
hmax heuristic enabled {true, false} false true
lm heuristic enabled {true, false} true false
lm heuristic conjunctive landmarks {true, false} true −
lm heuristic disjunctive landmarks {true, false} true −
lm heuristic hm m {1, 2, 3} 1 −
lm heuristic no orders {true, false} false −
lm heuristic only causal landmarks {true, false} false −
lm heuristic type {lm rhw, lm zg, lm hm, lm exhaust, lm rhw hm1} lm rhw −
lmcut heuristic enabled {true, false} true true
mas heuristic enabled {true, false} false false
mas heuristic max states {10 000, 50 000, 100 000, 150 000, 200 000} 50 000 −
mas heuristic merge strategy {5} 5 −
mas heuristic shrink strategy {4, 7, 6, 12} 4 −
combine heuristics {true, false} true true
combine with smax {true, false} true true
smax alpha {0.0, 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 4.0, 5.0} 1.0 4.0
smax classifier {0, 1} 0 0
smax conf threshold {0.51, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99} 0.9 0.85
smax sample {0, 2} 0 0
smax training set {10, 50, 100, 500, 1 000, 5 000, 10 000} 1 000 10
smax uniform {true, false} false true
a star use mpd {true, false} true false
a star use pathmax {true, false} false true

Table 2: Configuration space for the optimising planner, comprising 26 parameters. Heuristic parameters are only active if the corresponding
heuristic is enabled; smax ∗ are only active if combine heuristics and combine with smax are both true. “−” indicates that the given
parameter is not active.

FD-Autotune-satisficing.2
Parameter name Domain Default FD-Autotune-satisficing.1 Phase1 Phase2
add heuristic enabled {true, false} false false false true
add heuristic cost type {0, 1, 2} 2 − − 0
add heuristic pref ops {true, false} true − − false
blind heuristic enabled {true, false} false false false false
cea heuristic enabled {true, false} false true false true
cea heuristic cost type {0, 1, 2} 2 2 − 0
cea heuristic pref ops {true, false} true true − true
cg heuristic enabled {true, false} false true − true
cg heuristic cost type {0, 1, 2} 2 1 − 2
cg heuristic pref ops {true, false} true false − false
ff heuristic enabled {true, false} false true true false
ff heuristic cost type {0, 1, 2} 2 0 1 −
ff heuristic pref ops {true, false} true false true −
goalcount heuristic enabled {true, false} false true false true
goalcount heuristic cost type {0, 1, 2} 2 2 − 0
goalcount heuristic pref ops {true, false} true true − true
hm heuristic enabled {true, false} false false false false
hm heuristic m {1, 2, 3} 2 − − −
hmax heuristic enabled {true, false} false false false false
lm ff synergy {true, false} true − − −
lm heuristic enabled {true, false} true false false false
lm heuristic admissible {true, false} false − − −
lm heuristic conjunctive landmarks {true, false} true − − −
lm heuristic cost type {0, 1, 2} 2 − − −
lm heuristic disjunctive landmarks {true, false} true − − −
lm heuristic hm m {1, 2, 3} 1 − − −
lm heuristic no orders {true, false} false − − −
lm heuristic only causal landmarks {true, false} false − − −
lm heuristic pref ops {true, false} true − − −
lm heuristic reasonable orders {true, false} true − − −
lm heuristic type {lm rhw, lm zg, lm hm, lm exhaust, lm rhw hm1} lm rhw − − −
lmcut heuristic enabled {true, false} true false false −
lmcut heuristic cost type {0, 1, 2} 0 false − −
mas heuristic enabled {true, false} false false false −
mas heuristic max states {10 000, 50 000, 100 000, 150 000, 200 000} 50 000 − − −
mas heuristic merge strategy {5} 5 − − −
mas heuristic shrink strategy {4, 7, 6, 12} 4 − − −

Table 3: Parameters controlling heuristics in the configuration space for the satisficing planner, comprising 37 parameters. As with the
optimising planner configuration space, the parameters for each heuristic are only active if the corresponding heuristic is enabled. “−”
indicates that the given parameter is not active.
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FD-Autotune-satisficing.2
Parameter name Domain Default FD-Autotune-satisficing.1 Phase1 Phase2
search 0 cost type {0, 1} 0 0 1 1
search 0 eager pathmax {true, false} false − − −
search 0 ehc preferred usage {0, 1} 0 0 − −
search 0 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} 0 − 2000 1000
search 0 search open list tb {true, false} false − false false
search 0 search reopen {true, false} false − false false
search 0 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,−1} −1 − 10 7
search 0 type {none, ehc, eager, lazy} lazy ehc lazy lazy
search 1 cost type {0, 1} 0 1 − 0
search 1 eager pathmax {true, false} false − − −
search 1 ehc preferred usage {0, 1} 0 − − −
search 1 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} 0 200 − 5000
search 1 search open list tb {true, false} false false − true
search 1 search reopen {true, false} false false − false
search 1 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,−1} −1 1.5 − 3
search 1 type {none, ehc, eager, lazy} lazy lazy − lazy
search 2 cost type {0, 1} 0 0 − 0
search 2 eager pathmax {true, false} false − − true
search 2 ehc preferred usage {0, 1} 0 − − −
search 2 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} 0 5000 − 500
search 2 search open list tb {true, false} false false − true
search 2 search reopen {true, false} false true − true
search 2 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,−1} −1 5 − 10
search 2 type {none, ehc, eager, lazy} lazy lazy − eager
search 3 cost type {0, 1} 0 − − −
search 3 eager pathmax {true, false} false − − −
search 3 ehc preferred usage {0, 1} 0 − − −
search 3 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} 0 − − −
search 3 search open list tb {true, false} false − − −
search 3 search reopen {true, false} false − − −
search 3 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,−1} −1 − − −
search 3 type {none, ehc, eager, lazy} lazy none − none
search 4 cost type {0, 1} 0 1 − −
search 4 eager pathmax {true, false} false − − −
search 4 ehc preferred usage {0, 1} 0 − − −
search 4 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} 0 1000 − −
search 4 search open list tb {true, false} false false − −
search 4 search reopen {true, false} false true − −
search 4 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,−1} −1 2 − −
search 4 type {none, ehc, eager, lazy} lazy lazy − none

Table 4: Parameters controlling search in the configuration space for the satisficing planner, comprising 40 parameters. If search i type is
none for some i, then that entry is left out of the iterated search in Fast Downward. “−” indicates that the given parameter is not active.
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Abstract
Fast Downward Stone Soup is a sequential portfolio planner
that uses various heuristics and search algorithms that have
been implemented in the Fast Downward planning system.
We present a simple general method for concocting “plan-
ner soups”, sequential portfolios of planning algorithms, and
describe the actual recipes used for Fast Downward Stone
Soup in the sequential optimization and sequential satisficing
tracks of IPC 2011.

Before We Can Eat
Since the original implementation of the Fast Downward
planner (Helmert 2006; 2009) for the 4th International Plan-
ning Competition (IPC 2004), various researchers have used
it as a starting point and testbed for a large number of ad-
ditional search algorithms, heuristics, and other capabili-
ties (e. g., Helmert, Haslum, and Hoffmann 2007; Helmert
and Geffner 2008; Richter, Helmert, and Westphal 2008;
Helmert and Domshlak 2009; Richter and Helmert 2009;
Röger and Helmert 2010; Keyder, Richter, and Helmert
2010).

Experiments with these different planning techniques
have convinced us of two facts:

1. There is no single common search algorithm and heuristic
that dominates all others for classical planning.

2. The coverage of a planning algorithm is often not dimin-
ished significantly when giving it less runtime, or put
differently: if a planner does not solve a planning task
quickly, it is likely not to solve it at all.
Fast Downward Stone Soup is a planning system that

builds on these two observations by combining several com-
ponents of Fast Downward into a sequential portfolio. In a
sequential portfolio, several algorithms are run in sequence
with short (compared to the 30 minutes allowed at the IPC)
timeouts, in the hope that at least one of the component al-
gorithms will find a solution in the time allotted to it.

There are two main versions of Fast Downward Stone
Soup entered into the IPC: one for optimal planning, and

one for satisficing planning. (Each version in turn has two
variants, which differ from each other in smaller ways than
the optimal planner differs from the satisficing one.)

The optimal portfolio planner exchanges no information
at all between the component solvers that are run in se-
quence. The overall search ends as soon as one of the solvers
finds a solution, since there would be no point in continuing
after this.

The satisficing portfolio planner is an anytime system that
can improve the quality of its generated solution over time.
Here, the only information communicated between the com-
ponent solvers is the quality of the best solution found so far,
so that later solvers in the sequence can prune states whose
“cost so far” (g value) is already as large as or larger than
the cost of the best solution that was previously generated.

What is Stone Soup?
The name “Fast Downward Stone Soup” draws from a folk
tale (for example told in Hunt and Thomas 2000, p. 7), in
which hungry soldiers who are left without food take camp
near a small village. They boil a pot of water over their
campfire, and into the water they put three stones. This
strange behaviour incites the curiosity of the villagers, to
whom the soldiers explain that their “stone soup” is known
as a true delicacy in the land where they come from, and that
it would taste even better after adding some carrots. If the
villagers could provide some carrots, they might participate
in the feast. Hearing this, one of the villagers fetches the
required ingredient, after which the soldiers explain that the
recipe could be improved even further by adding potatoes,
which another villager readily provides. Ingredient after in-
gredient is added in this fashion, until the soldiers are happy
with the soup and finish its preparation with the final step in
the recipe: removing the stones.

The stone soup tale is a story of collaboration. The fi-
nal result, which benefits from the ingredients provided by a
large number of villagers as well as the initiative of the sol-
diers, is more tasty and more satisfying than what any of the
involved parties could have produced by themselves.
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We consider the story a nice metaphor for the bits-and-
pieces additions by many different parties that Fast Down-
ward has seen in the last four or so years, which is part of the
reason for calling the planner “Fast Downward Stone Soup”.
The second reason is that sequential portfolio algorithms in
general can be seen as a “soup” of different algorithms that
are stirred together to achieve a taste that hopefully exceeds
that of the individual ingredients.

The idea to name a piece of software after the stone soup
story is inspired by a similar case, the open-source com-
puter game “Dungeon Crawl Stone Soup1”, which inciden-
tally would make for an excellent challenge of AI planning
technology, similar to but much more complex than the ven-
erable Rog-O-Matic (Mauldin et al. 1984).

Culinary Basics
Fast Downward Stone Soup is not a very sophisticated port-
folio planner. Due to deadline pressures, our portfolio was
chosen by a very simple selection algorithm, which had to
be devised and implemented within a matter of a few hours,
without any experimental evaluation, and based on limited
and noisy training data. The algorithm does not aim to min-
imize the training data needed, does not use a separate train-
ing and validation set, and completely ignores the intricate
time/cost trade-off in satisficing planning. Therefore, we do
not recommend our approach as state of the art or even par-
ticularly good; rather, we describe it here to document what
we did, and as a baseline for future, more sophisticated port-
folio approaches.

In order to build a portfolio, we assume that the following
information is available:

• A set of planning algorithms A to serve as component
algorithms (“ingredients”) of the portfolio. Our imple-
mentation assumes that this set is not too large; we used
11 ingredients for optimal planning and 38 ingredients for
satisficing planning.

• A set of training instances I, for which portfolio perfor-
mance is optimized. We used the subset of IPC 1998–
2008 instances that were supported by all planning algo-
rithms we used as ingredients, a total of 1116 instances.2

• Complete evaluation results that include, for each algo-
rithm A ∈ A and training instance I ∈ I,

– the runtime t(A, I) of the given algorithm on the given
training instance on our evaluation machines, in sec-
onds, and

– the plan cost c(A, I) of the plan that was found. (For
training instances from IPC 1998–2006, this is simply
the plan length.)

1http://crawl.develz.org
2Fine print: we included IPC 2008 instances which require ac-

tion cost support, even though three of our ingredients for optimal
planning did not support costs. These planners automatically failed
on all IPC 2008 instances. IPC 2008 used different instance sets for
satisficing and optimal planning, and we followed this separation
in our training. For technical reasons to do with hard disk space us-
age on our experimentation platform, we omitted the cyber security
domain from IPC 2008 from the satisficing benchmark suite.

We used a timeout of 30 minutes and memory limit of
2 GB to generate this data. In cases where an instance
could not be solved within these bounds, we set t(A, I) =
c(A, I) =∞.
The plan cost is of course only relevant for the satisfic-
ing track, since in the optimization track, all component
algorithms produce optimal plans. We did not consider
anytime planners as possible ingredients. If we had, a sin-
gle runtime value and plan cost value would of course not
have been sufficient to describe algorithm performance on
a given instance.
In the following, we represent a (sequential) portfolio as

a mapping P : A → R+
0 which assigns a time limit to each

component algorithm. Time limits can be 0, indicating that
a given algorithm is not used in the portfolio. The total time
limit of portfolio P is the sum of all component time limits,∑

A∈A P (A).

Judging the Taste of a Soup
We say that portfolio P solves a given instance I if any of the
component algorithms solves it within its assigned runtime,
i. e., if there exists an algorithm A such that t(A, I) ≤ P (A).
The solution cost achieved by portfolio P on instance I is
the minimal cost over all component algorithms that solve
the task in their allotted time, c(P, I) := min { c(A, I) |
A ∈ A, t(A, I) ≤ P (A) }. (If the portfolio does not solve
I , we define the achieved solution cost as infinite.)

To evaluate the quality of a portfolio, we compute an in-
stance score in the range 0–1 for each training instance and
sum this quantity over all training instances to form a port-
folio score. Higher scores correspond to better portfolios
for the given benchmark set, either because they solve more
instances, or because they find better plans.

In detail, training instances not solved by the portfolio are
assigned a score of 0. The score of a solved instance I is
computed as the lowest solution cost of any algorithm in al-
gorithm set A on I , minA∈A c(A, I), divided by the cost
achieved by the portfolio, c(P, I). Note that this ratio al-
ways falls into the range 0–1 since the cost achieved by the
portfolio cannot be lower than the cost achieved by the best
component algorithm. (We assume that optimal costs are
never 0, so that division by 0 is avoided.)

This scoring function is almost identical to the one used
for IPC 2008 and IPC 2011 except that we use the best solu-
tion quality among our algorithms as the reference quality,
rather than an objective “best known” solution as mandated
by the actual IPC scoring functions. This difference is sim-
ply due to lack of time in preparing the portfolios; we did
not have a set of readily usable reference results.

In the case of optimal planning, only optimal planning al-
gorithms can be used as ingredients. In this case, the scoring
function simplifies to 0 for unsolved and 1 for solved tasks,
since all solutions for a given instance have the same cost.

Preparing a Planner Soup
We now describe the generic algorithm for building a plan-
ner portfolio, and then detail the specific ingredients used
for IPC 2011.
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build-portfolio(algorithms, results, granularity, timeout):
portfolio := {A 7→ 0 | A ∈ algorithms }
repeat btimeout/granularityc times:

candidates := successors(portfolio, granularity)
portfolio := argmaxC∈candidates score(C, results)

portfolio := reduce(portfolio, results)
return portfolio

Figure 1: Algorithm for building a portfolio.

We use a simple hill-climbing search in the space of port-
folios, shown in Figure 1. In addition to the set of ingre-
dients (algorithms) and evaluation results (results) as de-
scribed above, it takes two further arguments: the step size
with which we add time slices to the current portfolio (gran-
ularity) and an upper bound on the total time limit for the
portfolio to be generated (timeout). Both parameters are
measured in seconds. In all cases, we set the total time limit
to 1800, the time limit of the IPC.

Portfolio generation starts from an initial portfolio which
assigns a runtime of 0 to each ingredient (i. e., does noth-
ing and solves nothing). We then perform hill-climbing: in
each step, we generate a set of possible successors to the
current portfolio, which are like the current portfolio except
that each successor increases the time limit of one particular
algorithm by granularity. (Hence, the number of successors
equals the number of algorithms.) We then commit to the
best successor among these candidates and continue, for a
total of btimeout/granularityc iterations. (If we continued
further after this point, the total time limit of the generated
portfolio would exceed the given timeout.)

Of course there may be ties in determining the best suc-
cessor, for example if none of the successors improves the
current portfolio. Such ties are broken in favour of succes-
sors that increase the timeout of the component algorithm
that occurs earliest in some arbitrary total order that we fix
initially. We did not experiment with more sophisticated tie-
breaking strategies or other search neighbourhoods.

After hill-climbing, a post-processing step reduces the
time limit applied to each ingredient by considering the dif-
ferent ingredients in order (the same arbitrary order used for
breaking ties between successors in the hill-climbing phase)
and setting the time limit of each ingredient to the lowest
(whole) number that would still lead to the same portfolio
score. For example, if algorithm A is assigned a time limit of
720 seconds after hill-climbing but reducing this time limit
to 681 seconds would not affect the portfolio score, its time
limit is reduced to 681 (or less, if that still does not affect the
score).

Optimizing IPC 2011 Soups
For the sequential optimization track of IPC 2011, we used
the following ingredients in the portfolio building algorithm:

• blind: A∗ with a “blind” heuristic that assigns 0 to goal
states and the lowest action cost among all actions of the
given instance to all non-goal states. Apart from bug fixes
and other minor changes, this is the baseline planner used

in the sequential optimization track of IPC 2008. This
algorithm was contributed by Silvia Richter.

• hmax: A∗ with the hmax heuristic introduced by Bonet
and Geffner (2001). This was implemented by Malte
Helmert with contributions by Silvia Richter.

• LM-cut: A∗ with the landmark-cut heuristic (Helmert
and Domshlak 2009). This was implemented by Malte
Helmert. The LM-cut planner was also entered into IPC
2011 as a separate competitor.

• RHW landmarks, h1 landmarks and BJOLP: LM-A∗ with
the admissible landmark heuristic (Karpas and Domshlak
2009) using “RHW landmarks” (Richter, Helmert, and
Westphal 2008), h1-based landmarks (Keyder, Richter,
and Helmert 2010) and, in the case of the “big joint op-
timal landmarks planner (BJOLP)”, the combination of
both, respectively.
The landmark synthesis algorithms were implemented by
Silvia Richter and Matthias Westphal (RHW landmarks)
and Emil Keyder (h1-based landmarks), the admissible
landmark heuristic by Erez Karpas with some improve-
ments by Malte Helmert based on earlier code by Silvia
Richter and Matthias Westphal, and the LM-A∗ algorithm
by Erez Karpas.
BJOLP was also entered into IPC 2011 as a separate com-
petitor.

• M&S-LFPA: A∗ with a merge-and-shrink heuristic
(Helmert, Haslum, and Hoffmann 2007), using the orig-
inal abstraction strategies suggested by Helmert et al.
(“linear f -preserving abstractions”). We use three differ-
ent abstraction size limits: 10000, 50000, and 100000.
This was implemented by Malte Helmert.

• M&S-bisim 1 and M&S-bisim 2: A∗ with two different
merge-and-shrink heuristics, using the original merging
strategies of Helmert et al. and two novel shrinking strate-
gies based on the notion of bisimulation. The new shrink-
ing strategies were implemented by Raz Nissim.
A sequential portfolio of these two planners was entered
into IPC 2011 as a separate competitor called “Merge-
and-Shrink”.

After some unprincipled initial experimentation, we set
the granularity parameter for the portfolio building algo-
rithm to 120 seconds. The resulting portfolio is shown in
Table 1, which also shows the score (number of solved tasks)
of the portfolio and of its ingredients on the training set.3

We see that the portfolio makes use of four of the eleven
possible ingredients: LM-cut, BJOLP, and the two new
merge-and-shrink variants.

With 654 solved instances, the portfolio significantly out-
performs BJOLP, the best individual configuration, which
solves 605 instances. Moreover, the portfolio does not fall
far short of the holy grail of portfolio algorithms (sequential

3The performance of the M&S-LFPA algorithms appears to be
very bad because we did not manage to implement action-cost sup-
port for these algorithms in time, so that they failed on all IPC
2008 tasks. Hence, the numbers reported are not indicative of the
true potential of these heuristics.
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Algorithm Score Time Marginal

BJOLP 605 455 46
RHW landmarks 597 0 —
LM-cut 593 569 26
h1 landmarks 588 0 —
M&S-bisim 1 447 175 8
hmax 427 0 —
M&S-bisim 2 426 432 20
blind 393 0 —
M&S-LFPA 10000 316 0 —
M&S-LFPA 50000 299 0 —
M&S-LFPA 100000 286 0 —

Portfolio 654 1631
“Holy Grail” 673

Table 1: Variant 1 of Fast Downward Stone Soup (sequential
optimization). For each algorithm A, the table shows the
score (number of solved instances) achieved by A on the
training set when given the full 1800 seconds, next to the
time that A is assigned by the portfolio. The last column
shows the marginal contribution of A, i. e., the number of
instances that are no longer solved when removing A from
the portfolio.

or otherwise), which is to solve the union of all instances
solved by any of the possible ingredients. In our training
set, there are 673 instances solved by any of the component
algorithms, only 19 more than solved by the portfolio.

The portfolio in Table 1 is not globally optimal in the
sense that no other fixed sequential portfolio could achieve
a higher score. Indeed, after the planner submission dead-
line, and with substantial manual effort, we managed to find
a slightly better portfolio that solves one more training in-
stance while respecting the 1800 second limit. However,
while our portfolio is not optimal on this training set, it is
certainly close. We conclude that for this data set, a more
sophisticated algorithm for searching the space of portfolios
would not increase the number of solved instances substan-
tially. However, a more sophisticated algorithm might guard
against overfitting, and hence achieve better performance on
unseen instances.

We entered the portfolio shown in Figure 1 into the se-
quential optimization track of IPC 2011 as variant 1 of Fast
Downward Stone Soup. To partially guard against the dan-
gers of overfitting to our training set, we also entered a sec-
ond portfolio as variant 2, which included equal portions of
blind search, LM-cut, BJOLP, and the two M&S-bisim vari-
ants.

Satisficing IPC 2011 Soups
Computing a good portfolio for satisficing planning is more
difficult than in the case of optimal planning for various rea-
sons. One major difficulty in the case of Fast Downward is
that there is a vastly larger range of candidate algorithms to
consider.

Initial experiments showed that in some cases greedy
best-first search was preferable to weighted A∗; in other

cases the opposite was true, with no weight uniformly better
than others. Sometimes, deferred evaluation is the algorithm
of choice, sometimes eager evaluation is better (Richter and
Helmert 2009). The choice between lazy and eager search
is not clear, either (Richter and Helmert 2009). And last not
least, combining different heuristics is very often, but far
from always, beneficial (Röger and Helmert 2010).

Since generating experimental data on all training in-
stances takes a significant amount of time, we had to limit
our set of ingredients to a subset of all promising candidates.
Specifically, we only considered planning algorithms with
the following ingredients:

• search algorithm: Of the various search algorithms im-
plemented in Fast Downward, we only experimented with
greedy best-first search and with weighted A∗ with a
weight of 3. (This weight was chosen very arbitrarily with
no experimental justification at all.)

• eager vs. lazy: We considered both “eager” (textbook)
and “lazy” (deferred evaluation) variants of both search
algorithms. This is backed by the study of Richter and
Helmert (2009), in which these two variants appear to be
roughly equally strong, with somewhat different strengths
and weaknesses.

• preferred operators: We only considered search algo-
rithms that made use of preferred operators. For eager
search, we only used the “dual-queue” method of exploit-
ing preferred operators, for lazy search only the “boosted
dual-queue” method, using the default (and rather arbi-
trary) boost value of 1000. These choices are backed by
the results of Richter and Helmert (2009).

• heuristics: Somewhat arbitrarily, we restricted attention
to four heuristics: additive heuristic hadd (Bonet and
Geffner 2001), FF/additive heuristic hFF (Hoffmann and
Nebel 2001; Keyder and Geffner 2008), causal graph
heuristic hCG (Helmert 2004), and context-enhanced ad-
ditive heuristic hcea (Helmert and Geffner 2008).
These are the four heuristics that in past experiments have
produced best performance when used in isolation. We
did not include the landmark heuristic used in LAMA
(Richter and Westphal 2010), even though it has been
shown to produce very good performance when com-
bined with some of the other heuristics (see, e. g., Richter,
Helmert, and Westphal 2008).
Since Fast Downward supports combinations of multiple
heuristics and these are very often beneficial to perfor-
mance (Röger and Helmert 2010), we considered plan-
ner configurations for each of the 15 non-empty subsets
of the four heuristics. Backed by the results of Röger
and Helmert (2010), we only considered the “alternation”
method of combining multiple heuristics.

• action costs: We only considered configurations of the
planner that treat all actions as if they were unit-cost in
the computation of heuristic values and (for weighted A∗)
g values. This was more due to a mistake in setting up
the experiments to generate the training data than due to
a conscious decision, but as Richter and Westphal (2010)
have shown, this is not necessarily a bad way of handling
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Search Evaluation Heuristics Performance Time Marg. Contribution

Greedy best-first Eager hFF 926.13 / 1021 88 1.82 / 0
Weighted A∗ (w = 3) Lazy hFF 921.71 / 1023 340 10.02 / 5
Greedy best-first Eager hFF, hCG 919.24 / 1023 76 1.15 / 0
Greedy best-first Eager hadd, hFF, hCG 909.75 / 1021 0 —
Greedy best-first Eager hFF, hCG, hcea 907.52 / 1010 73 1.25 / 0
Greedy best-first Eager hFF, hcea 906.92 / 1008 0 —
Greedy best-first Eager hadd, hFF, hCG, hcea 903.57 / 1012 0 —
Greedy best-first Eager hadd, hFF 900.52 / 1015 90 1.51 / 1
Greedy best-first Eager hadd, hCG, hcea 892.08 / 1012 0 —
Greedy best-first Eager hadd, hFF, hcea 890.96 / 1002 0 —
Greedy best-first Eager hCG, hcea 889.93 / 1009 0 —
Greedy best-first Eager hadd, hCG 888.64 / 1014 0 —
Greedy best-first Lazy hFF 880.12 / 1042 171 7.24 / 9
Greedy best-first Eager hcea 878.58 / 990 84 3.45 / 2
Greedy best-first Eager hadd, hcea 877.41 / 999 0 —
Greedy best-first Lazy hFF, hCG, hcea 874.64 / 1035 0 —
Weighted A∗ (w = 3) Eager hFF 874.18 / 920 87 2.75 / 0
Greedy best-first Eager hadd 872.74 / 1006 0 —
Greedy best-first Lazy hFF, hcea 872.48 / 1037 0 —
Greedy best-first Lazy hFF, hCG 871.77 / 1045 49 1.93 / 2
Greedy best-first Lazy hadd, hFF, hCG, hcea 861.06 / 1032 0 —
Greedy best-first Lazy hadd, hFF, hcea 860.64 / 1031 0 —
Greedy best-first Lazy hadd, hFF, hCG 860.04 / 1042 0 —
Greedy best-first Lazy hadd, hFF 859.72 / 1046 0 —
Weighted A∗ (w = 3) Lazy hcea 849.66 / 1001 0 —
Weighted A∗ (w = 3) Eager hcea 844.67 / 938 0 —
Greedy best-first Lazy hCG, hcea 841.78 / 1026 27 1.25 / 0
Greedy best-first Lazy hadd, hcea 839.60 / 1020 0 —
Greedy best-first Lazy hadd, hCG, hcea 835.33 / 1019 0 —
Greedy best-first Lazy hadd, hCG 831.28 / 1030 0 —
Weighted A∗ (w = 3) Lazy hadd 830.39 / 1006 50 0.90 / 0
Weighted A∗ (w = 3) Eager hadd 828.76 / 936 166 3.35 / 3
Greedy best-first Lazy hcea 827.57 / 1014 56 2.04 / 2
Weighted A∗ (w = 3) Eager hCG 822.46 / 906 89 2.30 / 1
Greedy best-first Lazy hadd 808.80 / 1019 0 —
Greedy best-first Eager hCG 802.47 / 920 0 —
Weighted A∗ (w = 3) Lazy hCG 782.14 / 908 73 2.57 / 1
Greedy best-first Lazy hCG 755.43 / 924 0 —

Portfolio 1057.57 / 1071 1519
“Holy Grail” 1078.00 / 1078

Table 2: Variant 1 of Fast Downward Stone Soup (sequential satisficing). The performance column shows the score/coverage
of the configuration over all training instances. The portfolio uses 15 of the 38 possible configurations, running them between
27 and 340 seconds. The last column shows the decrease of score and number of solved instances when removing only this
configuration from the portfolio.
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Search Evaluation Heuristics Performance Time Marg. Contribution

Greedy best-first Eager hFF 960.77 / 1021 330 26.12 / 4
Greedy best-first Lazy hFF 914.58 / 1042 411 22.32 / 14
Greedy best-first Eager hcea 909.07 / 990 213 9.93 / 5
Greedy best-first Eager hadd 904.49 / 1006 204 4.56 / 3
Greedy best-first Lazy hcea 856.91 / 1014 57 6.17 / 4
Greedy best-first Lazy hadd 840.94 / 1019 63 1.64 / 0
Greedy best-first Eager hCG 829.34 / 920 208 3.48 / 0
Greedy best-first Lazy hCG 781.27 / 924 109 3.17 / 1

Portfolio 1064.23 / 1069 1595
“Holy Grail” 1073.00 / 1073

Table 3: Variant 2 of Fast Downward Stone Soup (sequential satisficing). Columns as in Table 2.

action costs in the IPC 2008 benchmark suite, and all pre-
vious IPC benchmarks are unit-cost anyway.

The implementations of these various planner compo-
nents are due to Malte Helmert (original implementation of
lazy greedy best-first search; implementation of all heuris-
tics except FF/additive), Silvia Richter (implementation of
all other search algorithms and of FF/additive heuristic),
with further contributions by Gabriele Röger (search al-
gorithms, preferred operator handling mechanisms, heuris-
tic combination handling mechanisms) and by Erez Karpas
(search algorithms).

We should emphasize that many potentially good search
algorithms were not included in our portfolio, such as the
combination of FF/additive heuristic and landmark heuristic
used by LAMA (Richter and Westphal 2010). Also, the eval-
uation data we used for our analysis was partially noisy since
some runs were performed before and others after major bug
fixes, and machines with different hardware configurations
were used for different experiments, introducing additional
noise. Finally, there is good reason to believe that our simple
hill-climbing algorithm for building portfolios is not good
enough to find the strongest possible portfolios according to
our scoring criterion.

For variant 1 of Fast Downward Stone Soup in the se-
quential satisficing track, we considered all possible ingre-
dient combinations for greedy best-first search but due to
limited time only included results for weighted A∗ using
single-heuristic algorithms.

With all the caveats mentioned above, the portfolio found
by the hill-climbing procedure, shown in Table 2, does in-
deed achieve a substantially better score than any of the in-
gredient algorithms. (After significant experimentation, we
set the granularity parameter of the algorithm to 90 seconds.)
The total score for the best ingredient, eager greedy search
with the FF/additive heuristic, is 926.13, while the portfolio
scores 1057.57, which is a very substantial gap. The dif-
ference between the portfolio and the “holy grail” score of
1078 (achieved by a portfolio which runs each candidate al-
gorithm for 1800 seconds, which of course hugely exceeds
the IPC time limit) is much smaller, but nevertheless sub-
stantial, so we suspect that better sequential portfolios than
the one we generated exist.

For variant 2 we used only greedy best-first search with a
single heuristic. The hill-climbing procedure (this time us-
ing a granularity of 110 seconds) found the portfolio shown
in Table 3. Note that the performance scores are not com-
parable to the ones of variant 1 because they are computed
for a different algorithm set A. The best single algorithm
is again eager greedy search with the FF/additive heuristic
with a score of 960.77. The total score of the portfolio is
1064.23 which likewise is a huge improvement over the best
single algorithm. The gap to the “holy grail” score of 1073
is narrower than for variant 1.

Serving the Soup
We have finished our description of how we computed the
portfolio that entered the IPC. We now describe how exactly
a run of the portfolio planner proceeds. The simplified view
of a portfolio run is that the different ingredients are run in
turn, each with their specified time limit, on the input plan-
ning task. However, there are some subtleties that make the
picture more complicated:
• The Fast Downward planner that underlies all our ingredi-

ents consists of three components: translation, knowledge
compilation, and search (Helmert 2006). The translation
and knowledge compilation steps are identical for all in-
gredients, so we only run them once, rather than once for
each ingredient. (To reflect that this computation is com-
mon to all algorithms, the training data we use for select-
ing portfolios is also based on search time only, not total
planning time.)
While translation and knowledge compilation are usu-
ally fast, there are cases where they can take substantial
amounts of time, which means that by the time the actual
portfolio run begins, we are no longer left with the com-
plete 1800 second IPC time limit.

• The overall time budget can also change in unexpected
ways during execution of the portfolio when an ingredient
finishes prematurely. In addition to planner bugs, there
are three reasons why an algorithm might finish before
reaching its time limit: running out of memory, termi-
nating cleanly without solving the instance4, or finding a
4Most of our ingredients are complete algorithms which will
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plan. In cases where the full allotted time is not used up
by a portfolio ingredient, we would like to do something
useful with the time that is saved.

• If a solution is found, we need to consider how to pro-
ceed. For optimal planning, the only sensible behaviour
is of course to stop and return the optimal solution, but for
satisficing search it is advisable to use the remaining time
to search for cheaper solutions.

The first and second points imply that we need to adapt
to changing time limits in some way. The second and third
points imply that the order in which algorithms are run can
be important. For example, we might want to first run al-
gorithms that tend to fail or succeed quickly. For the first
optimization portfolio, we addressed this ordering issue by
beginning with those algorithms that use up memory espe-
cially quickly. For the first satisficing portfolio, we sorted
algorithms by decreasing order of coverage, hence begin-
ning with algorithms likely to succeed quickly. For the other
portfolios, we used more arbitrary orderings.

To address changing time budgets, we treat per-algorithm
time limits defined by the portfolio as relative, rather than
absolute numbers. For example, consider a situation where
after translation, knowledge compilation and running some
algorithms in the portfolio, there are still 930 seconds of
computation time left. Further, assume that the remaining
algorithms in the portfolio have a total assigned runtime
of 900 seconds, of which 300 seconds belong to the next
algorithm to run. Then we assign 310 seconds, which is
300/900 = 1/3 of the remaining time, to the next algo-
rithm. Note that this implies that once the last algorithm in
the portfolio is reached, it automatically receives all remain-
ing computation time.5

The final point we need to discuss is how to take care of
the anytime aspect of satisficing planning. We do this in a
rather ad-hoc fashion, by modifying the portfolio behaviour
after the first solution is found. First of all, the best solution
found so far is always used for pruning based on g values:
only paths in the state space that are cheaper than the best
solution found so far are pursued.6

In both satisficing portfolios, all search algorithms ini-
tially ignore action costs (as in our training), since this can
be expected to lead to the best coverage (Richter and West-
phal 2010). However, unless all actions of task to solve are
unit-cost, once a solution has been found we re-run the suc-
cessful ingredient in a way that takes action costs into ac-
count, since this can be expected to produce solutions of
higher quality (again, see Richter and Westphal 2010). This

not terminate without finding a solution on solvable inputs, but a
few exceptions exist. Namely, those algorithms that are based on
hCG and/or hcea are not complete because these heuristics can as-
sign infinite heuristic estimates to solvable states, hence unsafely
pruning the search space.

5If the last algorithm in the sequence terminates prematurely,
we have leftover time with nothing left to do. Our portfolio runner
contains special-purpose code for this situation. We omit details as
this seems to be an uncommon corner case.

6We do not prune based on h values since the heuristics we use
are not admissible.

is done in the same way as in the LAMA planner, by treat-
ing all actions of cost c with cost c + 1 in the heuristics, to
avoid the issues with zero-cost actions noted by Richter and
Westphal (2010). All remaining ingredients of the portfolio
are modified in the same way for the current portfolio run.

In the second sequential portfolio, for which we specifi-
cally limited consideration to greedy best-first search (which
tends to have good coverage, but poor solution quality), we
make an additional, more drastic modification once a so-
lution has been found. Namely, we discard all further in-
gredients mentioned in the portfolio, based on the intuition
that the current ingredient managed to solve the instance
and therefore appears to be a good algorithm for the given
instance. Hence, we use the remaining time to perform
an anytime search based on the same heuristic and search
type (lazy vs. greedy) as the successful algorithm, using the
RWA∗ algorithm (Richter, Thayer, and Ruml 2010) with the
weight schedule 〈5, 3, 2, 1〉.

Towards Better Recipes
We close our planner description by briefly mentioning a
number of shortcomings of the approach we pursued for Fast
Downward Stone Soup, as well as some steps towards im-
provements.

First, we used a very naive local search procedure. The
need to tune the granularity parameter in the portfolio build-
ing algorithm highlights a significant problem with our lo-
cal search neighbourhood. With a low granularity, it can
easily happen that no single step in the search neighbour-
hood improves the current portfolio, causing the local search
to act blindly. On the other hand, with a high granularity,
we must always increase the algorithm time limits by large
amounts even though a much smaller increase might be suf-
ficient to achieve the same effect. A more adaptive neigh-
bourhood would be preferable, for example along the lines
of greedy algorithms for the knapsack problem that prefer
packing items that maximize the value/weight ratio.

Second, our approach needed complete experimental data
for each ingredient of the portfolio. This is a huge limita-
tion because it means that we cannot experiment with nearly
as many different algorithm variations as we would like to
(as hinted in the description of the satisficing case, where we
omitted many promising possibilities). A more sophisticated
approach that generates additional experimental data (only)
when needed and aims at making decisions with limited ex-
perimental data, as in the FocusedILS parameter tuning al-
gorithm (Hutter et al. 2009) could mitigate this problem.

Third, we had to choose all possible ingredients for the
portfolio a priori. We believe that there is significant poten-
tial in growing a portfolio piecemeal, adding one ingredient
at a time, and then specifically searching for a new ingre-
dient that complements what is already there, similar to the
Hydra algorithm that has been very successfully applied to
SAT solving (Xu, Hoos, and Leyton-Brown 2010).

Fourth, unlike systems like Hydra or ISAC (Kadioglu et
al. 2010) that learn a classifier to determine on-line which
algorithm from a given portfolio to apply to a given instance,
we only use sequential portfolios, i. e., apply each selected
ingredient to each input instance when running the portfolio
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planner. We believe that this is actually not such a serious
problem in planning due to the “solve quickly or not at all”
property of many current planning algorithms. Indeed, it
may be prudent not to commit to a single algorithm selected
by an imperfect classifier.

Finally, the largest challenge we see is in building a port-
folio that addresses the anytime nature of satisficing plan-
ning in a principled fashion, ideally exploiting information
from previous successful searches to bias the selection of the
next algorithm to run in order to find an improved solution.
As far as we know, this is a wide open research area, and we
believe that it holds many interesting theoretical questions as
well as potential for significant practical performance gains.
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Abstract

We present four planning systems that are based on so-called
Implicit Abstraction Heuristics. ForkInit and IForkInit plan-
ning systems are sequentially cost-optimal planners that in-
voke A∗ heuristic search, LMFork planning system is a se-
quentially cost-optimal planner that invoke LM-A∗ heuristic
search, and ForkUniform planning system is a sequentially
satisficing planner that iteratively invoke weigthed A∗ heuris-
tic search. All these different search procedures employ ad-
missible implicit abstraction heuristics. These heuristics are
based on two fragments of tractable cost-optimal planning,
binary forks and constant-bounded inverted forks, respec-
tively. The heuristics are implemented on top of the Fast
Downward planning framework. We describe here the param-
eters chosen for the participation in the International Planning
Competition.

Introduction
Heuristic search, either through progression in the space of
world states or through regression in the space of subgoals,
is a common and successful approach to classical planning.
It is probably the most popular approach to cost-optimal
planning, that is, finding a plan with a minimal total cost of
its actions. The difference between various heuristic-search
algorithms for optimal planning is mainly in the admissible
heuristic functions they employ. In state-space search, such
a heuristic estimates the cost of achieving the goal from a
given state and guarantees not to overestimate that cost.

A useful heuristic function must be accurate as well
as efficiently computable. Improving the accuracy of a
heuristic function without substantially worsening the time
complexity of computing it usually translates into faster
search for optimal solutions. During the last decade, nu-
merous computational ideas evolved into new admissible
heuristics for classical planning; these include the delete-
relaxing max heuristic hmax (Bonet and Geffner 2001), crit-
ical path heuristics hm (Haslum and Geffner 2000), land-
mark heuristics hL, hLA (Karpas and Domshlak 2009) and
hLM-CUT (Helmert and Domshlak 2009), and abstraction
heuristics such as pattern database heuristics (Edelkamp
2001), merge-and-shrink heuristics (Helmert, Haslum, and
Hoffmann 2007), and implicit abstraction heuristics (Katz
and Domshlak 2010b). Our focus in this work is on the ab-
straction heuristics.

Generally speaking, an abstraction of a planning task is
given by a mapping α : S → Sα from the states of the plan-
ning task’s transition system to the states of some “abstract
transition system” such that, for all states s, s′ ∈ S, the cost
from α(s) to α(s′) is upper-bounded by the cost from s to s′.
The abstraction heuristic value hα(s) is then the cost from
α(s) to the closest goal state of the abstract transition sys-
tem. Perhaps the most well-known abstraction heuristics are
pattern database (PDB) heuristics, which are based on pro-
jecting the planning task onto a subset of its state variables
and then explicitly searching for optimal plans in the abstract
space. Over the years, PDB heuristics have been shown to
be very effective in several hard search problems, includ-
ing cost-optimal planning (Culberson and Schaeffer 1998;
Edelkamp 2001; Felner, Korf, and Hanan 2004; Haslum et
al. 2007). The conceptual limitation of these heuristics,
however, is that the size of the abstract space and its dimen-
sionality must be fixed.1 The more recent merge-and-shrink
abstractions generalize PDB heuristics to overcome the lat-
ter limitation (Helmert, Haslum, and Hoffmann 2007). In-
stead of perfectly reflecting just a few state variables, merge-
and-shrink abstractions allow for imperfectly reflecting all
variables. As demonstrated by the formal and empirical
analysis of Helmert, Haslum, and Hoffmann (2007), this
flexibility often makes the merge-and-shrink abstractions
much more effective than PDBs. However, the merge-and-
shrink abstract spaces are still searched explicitly, and thus
they still have to be of fixed size. While quality heuristics
estimates can still be obtained for many problems, this limi-
tation is a critical obstacle for many others.

In attempt to push the envelope of abstraction heuristics
beyond explicit abstractions, Katz and Domshlak (2010b)
introduced a principled way to obtain abstraction heuris-
tics that limit neither the dimensionality nor the size of the
abstract spaces. The basic idea behind so called implicit
abstractions is simple and intuitive: instead of relying on
abstract problems that are easy to solve because they are
small, we can rely on abstract problems belonging to prov-
ably tractable fragments of optimal planning. The key point
is that, at least theoretically, moving to implicit abstractions

1This does not necessarily apply to symbolic PDBs which,
on some tasks, may exponentially reduce the PDB’s representa-
tion (Edelkamp 2002).
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removes the requirement on the abstractions size to be small.
Implicit abstractions are, however, far from being of theo-
retical interest only. Specifically, Katz and Domshlak in-
troduced a concrete family of such abstractions, called fork
decompositions, that are based on two novel fragments of
tractable cost-optimal planning. Likewise, Katz and Domsh-
lak showed that an equivalent of the PDB and merge-and-
shrink’s (and very important for empirical speed-up) notion
of “database” exists for the fork-decomposition abstractions
as well, despite the exponential-size abstract spaces of the
latter. These databased implicit abstractions are based on
a proper partitioning of the heuristic computation into parts
that can be shared between search states and parts that must
be computed online per state.

Of course, as planning is known to be NP-hard even
for conservative planning formalisms (Bylander 1994), no
heuristic should be expected to work well in all planning
tasks. Moreover, even for a fixed planning task, no tractable
heuristic will home in on all the “combinatorics” of the task
at hand. The promise, however, is that different heuristics
could target different sources of the planning complexity,
and composing a set of heuristics to exploit their individ-
ual strengths could allow a larger range of planning tasks to
be solved as well as each individual task to be solved more
efficiently.

One of the well-known and heavily-used properties of ad-
missible heuristics is that taking the maximum of their val-
ues maximizes informativeness while preserving admissibil-
ity. A more recent, alternative approach to composing a
set of admissible heuristics corresponds to carefully sepa-
rating the information used by the different heuristics in the
set so that their values could be summed instead of maxi-
mized over. This direction was first exploited in devising
domain-specific heuristics, and more recently in works on
additive pattern database (PDB) heuristics (Edelkamp 2001;
Felner, Korf, and Hanan 2004; Haslum et al. 2007) and
constrained PDBs and m-reachability heuristics (Haslum,
Bonet, and Geffner 2005).

The basic idea underlying all these additive heuristic en-
sembles is elegantly simple: for each planning task’s action
a, if it can possibly be counted by more than one heuristic
in the ensemble, then one should ensure that the cumulative
counting of the cost of a does not exceed its true cost in the
original task.

Such action cost partitioning was originally achieved by
accounting for the whole cost of each action in computing
a single heuristic in the ensemble, while ignoring the cost
of that action in computing all the other heuristics in the
ensemble (Edelkamp 2001; Felner, Korf, and Hanan 2004;
Haslum, Bonet, and Geffner 2005). Recently, this “all-in-
one/nothing-in-rest” action-cost partitioning has been gen-
eralized to arbitrary partitioning of the action cost among
the heuristics in the ensemble (Katz and Domshlak 2007;
2008; Yang, Culberson, and Holte 2007; Yang et al. 2008).

The great flexibility of arbitrary cost partitioning, how-
ever, is a mixed blessing. The question of how such a cost
partitioning can be found, and which cost partitioning is best
arise naturally. These questions are answered, at least for
abstraction based heuristics, by defining a method of find-

ing an optimal cost partitioning, as well as a cheaper ad-hoc,
uniform, cost partitioning (Katz and Domshlak 2010a). The
problem of finding an optimal cost partitioning is formulated
as a linear program (LP). Although solving a linear program
is polynomial (in the size of the LP, which is polynomial
in the size of the planning task description), in practice this
takes a very long time, and generally, is not feasible to apply
in every search node. On the other hand, using an ad-hoc
uniform cost partitioning scheme seems to lead to much bet-
ter results with both of these heuristics, due to much lower
computation time per state. In order to try and get the best
of both worlds, Katz and Domshlak (2010a) proposed using
an optimal cost-partitioning for the initial state to evaluate
all other states. This approach was later generalized to op-
timal cost-partitionings of a set of states (Karpas, Katz, and
Markovitch 2011).

Details
In this section we describe the different parts of our planning
system in detail, the algorithms, data structures, and param-
eters.

Search Algorithms
As was previously mentioned, our planning systems are
based on heuristic search procedures. These procedures
are implemented within the Fast Downward planning frame-
works as following.

• A∗ is implemented by the Eager Best-First Search al-
gorithm – the classic best-first search. The multi-path-
dependent LM-A∗ (Karpas and Domshlak 2009) imple-
mentation is based on the same code.

• Lazy greedy best-first search and lazy weighted A∗ are
implemented by the Lazy Best-First Search algorithm
– best-first search with deferred evaluation (Richter and
Helmert 2009). Both these algorithms also allow for the
use of preferred operators.

All these algorithms are expanding states in the order of their
f = g + h values, breaking ties by the h value,

Forks and Inverted Forks
The heuristic function h is computed as an admissible addi-
tive combination of the true goal distances in the abstract
tasks (Katz and Domshlak 2010b). Each such task cor-
responds to a fragment of tractable cost-optimal planning.
Two such fragments employed by the implicit abstraction
heuristics are

• fork structured planning task with a binary-domain root
variable, and

• inverted fork structured planning task with constant
bounded root domain.

A construction of abstract tasks that correspond to such frag-
ments is done as follows. First, for each multi-valued vari-
able, a maximal in term of variables (inverted) fork struc-
tured subgraph of the task’s causal graph is identified. Then,
an acyclic causal-graph decomposition is performed for each
such subgraph, resulting in a collection of fork and inverted
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fork structured fragments. Finally, several domain abstrac-
tions are preformed on these fragments, each resulting in
either a binary fork or constant bounded inverted fork.

Binary domain abstractions are performed as follows. For
each fork structured fragment, one domain abstraction is
performed for each domain value of the root variable, sepa-
rating it from the rest. Such domain abstraction is referred
to as leave-one-out. The resulting collection of tractable ab-
stract tasks is henceforth referred as forks-only.

Constant bounded domain abstractions, used for inverted
forks, are made according to the distance of the values from
the goal value. The bound that was selected is 3. That is, the
first abstraction distinguishes between the goal, all values
that are one step from the goal, and all values that are at
least two steps from the goal. The second between those
that are at most two steps from the goal, exactly three steps,
and at least four steps. The abstractions are created as long
as they distinguish between different values. The resulting
collection of tractable abstract tasks is henceforth referred
to as inverted forks-only, while the collection of tractable
abstract tasks of both types is henceforth referred to as both
forks and inverted forks.

For a detailed description of the heuristic construction
process both for fork and inverted fork based heuristics we
refer the reader to Katz and Domshlak (2010b).

Action Cost Partitioning
As was briefly mentioned above, implicit abstraction heuris-
tics are based on additive composition of abstraction based
heuristics. The admissibility criterion for such a composi-
tion is referred to as action-cost partitioning. Such a par-
titioning can be performed in several ways. We refer here
to two such ways, namely uniform cost partitioning, where
each action representative in an abstraction gets the same
portion of the original action cost, and optimal for a given
state cost partitioning, where the cost portions are divided in
a way that maximizes the heuristic value. A procedure that
obtains such a cost partitioning was presented by Katz and
Domshlak (2010a).

The procedure, that is based on solving large scale LPs, is
implemented within Fast Downward Planning Framework,
and makes use of the MOSEK LP solver (MOSEK 2009).
Although its time and memory complexities are polynomial,
in practice it often takes considerable amount of time and
memory, or even fails altogether. Thus, our planning sys-
tems attempt at obtaining an optimal for initial state cost par-
tition within the time bound of 5 minutes and memory bound
slightly less than 6 GB. If succeeded, an optimal for initial
state cost partition is used for all evaluated states along the
search, otherwise the uniform cost partition is used. Hence-
forth, we refer to such an action-cost partitioning scheme as
optimal for initial state scheme.

All our planning systems employ the databased version of
implicit abstraction heuristics, that allows for faster per-node
computation, as long as the same action-cost partitioning
scheme is adopted for all states during the search. For de-
tails on databased implicit abstractions we refer the reader
to Katz and Domshlak (2010b).

Planning Systems
In what follows we describe each of the four planning sys-
tems participating in the International Planning Competition
2011 (IPC-11), according to the different tracks.

Sequentially Optimal Track
• ForkInit is a cost-optimal planner, based on A∗ heuristic

search with forks-only implicit abstraction heuristic. The
action-cost partitioning scheme employed is optimal for
initial state, as described above.

• IForkInit is a cost-optimal planner, based on A∗ heuris-
tic search with inverted forks-only implicit abstraction
heuristic. The action-cost partitioning scheme employed
is optimal for initial state, as described above.

• LMFork is a cost-optimal planner, based on LM-A∗

heuristic search with forks-only implicit abstraction
heuristic evaluation of the landmarks-enriched planning
task (Domshlak, Katz, and Lefler 2010). The action-cost
partitioning scheme employed is optimal for initial state,
as described above.

Sequentially Satisificing Track ForkUniform is a sequen-
tially satisficing planner. It is based on an iterative impli-
cation of heuristic search procedures, setting a bound on a
solution cost for the next iteration from a previously found
solution. All iterations except the first one are using both
forks and inverted forks implicit abstraction heuristic with
uniform action-cost partitioning scheme. In addition, help-
ful actions (preferred operators) from the FF heuristic (Hoff-
mann and Nebel 2001) are used to boost the search. The
first iteration performs lazy greedy best-first search with FF
heuristic and helpful actions, run with a time bound of 5
minutes. Then, lazy weighted A∗ is run in each next itera-
tion, decreasing the bounds as 100, 10, 5, 3, 2, and 1, and
gradually improving the plan quality. In order to overcome
the problem of 0-cost actions, for the purpose of heuristic
evaluation all action costs are increased by 1.
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Abstract

LAMA is a propositional planning system based on heuristic
search with landmarks. This paper describes two versions of
LAMA that were entered into the 2011 International Planning
Competition: the original LAMA as developed for the 2008
competition and a new re-implementation of LAMA that uses
the latest version of the Fast Downward Planning Framework.
Landmarks are propositions that must be true in every solu-
tion of a planning task. LAMA uses a heuristic derived from
landmarks in conjunction with the well-known FF heuristic.
LAMA builds on the Fast Downward Planning System us-
ing non-binary (but finite domain) state variables and multi-
heuristic search. A weighted A∗ search is used with itera-
tively decreasing weights, so that the planner continues to
search for plans of better quality until the search is termi-
nated. LAMA combines cost-to-goal and distance-to-goal
estimates with the aim of finding good solutions using rea-
sonable runtime.

Introduction
LAMA is a planning system based on heuristic state space
search, in the spirit of FF (Hoffmann and Nebel 2001)
and Fast Downward (Helmert 2006). It won the sequential
satisficing track of the International Planning Competition
in 2008 and is entered into this year’s competition (2011) as
a reference point.

A detailed description of LAMA can be found in a re-
cent JAIR article by Richter and Westphal (2010). This pa-
per gives a brief overview of LAMA, focusing mainly on
its architectural structure, landmarks, and the differences
between the 2008 and 2011 versions. This paper over-
laps significantly with the IPC 2008 planner description of
LAMA (Richter and Westphal 2008). Readers familiar with
that paper may skip straight to Section LAMA 2008 versus
LAMA 2011, where we describe LAMA 2011.

LAMA builds on the Fast Downward System, inheriting
the general structure of Fast Downward, the translation of
PDDL tasks with binary state variables to representations
with finite-domain variables, and a search architecture that
is able to exploit several heuristics simultaneously. One core
feature of LAMA is the use of landmarks as a heuristic and
for generating preferred operators. The landmark heuristic
was introduced in a AAAI 2008 article (Richter, Helmert,
and Westphal 2008). Other core features of LAMA are an

iterated search using restarts (Richter, Thayer, and Ruml
2010), and the combination of cost and distance estimates.

Structure of the Planner
LAMA consists of three separate programs:

1. the translator (written in Python),

2. the knowledge compilation module (written in C++), and

3. the search engine (also written in C++).

To solve a planning task, the three programs are called in
sequence; they communicate via text files.

Translator
The purpose of the translator is to transform the planner in-
put, specified in the propositional fragment of PDDL (in-
cluding ADL features and derived predicates, but not the
preferences and constraints introduced for IPC-5), into a
finite-domain state representation similar to the SAS+ for-
malism (Bäckström and Nebel 1995).

The main components of the translator are an efficient
grounding algorithm for instantiating schematic operators
and axioms and an invariant synthesis algorithm for deter-
mining groups of mutually exclusive facts. Such fact groups
are consequently replaced by a single finite-domain state
variable encoding which fact (if any) from the group is sat-
isfied in a given world state.

The groups of mutually exclusive facts found during
translation serve an important purpose for determining or-
ders between landmarks. For more details on the translator
component, see an article by Helmert (2009). We have mod-
ified this component only in some minor ways, including
the extraction of all mutually exclusive facts (as mentioned
above), the handling of action costs for IPC 2008, and some
small enhancements.

Knowledge Compilation
Using the finite-domain task representation generated by the
translator, the knowledge compilation module is responsible
for building a number of data structures which play a central
role in the subsequent landmark generation and search.

For example, domain transition graphs are produced
which encode for each state variable the ways in which it
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may change its value through operator applications. Further-
more, the knowledge compilation module constructs succes-
sor generators and axiom evaluators, data structures for ef-
ficiently determining the set of applicable actions in a given
state of the planning task and for evaluating the values of
derived state variables. We refer to Helmert (2006) for more
detail on the knowledge compilation component.

Search Engine
Using the data structures generated by the knowledge com-
pilation module, the search engine attempts to find a plan
using heuristic search with some enhancements, such as the
use of preferred operators (similar to helpful actions in FF)
and deferred heuristic evaluation, which mitigates the im-
pact of large branching factors in planning tasks with fairly
accurate heuristic estimates (Richter and Helmert 2009).
Deferred heuristic evaluation means that states are not eval-
uated upon generation, but upon expansion. States are thus
not selected for expansion according to their own heuristic
value, but according to that of their parent. If many more
states are generated than expanded, this leads to a substan-
tial reduction in the number of heuristic estimates computed,
if at a loss of heuristic accuracy.

The rules of the 6th International Planning Competition
(IPC 2008), for which LAMA was designed, suggest a type
of search that takes plan quality into account. LAMA first
runs a greedy best-first search, aimed at finding a solution
as quickly as possible. Once a plan is found, it searches
for progressively better solutions by running a series of
weighted A∗ searches with decreasing weight. The cost of
the best known solution is used for pruning the search, while
decreasing the weight makes the search progressively less
greedy, trading speed for solution quality (Richter, Thayer,
and Ruml 2010).

The search engine is configured to use several heuris-
tic estimators (namely, the FF heuristic and the landmark
heuristic) within an approach called multi-heuristic search
(Helmert 2006; Röger and Helmert 2010). This technique
attempts to exploit strengths of the utilised heuristics in dif-
ferent parts of the search space in an orthogonal way. To
this end, it uses separate open lists for each of the different
heuristics as well as separate open lists for the preferred op-
erators of each heuristic. Newly generated states are evalu-
ated with respect to all heuristics, and added to all open lists
(with the value estimate corresponding to the heuristic of
that open list). When choosing which state to expand next,
the search engine alternates between the different heuris-
tics, and expands states from preferred-operator queues with
higher priority than states from other queues.

Landmarks
Landmarks are variable assignments that must occur at some
point in every solution plan. They were first introduced by
Porteous, Sebastia and Hoffmann (2001) and later studied
in more depth by the same authors (Hoffmann, Porteous,
and Sebastia 2004). Consider the logistics example task in
Fig. 1, where the goal is to transport the packet from loca-
tion B to location F . In order to achieve the goal, the packet
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Figure 1: A logistics task: transport packet x from B to F .
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Figure 2: Partial landmark graph for the example task in
Fig. 1, showing simple landmarks.
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Figure 3: Domain transition graph for the packet from Fig. 1.
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must be loaded onto truck1 and unloaded at the airport C,
in order to then be loaded into one of the planes p1 or p2.
Hence, the facts “packet is on truck1”, and “packet is at C”
are landmarks for this task. It is also possible to infer or-
ders between landmarks, e. g. in this case, that “packet is on
truck1” must be true before “packet is at C”. The landmarks
and orders can be stored in a directed graph called the land-
mark graph. For our example, a partial landmark graph is
depicted in Fig. 2.

Our algorithm for finding landmarks and orderings be-
tween them is similar to the one by Porteous and Cresswell
(2002), which is in turn based on the one by Hoffmann et
al. Like Porteous and Cresswell we admit disjunctive land-
marks (sets of propositions of which one needs to be true
at some point), but we adapted the algorithm to the SAS+

setting and use domain transition graphs to derive further
landmarks.

We find landmarks by backchaining from already known
landmarks, starting with the goals (which are landmarks by
definition, as they have to be true in every solution plan). For
any given landmark L that is not true in the initial state, we
consider the shared preconditions of its possible first achiev-
ers. Possible first achievers are those operators that a) have
L as an effect, and b) can be possibly applied at the end of
a partial plan (starting in the initial state) which has never
made L true. Their shared preconditions are those proposi-
tions (if any) that are a precondition for each of the opera-
tors. Every such shared precondition must be true in order
to reach L and is thus a landmark, which can be ordered
before L.

Since it is PSPACE-hard to determine the set of ac-
tual first achievers of a landmark L, we use an over-
approximation containing every operators that can possibly
be a first achiever. By intersecting over the preconditions
of more operators we do not loose correctness, though we
may of course miss out on some landmarks. The approx-
imation of first achievers of L is done with the help of a
relaxed planning graph (RPG) (Hoffmann and Nebel 2001).
During construction of the RPG we leave out any operator
that would add L. When the relaxed planning graph levels
out, its last set of facts is an over-approximation of the set of
facts that can be achieved before L in the planning task; we
denote it by pb(L) (for possibly before). Any operator that
is applicable given pb(L) and achieves L is a possible first
achiever of L.

We also create disjunctive sets of facts from the first
achievers’ shared preconditions, such that a set contains one
precondition fact from each first achiever. Hence, these sets
form disjunctive landmarks. All facts in a disjunctive land-
mark must stem from the same predicate symbol, and we
discard any sets of size greater than 4 in order to limit the
number of possible sets.

We find further landmarks by exploiting the domain tran-
sition graphs (DTGs) generated by the knowledge compila-
tion module. For each variable, a corresponding DTG has a
node for each value that can be assigned to the variable, and
arcs for possible transitions between them (where a transi-
tion can be achieved through operator application). For ex-
ample, assume that the location of the packet in our example

is encoded with a state variable v. The DTG of v is depicted
in Fig. 3. From its initial value B, the location of the packet
can change to “in truck1” (denoted as t1 for short), from
there to any of the locations A,B,C and D and so on.

Given a simple (i. e., non-disjunctive) landmark L =
{v 7→ l} that is not part of the initial state, we consider
the DTG of the landmark’s variable v. If there is a node
that occurs on every path from the initial state value s0(v)
of the variable to the landmark value l, then that node corre-
sponds to a landmark value l′ of the variable: We know that
every plan achieving L requires that v take on the value l′,
hence the fact L′ = {v 7→ l′} can be introduced as a new
landmark and ordered before L. To find these kinds of land-
marks, we iteratively remove one node from the DTG and
test with a simple graph algorithm whether s0(v) and l are
still connected – if not, the removed node corresponds to a
landmark. Nodes corresponding to assignments of v which
are not in pb(L) are removed from the DTG prior to this test,
as they can only occur after B and do not have to be tested.
However, we remember these nodes and if such a node is
later found to be a landmark (e. g. by the backchaining pro-
cedure), we can introduce an ordering between B and the
node.

Consider again the landmark graph of our example in
Fig. 2. Most of the landmarks and orders in it can be found
by the backchaining procedure even when restricting it to
simple, i. e., non-disjunctive, landmarks, because the propo-
sitions are direct preconditions of their successor nodes in
the graph. There are two exceptions: “packet in truck1” and
“packet at C”. These two landmarks are however found with
the DTG method. The DTG in Fig. 3 shows immediately,
that the package location must be both t1 and C on any path
from the initial state (where it has value B) to the goal F .

If we introduced another truck in the left city, the fact
“packet in truck1” would no longer be a landmark. How-
ever, using disjunctive landmarks we would get a landmark
for the packet being inside one of the two trucks.

Inconsistencies found in the translating phase are ex-
ploited to determine further orders between the landmarks,
using the definition of reasonable orders and the conditions
proposed by Hoffmann et al. (2004). For example, the or-
der depicted by a dotted line in Fig. 2 is such a reasonable
order. For more details on how landmarks and their orders
are derived, see the JAIR 2010 article (Richter and Westphal
2010).

The Landmark Heuristic
The LAMA planning system uses landmarks as a pseudo-
heuristic. We estimate the goal distance of a state s by the
number of landmarks l that still need to be achieved from
s onwards. We estimate this number as l̂ := n − m + k,
where n is the total number of landmarks, m is the num-
ber of landmarks that are accepted, and k is the number of
accepted landmarks that are required again. A landmark B
is accepted in a state s if it is true in that state and all land-
marks ordered before B are accepted in the predecessor state
from which s was generated. An accepted landmark remains
accepted in all successor states. An accepted landmark is re-
quired again if it is not true in s and it is a direct precondition
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of some landmark which is not accepted. Note that l̂ is not
a proper state heuristic in the usual sense, as its definition
depends on the way s was reached during search. Neverthe-
less, it can be used like a heuristic.

We also generate preferred operators along with the land-
mark heuristic. An operator is preferred in a state if applying
it achieves an acceptable landmark in the next step, i. e., a
landmark whose predecessors have already been accepted.
If no acceptable landmark can be achieved within one step,
the preferred operators are those which occur in a relaxed
plan to the nearest acceptable landmark.

Action Costs

The landmark heuristic as outlined above estimates the goal
distance of states, i. e., the number of operator applications
needed to reach the goal state from a given state. Due to the
inclusion of action costs in IPC 2008, however, we are inter-
ested in generating least-cost plans rather than short plans.
Hence, the heuristics used during search should also esti-
mate the cost of reaching the goal from a state, not just its
goal distance.

The FF heuristic that is also used in our framework can
easily be adapted to action costs, as we can use action
costs in the underlying additive heuristic (Bonet and Geffner
2001). When generating a relaxed plan from the additive
heuristic estimates, we simply use the cost rather than the
length of that relaxed plan as our estimate for the cost-to-
go of a given state. See Keyder and Geffner (2008) for a
detailed description of this cost-sensitive version of the FF
heuristic which they call FF(ha).

For the landmark heuristic this method is not directly ap-
plicable, since no actual plan is formed by the heuristic. In-
stead, we weight landmarks with an estimate on their min-
imum cost. Rather than counting the number of landmarks
that still need to be achieved from a state, the heuristic value
is then the sum of all minimum costs of those landmarks.
The cost estimate for each landmark is the minimum cost
that is required to make the landmark true for the first time,
i. e., the minimum of all action costs of its first achievers.

Zero-cost actions can lead to problems in a standard cost-
sensitive search like weighted A*. Since zero-cost actions
can always be added to a search path “for free”, i. e., with-
out negative side effects, the search may explore very long
search paths without getting closer to a goal. In the worst
case, this can prevent it from finding a solution within the
given time limit. To avoid this problem, LAMA combines
cost and distance estimates in a simple fashion, by counting
for each action its cost plus 1 for its distance. This method
has largely overcome the problems of zero-cost actions in
our experiments, and offers a simple trade-off between the
aim of finding cheap solutions and the need to find solu-
tions within reasonable time. Of course this means that a
plan consisting of five originally zero-cost actions is deemed
worse by LAMA than a plan consisting of two actions that
originally cost one, whereas the opposite is true. A smaller
value for the additive constant would lessen the problem,
though not solve it completely.

LAMA 2008 versus LAMA 2011
We have entered two versions of LAMA into the 2011 plan-
ning competition. LAMA 2008 is largely the same system
as the one that won the sequential satisficing track in 2008.
However, bug fixes have been incorporated since the 2008
competition, in particular to the translator component, and
some improvements to the invariant synthesis in the trans-
lator have taken place. The translator component in LAMA
2008 is identical to the translator used in LAMA 2011 and
other recent Fast Downward offshoots.

LAMA 2011 is a reimplementation of LAMA in the latest
version of the Fast Downward planning framework. In the
past two years, the Fast Downward framework has under-
gone significant changes aimed at back-integrating various
offshoots of the original Fast Downward code and making
the framework more modular. LAMA 2011 is entered into
the competition in particular for comparison with LAMA
2008 and for comparison with other planners based on the
latest Fast Downward code.

Compared to the 2008 version, LAMA 2011 uses a more
space-efficient way of storing landmark information and a
more efficient implementation of the FF heuristic in cases
where the values of this heuristic are large. LAMA 2011
furthermore uses a different configuration sequence for its
search algorithms. In line with our observations that focus
on solution quality may harm coverage (Richter and West-
phal 2010), LAMA 2011 runs one iteration of greedy best-
first search ignoring costs before it starts the sequence of
search iterations used by LAMA 2008 (cost-sensitive greedy
best-first search followed by weighted A∗ searches).
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Abstract

We present two planners, Randward and Lamar, which are
respectively built upon the Downward and LAMA plan-
ners. The technique developed in these planners is to ran-
domize heuristic construction so that heuristic plateaus are
less frequent and the bias introduced by poor, arbitrary non-
deterministic choices in heuristic construction is removed.
Specifically, we randomize the FF heuristic, naming the re-
sulting planner Randward, and with the addition of the land-
mark count heuristic, name it Lamar. Within the FF heuristic,
we randomize planning graph construction, which is akin to
a random-walk in the relaxed planning space. From this ran-
domized planning graph, we extract a relaxed plan heuristic
(exactly as would FF).

Introduction
Randomization in planning has shown to be effective at
overcoming bias in both search (Gerevini, Saetti, and Serina
2003; Nakhost and 0003 2009) and heuristics (Bryce, Kamb-
hampati, and Smith 2008). We present a unique point of ran-
domization in the FF heuristic (Hoffmann 2001), which is
then used in two planners, Randward and Lamar. Both plan-
ners are built upon the Fast Downward (Helmert 2006) and
LAMA (Richter and Westphal 2008) planners, and differ in
that Randward does not use the landmark count heuristic,
but Lamar does.

The FF heuristic involves constructing a planning graph
to solve the relaxed planning problem, and the resulting re-
laxed plan is used to compute a search heuristic as well as
identify preferred operators. The planning graph construc-
tion is deterministic in the FF heuristic, and resembles the
forward chaining algorithm for Horn clause inference. The
algorithm associates with each action a count of the num-
ber of unsatisfied preconditions (initially all of its precondi-
tions), and initializes a list of propositions to process. Pro-
cessing a proposition involves decrementing the number of
unsatisfied preconditions for each action using it as a propo-
sition. Once an action’s count reaches zero, its effects are
added to the proposition list. Processing the propositions as
a FIFO queue resembles the traditional planning graph that
inserts all actions at the same level, and then moves the next
level in a breadth-first manner.

Randomizing the order in which propositions are pro-
cessed will lead to a random walk in the relaxed planning

space. While we do not extract relaxed plans by random-
ization, we extract a relaxed plan as soon as one exists in
the planning graph. Random walks can thus randomize the
heuristic and preferred operators. As we have seen in our
prior work (Bryce, Kambhampati, and Smith 2008), ran-
domization is useful for overcoming poor decisions (such
as proposition order) in a heuristic because, for example, a
parent node may have an uncharacteristically low heuristic
value, and its child may suffer from the same bias. However
by randomizing the heuristic, a child’s heuristic is unlikely
to suffer from the same bias as the parent, and the proba-
bility that an entire path suffers from the same bias is very
low.

In the following, we describe the approach taken in Rand-
ward and Lamar through an example, discuss preliminary
results on the IPC-2008 domains, and outline directions for
future work.

Relaxed Planning Graph Expansion Order
Traditionally, relaxed planning graph generation has been
explained in a breadth-first fashion, as in (Bryce and Kamb-
hampati 2007). Each proposition in the initial layer is con-
sidered towards adding applicable relaxed-actions to the
graph at that layer. The add-effects of those actions, as well
as all propositions currently true, are added to the next layer.
This new set of propositions is used to determine which
relaxed-actions are applicable in that layer. This continues
until all goal propositions are true, and then a relaxed plan is
generated by tracing back through the graph. Figure 1 gives
one example of a relaxed search space. Figure 2 shows the
breadth-first expansion of propositions in layer P0 yielding
the actions in layer A0 and ultimately reaching the goal g in
layer P1.

Alternatively, a relaxed planning graph can be generated
in a random order. The only difference is which proposition
to consider next. As soon as an action is added to the graph,
its add-effects immediately become candidates for expan-
sion. When expanding randomly, any random proposition is
considered next towards applying actions in its layer. Fig-
ure 3 and Figure 4 show two random expansions of the same
relaxed search space from the previous scenario. Notice how
randomizing removes bias in preferred operators (i.e. which
actions are first in the relaxed plan). Also, while the order in
which propositions are listed can bias which plans are gen-
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Figure 1: An example of a relaxed search space

Figure 2: Breadth-first expansion of a relaxed planning
graph

Figure 3: One possible random expansion of a relaxed plan-
ning graph (unexpanded propositions in gray)

Figure 4: Another random expansion of a relaxed planning
graph (unexpanded propositions in gray)

erated by breadth-first expansion, it does not bias those gen-
erated through random expansion.

Order of expansion does not effect reachability of goal
propositions but it does effect the length of the relaxed
plan. Because delete-effects are ignored, actions can only
progress the graph towards the goal. Therefore, reaching the
goal depends only on applying the right actions, not the or-
der in which they are applied. However, some actions help
progress the graph towards the goal sooner than others. Ap-
plying those actions first will generate a shorter relaxed plan.
Breadth-first is guaranteed to find the step-optimal relaxed
plan however random expansion is not guaranteed to. And
neither approach is guaranteed to always return the most ac-
curate approximate distance to the goal.

It would be ideal to know which proposition should be
considered next to produce the relaxed plan that most accu-
rately approximates the distance to the goal. However, with-
out that knowledge, randomly picking the next proposition
avoids the bias inherent in breadth-first expansion.

Results
Each of the IPC-2008 problems were run on a Linux ma-
chine with one dedicated 1.95 GHz processor, 2 GB mem-
ory, and a time limit of 30 minutes. LAMA and Lamar were
also tested without the landmark count heuristic - in which
case they are called FF and Randward, respectively. Ran-
domized algorithms were tested on 5 different random seeds.

Table 1 shows that Randward is able to complete more
problems than FF, particularly for the elevators and transport
domains. This means that simply randomizing the expansion
order of the FF heuristic is an improvement.

When landmarks are introduced, however, we see that
Lamar completes less problems than LAMA. To expand
propositions randomly, LAMA’s list of propositions had to
be replaced with a priority queue in Lamar. When Lamar’s
implementation is given breadth-first priorities for each
proposition (listed as ”LM-BFS” in the table) it performs
worse than Lamar. Once again, random expansion is an
improvement over breadth-first expansion. Therefore, it is
likely that the difference between LAMA and Lamar is im-
plementation related.

While LAMA performs the best, over all, it can still be
seen between FF and Randward, and Lamar and LM-BFS,
that randomly expanding the relaxed planning graph im-
proves the FF heuristic.

Future Work
Each randomly generated relaxed plan is only one sample
from the set of all valid relaxed plans in the relaxed search
space and may not be sufficient to get an accurate heuristic.
Aggregating over several samples, by taking the average or
the minimum, may prove to give a better heuristic value.

Also, if a simple heuristic for relaxed plan expansion ex-
ists, then it could be used to perform an A* search over the
relaxed planning space. This wouldn’t solve the problem of
finding the most accurate relaxed plan, however it would be
able to return the step-optimal solution quicker than breadth-
first.
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Domain FF Randward LAMA Lamar LM-BFS
cybersec 29 29 (1) 30 29.4 (0.5) 30
elevators 16 26.6 (1.3) 25 26.4 (1.1) 20
openstacks 30 30 30 30 30
openstacks-adl 30 30 30 30 30
parcprinter 12 14.6 (0.9) 18 16.2 (0.4) 16
pegsol 30 29 (0) 30 29.2 (1.1) 28
scanalyzer 28 27.4 (0.5) 30 30 30
sokoban 24 22.8 (1.1) 25 22.6 (0.5) 21
transport 21 25.4 (0.5) 30 27 (1) 29
woodworking 29 30 29 30 30
Total 249 264.8 (2.3) 277 270.8 (2.4) 264

Table 1: Number of IPC-2008 problems solved (30 instances per domain, totaling 300), each given a 30-minute time limit.
Randomized algorithms are averaged over 5 seeds with standard deviation in parentheses.

Conclusion
A relaxed planning graph can be expanded in many different
ways - two of which have been explained here. Traditionally
only a breadth-first approach has been used, which finds the
step-optimal relaxed plan but maintains a bias towards cer-
tain relaxed plans. A random approach does not assure step-
optimality but has shown to produce a better heuristic than
breadth-first alone.
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Abstract

LPRPG is a a planner that is designed to solve problems that
use metric resources according to linear constraints. It uses
a linear program model of the resources and their use, un-
der the control of actions, to produce tight approximations of
the reachable ranges of values for variables during reachabil-
ity analysis, improving on the approximations produced by
Metric-FF (Hoffmann 2003). This improvement has a direct
effect on the accuracy of the relaxed plan heuristic and allows
LPRPG to solve problems that other metric planners cannot.
In this paper we briefly review the structure of LPRPG.

1 Introduction
Although there have been many recent developments in
planning with finite domain state variables, the state of the
art for planning with number-valued state variables (both
integer and real-valued) has not progressed as fast. It is,
of course, the case that planning with metric variables is,
in general, undecidable (see, for example, (Helmert 2002)).
However, planning with metric resources is a vital capabil-
ity for handling a vast array of potential application prob-
lems. LPRPG (Coles et al. 2008) is a planner that offers one
approach to handling certain kinds of metric variable be-
haviours and can generate solutions to some problems that
other planners currently cannot solve.

In this short paper we briefly review approaches to plan-
ning with metric resources and the way that LPRPG fits
within this landscape.

2 Planning with Metric Variables
One of the most successful strategies in classical planning
has proved to be forward state-space search, guided by in-
formed heuristics based on relaxations of the problem. These
heuristics typically begin with a reachability analysis for the
domain from the current state and this process can be seen
as defining unary constraints on the state variables at each
time step during throughout the plan. One of the most im-
portant contributions to general domain-independent plan-
ning with metric variables was made by Hoffmann (2003),

who proposed that the domains for the metric variables can
be approximated by bounded intervals at each time step. Ap-
plicability of actions is tested by confirming that there is
some assignment of values within their constrained domains
at a given time step that makes the precondition true (re-
gardless of whether this assignment is actually achievable
for all these variables simultaneously). In fact, this test can
be still further relaxed, so that the check confirms that there
is some assignment of values that makes each conjunct of
the precondition true: the same assignment need not make
all conjuncts true. In practice, this second relaxation is not
important, since most action preconditions are sufficiently
simple that the two relaxations are equivalent.

As actions are judged applicable, their effects are used to
update the ranges of the state variables at the next time step.
In the case of metric variables, Metric-FF updates the ranges
by increasing upper bounds and decreasing lower bounds ac-
cording to the minimum and maximum effects that the ap-
plicable actions can (collectively) achieve on each variable.

This process leads to relatively rapid divergence of the
bounds on the reachable range of values for metric variables
and these quickly become very coarse approximations of the
actual bounds on the reachable range of values. It is perhaps
not immediately apparent that this should be so, but consider
the actions shown in figure 1. If there is one item available
at a location occupied by an empty vehicle, then the bounds
on the available and loaded values will start at [1, 1] and
[0, 0] respectively, and then change to [0, 1] and [0, 1] after
the first step. However, on the following step the application
of the effects of both actions (which remain applicable) to
the ranges will lead to [−1, 2] for both. The upper and lower
bounds will continue to diverge in this way at each subse-
quent step. We refer to this particular problem as Cyclical
Resource Transfer.

The problems this creates are two-fold. Firstly, actions
can appear to be applicable much earlier than they will be
in reality, leading to distortions in the structures of relaxed
plans that undermine their value in heuristic guidance. Sec-
ondly, the actions that appear to contribute to solving a prob-
lem (the helpful actions) can be entirely flawed because of

International Planning Competition 2011

58



(:action load
:parameters (?v - vehicle ?l - location)
:precondition (>= (available ?l) 1)
:effect (and (increase (onboard ?v) 1)

(decrease (available ?l) 1)))

(:action unload
:parameters (?v - vehicle ?l - location)
:precondition (>= (onboard ?v) 1)
:effect (and (increase (available ?l) 1)

(decrease (onboard ?v) 1)))

Figure 1: Simple actions manipulating metric variables.

the ways that they appear to contribute to resource accumu-
lation under the relaxation. We refer to this problem as Help-
ful Action Distortion.

3 Linear Resource Constraints and LPRPG
In many planning problems, the effects of actions on met-
ric variables are simple increase or decrease effects, using
constant increments or decrements. Where all the actions
have this form, coupled with preconditions that compare lin-
ear combinations of metric variables with constants, the do-
mains are called linear. This is because the entire structure
of the planning problem, for a finite horizon, can be encoded
as a collection of boolean constraints and linear constraints.

LPRPG is designed to work with linear domains. It is
structured very similarly to Metric-FF, but it improves the
bounds on metric variables generated by Metric-FF by ex-
ploiting the fact that the domains are linear. It does this by
constructing a linear program (LP) to capture the relation-
ship between actions, their effects and the values of individ-
ual metric variables. By solving the LP for a maximum and
minimum value of each variable at each time step, it is pos-
sible to generate a tighter approximation of the reachable
range of values than is achieved by Metric-FF. The reason
for this is that the LP encodes the flow of metric resources
between different metric variables. So, for example, the LP
captures the fact that loading or unloading an item using the
actions in figure 1 leaves invariant the total number of items,
so the bounds on the number of items in the vehicle and at
the location remain at [0, 1] throughout the reachability anal-
ysis.

Although LPs can be solved very efficiently, in large plan-
ning problems a very large number of LPs can be generated.
LPRPG is carefully designed to restrict the number of prob-
lems that have to be solved and to use the warm-start fa-
cility of many LP solvers to minimise the work involved in
solving multiple problems that are very similar to one an-
other. The astute reader will have noticed that the effects
of actions must be captured as discrete changes in metric
variables, which implies that the LP should in fact be an In-
teger Linear Program (ILP). This is true, but the LP relax-
ation gives us effective performance in the approximation of
the bounds. The LP can also help in identifying appropriate
action choices during construction of relaxed plans. In this
case, because helpful actions are either to be applied or not,

it is difficult to avoid ensuring that some of the action vari-
ables should be integral. For this reason, during relaxed plan
construction, LPRPG uses an ILP relaxation in which the ac-
tion variables at the first step (only) are constrained to be
integral. Further details can be found in (Coles et al. 2008).

Since the original publication of work on LPRPG (Coles et
al. 2008), the planner has been improved or extended in var-
ious ways. Haizan (Radzi 2011) has explored an extension
to make it more sensitive to plan metrics and to allow it to
make different tradeoffs between makespan and the metric
value of plans. The competition variant also supports pref-
erences, as described in (Coles and Coles 2011); but as the
preferences track was withdrawn, these have not been tested
in the competition.

4 The Impact of Tighter Variable Bounds

Although LPRPG can generate tighter bounds on variables
and, as we have already observed, this can, in principle, re-
duce the problems associated with over-approximation of
the ranges, the extent to which the improvement affects plan-
ner performance depends on the problems. This is because
metric variables can be intertwined with finite-domain vari-
ables in actions in a wide variety of ways. Metric variables
can form a relatively self-contained element of the problem
alongside a complex causal structure in the rest of the prob-
lem, or they can form a complex and intricate pattern of
flows alongside a relatively simple causal problem, or they
can interact so that complex causal chains are required to en-
able particular metric effects and vice versa. LPRGP is most
effective when the metric problem is not too tightly inter-
twined with the manipulation of the finite-domain variables
in the problem. This is because the LP encodes the inter-
actions between metric effects of actions, but does not di-
rectly reflect the effects of the actions on finite-domain vari-
ables. Thus, solutions to the LP ignore the ways in which
finite-domain variables might constrain what is actually pos-
sible. Thus, a finite-domain variable representing a counted
resource would be ignored in the LP, despite it possibly hav-
ing a fundamental impact on the reachable range of values
of metric variables.

We have experimented with ways to encode aspects of the
finite-domain variable behaviours in the LP, but it remains
an unresolved challenge to find a good balance that achieves
efficient performance across a wide range of problems.

5 Conclusion

LPRPG represents an interesting treatment of metric vari-
ables in linear domains, offering significant improvements in
performance over Metric-FF in many problems. The trade-
off it exploits between the additional effort in finding tighter
bounds on the range of reachable values for metric variables
and the extra information this generates within the reachabil-
ity analysis and relaxed plan construction is a difficult one
to control and this remains an open challenge in achieving
really effective general performance in complex metric and
causally-structured domains.
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Abstract

Planning with SAT has long been viewed as a main approach
to AI planning, but suffering from a poor scalability to large
problems. In this paper we explain how the scalability has
been dramatically improved by better implementation tech-
nology, and how this, with a shift of understanding about
SAT-based planning during the past ten years, enables plan-
ners that radically differ from those from the late 1990s. We
discuss a SAT-based planning system that implements mod-
ern versions of virtually all components of first planners that
used SAT.

Introduction
During the last decade, SAT, the prototypical NP-complete
problem of testing the satisfiability of the formulas in the
classical propositional logic (Cook 1971), has emerged, due
to dramatically improved SAT solvers, as a practical lan-
guage for representing hard combinatorial search problems
and solving them, in areas as diverse as Model-Checking
(Biere et al. 1999), FPGA routing (Wood and Rutenbar
1998), test pattern generation (Larrabee 1992), and diagno-
sis (Smith et al. 2005). Planning as Satisfiability, which
enjoyed a lot of attention in the late 1990s after the works
by Kautz and Selman (1996), has remained more in the pe-
riphery of planning for the last ten years. This is somewhat
surprising, when one considers the great successes of SAT
in applications other than planning. In this paper, we show
that this situation can be traced back to properties of early
SAT-based planning systems, which have made for exam-
ple heuristic state-space search (Bonet and Geffner 2001)
seem a more attractive alternative. We will first give a brief
description of the Planning and Satisfiability approach, dis-
cuss the issues critical to its time and space complexity in
practice, and explain the factors that separate the state-of-
the-art now and in the late 1990s. We show that what have
been widely assumed to be inherent restrictions of the SAT
approach to planning, are in fact not. Eliminating the issues
leads to planning systems that are competitive with other ex-
isting search methods. Specifically, we discuss two critical
issues of SAT-based planning: potentially high memory re-
quirements, and the necessity and utility of guaranteeing that

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plans have the shortest possible horizon length (parallel op-
timality). We show that the perceived disadvantages of SAT
with respect to state-space search have largely disappeared.

The planning system Madagascar (also called Mp or M
depending on the heuristics used) implements several of the
innovations in planning with SAT, inlcuding compact and ef-
ficient encodings (Rintanen, Heljanko, and Niemelä 2006),
parallelized/interleaved search strategies (Rintanen 2004;
Rintanen, Heljanko, and Niemelä 2006), and SAT heuristics
specialized for planning (Rintanen a2010; b2010).

Background
A classical planning problem is defined by a set F of facts
(or state variables) the valuations of which correspond to
states, one initial state, a set A of actions (that represent the
different possibilities of changing the current state), and a
goal which expresses the possible goal states in terms of the
facts F . A solution to the planning problem is a sequence of
actions that transform the initial state step by step to one of
the goal states.

The classical planning problem can be translated into a
SAT problem of the following form.

Φt = I ∧ T (0, 1) ∧ T (1, 2) ∧ · · · ∧ T (t− 1, t) ∧G

Here I represents the unique initial state, expressed in terms
of propositional variables f@0 where f ∈ F is a fact, and
G represents the goal states, expressed in terms of proposi-
tional variables f@t, f ∈ F . The formulas T (i, i + 1) rep-
resent the possibilities of taking actions between time points
i and i+ 1. These formulas are expressed in terms of propo-
sitional variables f@i and f@(i+ 1) for f ∈ F and a@i for
actions a ∈ A.

The formula Φt is satisfiable if and only if a plan with t
time points exists. Planning therefore reduces to performing
satisfiability tests for different t. The effectiveness of the
planner based on this idea is determined by the following.

1. The form of the formulas T (i, i + 1).

2. The way the values of t are chosen.

3. The way the SAT instances Φt are solved.

Below we will discuss the first two issues, and their in-
terplay. The third, SAT solving, can be performed with
generic SAT solvers (Moskewicz et al. 2001) or SAT

International Planning Competition 2011

61



solvers specialized for planning (Rintanen a2010; b2010;
1998).

Encodings of T (i, i+ 1)
The encoding of transitions from i to i + 1 as the formu-
las T (i, i + 1) determines how effectively the satisfiabil-
ity tests of the formulae Φt can be performed. The lead-
ing encodings are the factored encoding of Robinson et al.
(2009), and the ∃-step encoding of Rintanen et al. (2006).
Both of them use the notion of parallel plans, which allow
several actions at each time point and hence time horizons
much shorter than the number of actions in a plan. The
encoding by Robinson et al. is often more compact than
that by Rintanen et al., but the latter allows more actions
in parallel. Both of these encodings are often more than an
order of magnitude smaller than earlier encodings such as
those of Kautz and Selman (1996; 1999), and also substan-
tially more efficient (Rintanen, Heljanko, and Niemelä 2006;
Sideris and Dimopoulos 2010). This is due to the very large
quadratic representation of action exclusion in the Graph-
plan encodings. Rintanen et al. (2006) and Sideris and Di-
mopoulos (2010) show that eliminating logically redundant
mutexes or improving the quadratic representation to linear
dramatically reduces the size of the formulas.

It is interesting to now have a new look at the issues faced
by the SAT-based planners from late 1990s, more than 12
years later. Kautz and Selman (1999) conclude from a com-
parison of BlackBox to the MEDIC planner (Ernst, Mill-
stein, and Weld 1997) that “use of an intermediate graph
representation appears to improve the quality of automatic
SAT encodings of STRIPS problems”. However, empiri-
cal or other demonstration of the utility of planning graphs
as a basis of encodings has not later emerged. The useful
information in planning graphs is the “persistent” fact mu-
texes, equivalent to invariants (Rintanen 2008), which can
be easily, and more efficiently, computed without construct-
ing the planning graphs. The currently best encodings of
planning in SAT encode the planning problem much more
compactly than the planning graph encodings allow. The
main problem with planning graphs is the quadratic number
of action mutexes, which leads to impractically large CNF
encodings, without providing performance advantages over
other types of encodings (Rintanen, Heljanko, and Niemelä
2006). The performance advantage observed by Kautz and
Selman’s comparison to MEDIC is most likely have been the
more explicit representation of some of the reachability in-
formation in planning graphs, which for current generation
of SAT solvers (Moskewicz et al. 2001) – radically differ-
ent from the ones from 1990s – do not make a difference.
Kautz and Selman do conclude: “SAT encodings become
problematically large in sequential domains with many op-
erators, although refinements to the encoding scheme can
delay the onset of the combinatorial explosion.” In retro-
spect, the “problematically large” encoding can be seen to
have been caused by the quadratic encoding of action mu-
texes, which has later been reduced to linear (Rintanen, Hel-
janko, and Niemelä 2006), eliminating the problem. A fur-
ther disadvantage of planning graphs is that they are incom-
patible with more efficient forms of parallel plans such as

the ∃-step plans (Rintanen, Heljanko, and Niemelä 2006).

Scheduling the Solution of the SAT Instances

Kautz and Selman (1996) proposed testing the satisfiabil-
ity of Φt for different values of t = 0, 1, 2, . . . sequentially,
until a satisfiable formula is found. This strategy is asymp-
totically optimal if the t parameter corresponds to the plan
quality measure to be minimized, as it would with sequen-
tial plan encodings that allow at most one action at a time.
However, BlackBox uses Graphplan-style parallel plans for
which the t parameter is meaningless because Graphplan’s
parallelism notion does not correspond to the actual phys-
ical possibility of taking actions is parallel. For STRIPS,
Graphplan-style parallelism exactly matches the possibility
of totally ordering the actions to a sequential plan (Rinta-
nen, Heljanko, and Niemelä 2006). Hence the parallelism
can be viewed as a form of partial order reduction (Gode-
froid 1991), the purpose of which is to avoid considering all
n! different ordering of n independent actions, as a way of
reducing the state-space explosion problem. In this context
the t parameter often only provides a weak lower bound on
the sequential plan length. So if the minimality of t does not
have a practical meaning, why minimize it? The proof that t
is minimal is the most expensive part of a run of BlackBox
and similar planners.

More complex algorithms for scheduling the SAT tests for
different t have been proposed and shown both theoretically
and in practice to lead to dramatically more efficient plan-
ning, often by several orders of magnitude (Rintanen 2004;
Streeter and Smith 2007). These algorithms avoid the ex-
pensive proofs of minimality of the parallel plan length, and
in practice still lead to plans of comparable quality to those
with the minimal parallel length. The most effective imple-
mentations of these algorithms solve several SAT problems
(for different horizon lengths) in parallel. This is not feasible
with the 1990s encodings of planning as SAT, as even solv-
ing a SAT problem for one horizon length was often imprac-
tical due to the sizes of the formulas. Hence the two issues,
the size of the encodings and the strategies of considering
different horizon lengths, are closely intertwined: without
compact encodings and clause representations, efficient plan
search, with multiple SAT instance solved simultaneously, is
infeasible. The very large size of the early encodings may be
the best explanation why the use of the sequential strategy
has been popular still quite recently.

Figure 1 depicts the gap between the longest horizon
length with a completed unsatisfiability test and the horizon
length for the found plan for the Mp planner and for all the
instances considered by Rintanen (a2010). The dots concen-
trate in the area below 50 steps, but outside this area there
are typically an area of 30 to 50 horizon lengths for which
the SAT test was not completed, in the vast majority of cases
because their difficulty well exceeded the capabilities of cur-
rent SAT solvers. This explains why the use of the parallel
strategies which avoid the expensive (but unnecessary) par-
allel optimality proofs are essential for efficient planning.
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Figure 1: Lower and upper bounds of plan lengths

Progress in Planning as SAT
We have tested a number of planners with 998 STRIPS
instances from the planning competitions from 1998 un-
til 2008. Figure 2 shows the performance improvements
starting from BlackBox’s successor SATPLAN06 with
Graphplan-style parallel plans (∀-exists step plans (Rinta-
nen, Heljanko, and Niemelä 2006)), parallel optimality and
standard SAT solvers (SATPLAN06), the same with our
planner that uses a more compact ∀-step encoding (A-opt),
the same with the more efficient ∃-step encoding (E-opt),
the same without parallel optimality (E, also known as the
planner M (Rintanen a2010)), and finally, the same with a
planning-specific heuristic (Rintanen a2010) for SAT solv-
ing (Mp). The curves depict the number of instances solved
in a given time. To compare these improvements to progress
in planning with heuristic state-space search, we have also
curves depicting the performance of the HSP (Bonet and
Geffner 2001) and LAMA (Richter, Helmert, and Westphal
2008) planners respectively from 1998 and 2008.

One major change in the SAT area has been the dramatic
and continuous improvements of SAT algorithms, and it is
therefore interesting to make a direct comparison to run-
times given in papers over 10 years ago. The SAT algo-
rithm improvements alone, together with faster CPUs and
cheap memory, has lifted SAT based planning to a com-
pletely different level. As an illustration of this, consider
Kautz and Selman’s (1999) Table 2, in which they list
the solution times for rocket.{a, b} and logistics.{a, b, c, d}
when finding minimal length Graphplan-style plans. The
M planner solves the same problems (including the proof
of the parallel optimality) with speed-ups from 393 to
3300 over BlackBox. The same instances without the
parallel optimality proofs and by using encodings that
allow more parallelism are all solved by Mp in 0.02
seconds or less, with speed-ups of several thousands.
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Figure 2: Numbers of instances solved in a given time

rocket a b logistics a b c d
BlackBox 57 60 66 126 180 156
M par. opt. 0.02 0.02 0.02 0.32 0.23 0.16
Mp 0.01 0.01 0.02 0.01 0.01 0.02

Conclusions
We have discussed the main components of a SAT-based
planner that avoids the main problems with earlier SAT-
based planners, which are excessive memory consumption
due to very large quadratic size encodings, top-level strate-
gies that are forced to unnecessarily establish a “parallel op-
timality” property, and the lack of planning specific heuris-
tics to drive the search.

We argued that the high memory consumption of early
SAT-based planners was a main obstacle for the adoption
of parallelized planning strategies, which prevent SAT from
being competitive with other search methods, such as state-
space search. Reduction of the memory consumption by bet-
ter encodings and implementation technology is essential for
achieving truly efficient SAT-based planners.
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Abstract

This paper gives an overview of the planner POPF2, as com-
peting in the 2011 International Planning Competition. POPF
employs forward-chaining search, expanding a partial-order
rather than the conventional total-order: steps added to the
plan are ordered after a subset of those in the plan so far,
rather than after every step in the plan so far. POPF2 adopts
this search approach, extending it in two ways. First, it has a
number of changes to allow it to make fewer commitments to
ordering constraints, and hence find more makespan-efficient
plans. Second, it borrows the cost-optimisation approach of
Stochastic-POPF, where modifications to the temporal re-
laxed planning graph heuristic, and the use of anytime-search,
allow it to improve upon the first plan found.

This paper describes the planner POPF2, the latest revi-
sion of POPF (Coles et al. 2010). The aim of POPF is to
preserve the benefits of partial-order plan construction, in
terms of producing makespan-efficient, flexible plans; whilst
avoiding explicit conflict resolution by always expanding the
plan in a forwards direction.

We begin by giving an overview of how POPF works, be-
fore describing a number of modifications that further re-
duce the number of ordering constraints introduced during
search in certain situations. We then briefly describe how
anytime search is used to find plans of successive quality,
through direct application of techniques used in Stochastic-
POPF (Coles et al. 2011).

1 Background
POPF (Coles et al. 2010) is a temporal planner, working un-
der the semantics of PDDL 2.1 (Fox & Long 2003). Each
durative action A has:

• duration constraints, placing lower and/or upper bounds
on duration of the action.

• instantaneous conditions that must hold either at the start
or end of its execution;

• instantaneous propositional and numeric effects that oc-
cur at the start and/or end of its execution;

• conditions that must hold continuously over all its ex-
ecution (in the interval between the start and the end);

• numeric effects that occur continuously throughout its ex-
ecution. In POPF, we insist that such numeric effects are
linear, i.e. increase or decrease a numeric variable by a
constant amount per unit time.

Under these semantics, each durative action A can be
thought of as two instantaneous snap-actions:A`, represent-
ing the start of the action, with the associated instantaneous
conditions and effects; and Aa, similarly representing the
end of the action. Applying A` then begins an interval dur-
ing which the over all conditions ofAmust be respected,
and its continuous numeric effects occur; this interval can
then be terminated by applying Aa. With this representa-
tion, one additional requirement needs to be introduced: for
a state to be a goal state, no actions can be executing.

In the general case, states in a temporal planning problem
can be characterised by a tuple 〈F, V,Q, P,C〉, where:

• F is the set of propositions that hold in the state.

• V is the vector of values of the task numeric variables.

• Q is the event queue: is a list of actions whose execution
has started but not yet finished. For each (a, i) ∈ Q, a
identifies a ground action, and i the step at which it began.

• P is the plan to reach the current state.

• C is a list of temporal constraints over the steps in P .

The temporal constraints in C arise from one of two
sources. First, clearly, the duration constraints of actions
must be obeyed: the amount of time between A` and Aa
must respect the duration constraint ofA. Second, as in non-
temporal planning, ordering constraints are needed to ensure
the plan is causally sound. In the absence of continuous nu-
meric effects (or instantaneous effects that depend on the du-
ration of actions), these temporal constraints take the form of
a Simple Temporal Problem (Dechter, Meiri, & Pearl 1991)
(STP), and POPF employs an incremental STP solver (Cesta
& Oddi 1996) to check that the temporal constraints at each
state are satisfied. In the presence of either or both of these,
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then if the continuous numeric change is linear, a Linear
Programming (LP) encoding is used, where additional con-
straints encode the relationship between the times at which
actions are scheduled and the values of numeric variables
at each point in the plan, with the LP constrained to ensure
preconditions are met.

2 POPF Forwards Partial-Order Expansion
The search in POPF is based around the idea of expanding
a partial-order plan in a forwards direction. Simply, when
applying a snap-action in a given state S, it is ordered only
after a subset of the actions in the plan to reach S: those
with which there is some sort of causal interaction in terms
of facts or numeric variables. This is in contrast to its pre-
decessor, COLIN (Coles et al. 2009a), where each new snap-
action would be ordered after all the actions in the plan to
reach S.

To support partial-order expansion, the general case defi-
nition of a state given in Section 1 is augmented with addi-
tional information, recording which steps in the plan interact
with a given fact p or numeric variable v. For full details, in-
cluding how POPF supports continuous numeric effects, we
refer the reader to (Coles et al. 2010). In the case where all
effects are instantaneous, as is the case in the competition,
the state annotations can be summarised as follows:
• F+(p) ( F−(p) ) records the step in the plan that most

recently had an add effect (resp. delete effect) on the fact
p;

• FP(p), a set of pairs, each 〈i, d〉, records preconditions
involving p. For each pair, i is a step index in the plan,
and d is 0 or ε:
– If d = 0, then p can be deleted in parallel to step i.

This arises where step i is the end of an action with
an over all condition on p: under the PDDL 2.1 se-
mantics, deleting p at this point would not be mutually
exclusive with ending the action requiring p.

– In all other cases (start or end conditions of temporal
actions, or the preconditions of non-temporal actions),
d = ε, and hence p can only be deleted epsilon after
step i.

• V eff (v) records the step in the plan that most recently had
a numeric effect upon the variable v;

• VP(v) is a set, recording which steps in the plan depend
on v. A step i depends on v in one of three cases:

1. i has a precondition referring to v
2. i has an effect whose outcome depends on the current

value of v (e.g. assigning w = v);
3. i is the start of an action whose duration depends on v.
When an action is applied, as step i of a plan, these anno-

tations are first used to ensure the preconditions of the action
are met:
• To satisfy a propositional precondition p, we add the or-

dering constraint t(i)− t(F+(p)) ≥ t. If step i is the start
of an action, and p is only needed as an over all condi-
tion of the action, then t = 0. In all other cases, t = ε: the
effect must complete strictly before step i.

• To satisfy a numeric precondition referring to the variable
v, we add the ordering constraint t(i) − t(V eff (v)) ≥ t
(where, again, the value of t depends on the nature of the
precondition).

• If i is the start of an action, with a duration constraint
referring to v, then t(i)− t(V eff (v)) ≥ ε.
Following this, the annotations are used and updated to

reflect the effects of the action:

• For a propositional delete effect on p, prior to setting
F−(p) = i, we add the ordering constraints:

t(i)− t(F+(p)) ≥ ε
∀〈j,d〉∈FP(p) t(i)− t(j) ≥ d

• For a propositional add effect on p, we add the ordering
constraint t(i) − t(F−(p)) ≥ ε, and then set F+(p) = i.
(As a special case, if F−(p) = i then no ordering con-
straint is added, as the action is adding a fact it has just
deleted.)

• For a numeric effect referring to v, t(i)− t(V eff (v)) ≥ ε;
• For a numeric effect acting on v, prior to setting
V eff (v) = i and VP(v) = ∅, we add the ordering con-
straints:

t(i)− t(V eff (v)) ≥ ε
∀j∈VP(v) t(i)− t(j) ≥ ε

POPF exploits the approach introduced in (Coles et al.
2009b) where if an action A is ‘compression-safe’, Aa is
immediately added to the plan whenever A` is applied. An
action is considered compression safe in this setting if its end
preconditions are subsumed by the action’s over all con-
ditions, and the only end effects are to add propositions (i.e.
no numeric effects or delete effects). The state annotations
ensure immediately adding Aa does not have a catastrophic
effect on makespan: actions will only be ordered after Aa if
they require one of its effects, or violate one of the action’s
over all conditions, which are both circumstances under
which they would previously have had to follow Aa.

3 Introducing Fewer Ordering Constraints
The treatment of numeric variables in the search approach
taken in POPF, as described in Section 2, is quite limited.
In the interests of generality, effects on numeric variables
are totally ordered, and steps requiring a value of v (but not
changing its value) are scheduled to occur after all the steps
prior to them that modified v, and before all the steps fol-
lowing that modify v. The rationale behind this is that the
ordering constraints ensure the value of v is known at every
relevant point, and the interleaving of actions with effects
and/or preconditions on v cannot be changed in such a way
that renders the plan invalid.

To seek to reduce the number of ordering constraints in-
troduced through the use of numeric preconditions and ef-
fects, POPF2 performs static analyses on the problem struc-
ture to identify patterns of numeric behaviour that can be
handled more favourably. The remainder of this section will
go through these cases.
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3.1 Metric-Tracking Variables with
Order-Independent Effects

In various domains, the metric cost function to seek to
minimise when planning comprises a number of ‘metric-
tracking variables’. These are only ever modified by the ef-
fects of actions, and the correctness of the plan does not de-
pend on their values: they never appear in preconditions and
duration constraints, nor are their values used as a basis for
numeric effects. (Indeed, if these variables did not appear
in the metric function, they would be irrelevant and could
be disregarded entirely.) One example of such a metric-
tracking variable can be found in the Time formulation of
the ZenoTravel domain from the 2002 International Plan-
ning Competition (Long & Fox 2003). Here, the variable
total-fuel-used is updated by the fly and zoom ac-
tions to record how much fuel has been used so far when
constructing the plan. In the problem file set for this do-
main, the metric is then to minimise a weighted sum of
total-fuel-used and plan makespan.

If the final value of a metric-tracking variable v does not
depend on the order in which the effects upon it are applied,
then there is no need to totally order actions affecting v:
it suffices that applying all the relevant effects will yield a
value of v, which can then be used when determining the
quality of the plan found. In other words, the effects on v are
‘order independent’. Order-independence can be guaranteed
if all effects on v can be written in the form:

v+=c+ w0.v0 + w1.v1 + ...+ wn.vn

...where c, w0..wn ∈ < , and each vi ∈ [v0..vn] de-
notes a state numeric variable. Through the definition of a
metric-tracking variable (specifically, that the value of v can-
not be used as the basis of a numeric effect), we know that
v 6∈ [v0..vn]. So long as appropriate ordering constraints are
added for each vi (as discussed in Section 2), each effect on
v will then have a known value at the point of being intro-
duced, and the sum of these effect values gives the net effect
on v by the plan.

In POPF2, once static analysis has identified a metric-
tracking variable v, effects on v will update its value with-
out adding ordering constraints; and when a goal state has
been found, the value of v is then available for use in cal-
culating the plan metric. Thus, returning to ZenoTravel, the
total-fuel-used is increased by the constant-valued ef-
fect of each fly/zoom action, without insisting that these
effects are totally ordered.

3.2 As-Needed Ordering after Beneficial Effects
For a given numeric variable v, larger (smaller) values of
v may always be preferable, in terms of how the actions in
the domain interact with v. Larger values of v are always
preferable if:

1. all preconditions (or goals) on v are of the form
v{≥, >}w.v + c, i.e. a larger value of v is more likely to
meet the condition;

2. no action has a duration constraint depending on v;

3. the value of v is never used as the basis for a numeric
effect.
The first of these is key: for meeting preconditions or

goals, a larger v is better. The latter two ensure there are
no circumstances in which this might not be the case, and
are introduced for simplicity: more sophisticated analyses
may be able to relax these, but we leave this to future work.
To identify where smaller values of v are preferable, condi-
tions 1 is altered such that all preconditions and goals on v
must use a ≤ or < operator (rather than ≥ or >). For the
remainder of this subsection, in the interests of clarity, we
will discuss only the case where larger is preferable.

If larger values of v are preferable, then we can conclude
that increase effects on v are beneficial, and decrease effects
on v are not. Returning to the treatment of numeric effects
in POPF, the effects on such a variable v are totally ordered,
with the most recent effect on v in a given state denoted
V eff (v). An action at step i with a precondition on v is then
ordered after V eff (v), i.e. after all previous effects on v. In
the absence of any assignment effects on v, we can do a little
better than this: rather than ordering step i after all previous
increase effects on v and all previous decrease effects on
v, we order it after all previous decrease effects, and some
increase effects — enough to satisfy the precondition1.

In POPF2 the state annotations in POPF are extended to
support this. For a variable v where larger values are prefer-
able, the state now also contains V inc(v): a queue of step–
effect pairs, each 〈j, c〉. These correspond to beneficial ef-
fects on v: that step j has a (calculated) increase effect v+=c.
Preconditions and effects on v interact with V inc(v), and the
existing annotations V eff (v) and VP(v), as follows:

• For a new step i with a decrease effect on v , calculated
as v-=c , the effect is handled as before: i is ordered af-
ter each of VP(v) and V eff (v), V eff (v) = i, and the
recorded value of v is decreased by c.

• For a new step i with an increase effect on v, calculated
as v+=c (based on the values of the variable in the state),
a pair 〈i, c〉 is added to V inc(v), and the recorded value of
v is increased by c.

• For a new step i with precondition v{≥, >}k, the order-
ing constraints are determined according to Algorithm 1,
ordering the step after all decrease effects, and some of
the increase effects (avoiding ordering i after those later
in V inc(v)) .

For this approach to be reasonable, the effects in V inc(v)
must occur in chronological order. Otherwise, woefully in-
efficient ordering constraints could be introduced, using far
later actions to satisfy the precondition than was necessary.
As such, we only apply this special-case reasoning to the
case where once a given plan step i has been added to the
plan, and its minimum timestamp t(i) found, step i will oc-
cur at t(i) in all states subsequently reached by extending

1It could, in theory, be possible to satisfy a precondition on v by
ordering step i before some of the existing decrease effects, but this
would contradict the ethos of POPF: the partial-order is only ever
expanded in a forwards direction, ordering new steps after existing
ones, to avoid the issues of conflict resolution.
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Algorithm 1: Ordering after beneficial increase effects
on an as-needed basis

Data: a step index i; a numeric precondition v ≥ k; the
recorded value value of v in S, S[v]; annotations
V eff (v), VP(v) and V inc(v)

C ← {t(i)− t(V eff (v)) ≥ ε};1
residual ← S[v];2

remaining ← V inc(v);3
while residual ≥ k ∧ remaining 6= ∅ do4
〈j, c〉 ← the back element of remaining ;5
residual ← residual − c;6
if residual ≥ k then7

remove back element of remaining ;8

for each 〈j, c〉 ∈ remaining do9
C ← C ∪ {t(i)− t(j) ≥ ε};10

VP(v)← VP(v) ∪ {i};11
return additional temporal constraints C, and the12
updated annotations

this plan. Then, it suffices to order the elements in V inc(v),
each 〈j, c〉, according to t(j), in ascending order from small-
est t(j) to largest t(j). The necessary guarantee about t(i)
being fixed once the step is added to the plan can only be
made if the domain does not require the starts and ends of
actions to be coordinated, i.e. if the domain does not con-
tain required concurrency (Cushing et al. 2007). For our pur-
poses, we detect that a domain has no required concurrency
by observing that all its actions are compression-safe.

4 Special Cases of Compression-Safe Action
Detection

POPF inherited the basic notation of compression-safety in-
troduced in (Coles et al. 2009b). As noted earlier in this pa-
per, a durative action is ‘basically’ compression safe if:
• Its end effects only add propositions, i.e. it has no end

numeric effects or end propositional delete effects;
• Its at end preconditions are a subset of its over all

conditions, and hence ending the action does not require
facts that are not already true through virtue of it execut-
ing.
This analysis is somewhat basic: scrutiny of domains will

reveal actions that are not considered to be compression-safe
according to this definition, but are compression-safe with
respect to the current problem. Two such cases that we de-
termine analytically in POPF2 are detailed below.

4.1 Compression Safety of Some End Numeric
Effects

The intuition behind the general-case definition of compres-
sion safety used in POPFis to isolate actions where the end
effects are only ever a good idea. As POPF does not sup-
port negative preconditions, adding a proposition is only
ever beneficial: it does not preclude any actions from tak-
ing place. For numeric effects, though, it is not always clear
whether a numeric effect is beneficial, so in the general case,

an action cannot be compression safe if it has an end numeric
effect.

In Section 3.1 we discussed the case where order-
independent effects on metric-tracking variables need not be
explicitly ordered. We can exploit this to relax the definition
of compression safety. Simply, if an action has an end nu-
meric effect v+=c, c ∈ < on a metric-tracking variable upon
which all effects are order independent then we can move
that effect can be moved to the start of the action. The effect
was inevitably going to occur, once the action had started;
and the order in which it occurs (with respect to other effects
on v) is irrelevant. This is a prime example of where actions
can violate the basic definition of compression safety, but are
compression safe in the current problem due to the nature of
the variables upon which their end numeric effects act.

In Section 3.2, we discussed the case where certain nu-
meric effects can be identified as being beneficial; specif-
ically, those increasing (decreasing) a variable v, where
larger (smaller) values of v are definitely preferable. We
can also use this here to relax the constraints that deter-
mine whether an action is compression safe, by allowing
compression-safe actions to have end numeric effects which
are definitely beneficial. There is an additional consideration
we must make, however: there is a risk that by deeming an
action to be compression safe, and hence adding its end to
the plan as soon as its start is added, we preclude concurrent
activity that was previously possible. For instance, the action
A, with start effect v-=c and end effect v+=c, can be applied
concurrently alongside itself in a plan ordered:

[A`, A`, Aa, Aa]

The total order arises due to each having an effect on
v, leading to each updating V eff (v). The action A is typ-
ical of the actions involving catalysts in the Pathways do-
main (Gerevini et al. 2009), where the amount of available
catalyst is decreased at the start of the action, but then in-
creased at the end. Allowing A to occur in parallel to itself
allows the resulting compounds to be obtained sooner, sub-
ject to sufficient catalyst being available.

If larger values of v are preferable, A is in theory
compression-safe. Exploiting this as in the propositional
case, we would then add Aa to the plan immediately, as step
i + 1, whenever A` is added as step i. In POPF, this would
result in V eff (v) = (i+ 1), forcing the second copy of A to
start after Aa rather than being able to start after A`, as in
the total-order fragment above.

To address this potential issue, we only mark actions with
end numeric effects as being compression safe if the do-
main does not contain required concurrency (Cushing et
al. 2007), and we then exploit this in combination with
the ‘as-needed’ ordering constraint approach described in
Section 3.2. Again, for our purposes, we detect that a do-
main has no required concurrency if all its actions are
compression-safe, though there is, ostensibly, a circular ar-
gument here: an end numeric effect is compression-safe if all
actions are compression-safe. To address this, we first loop
over the actions, marking them as compression safe (accord-
ing to the basic definition of POPF) or hypothetically com-
pression safe (subject to all other actions being compression
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safe). Then, if there is one non-compression-safe action, the
hypothetically compression-safe actions are marked as be-
ing non-compression-safe. Otherwise, they are considered to
be compression-safe, as the increase-effect-queue described
in Section 3.2 is sufficient to preserve opportunities for con-
currency.

4.2 The Over-All, End-Delete-Effect Idiom
In general, in the absence of negative preconditions (as in
POPF) delete effects are never beneficial: deleting a fact can
only preclude actions from being applied. As such, in the
basic definition of compression safety, end delete effects
are prohibited. But, consider two durative actions A and B,
each with condition (over all (p)) and effect (at end
(not (p))), and an instantaneous action C with precondi-
tion (over all (p)) and effect (at end (not (p))).
It is clear that:

• Aa,Ba andC are mutually exclusive (all deleting the fact
p), so cannot occur at the same time;

• Neither Aa nor C can fall within the execution of B, or
as it would violate the over all condition. (Similarly,
neither Ba nor C can fall within the execution of A.)

In common between all three of these actions is the notion
that p is required for some amount of time (instantaneously,
in the case of C) but then inevitably destroyed. If this idiom
covers all the uses of p in the problem, then we can allow end
delete effects on p to be considered to be compression safe.
In effect, deleting p can be moved to the start of the actions
such as A or B. There is no point maintaining p throughout
actions such as A, as no action referring to p can be applied.
Such an action would either:

• follow the pattern of C, immediately deleting p and hence
violating the active over all condition of A;

• follow the pattern of B, thereby leading to a guaranteed
future conflict between either the over all condition of
A and the effect of Ba, or the over all condition of B
and the effect of Aa.

5 Anytime Search
In its original form, POPF terminated after the first plan
found. A derivative of POPF, Stochastic-POPF (Coles et al.
2011), has recently extended this to both search in domains
where action durations are uncertain, but also to seek to min-
imise plan cost. The techniques of Stochastic-POPFcan be
applied in here, in a deterministic setting, unaltered. For full
details, we refer the reader to the paper on Stochastic-POPF,
but we will sketch the approach here. The search algorithm
can be summarised as follows:

• Search begins with an upper-bound on acceptable plan
quality of∞

• Attempts to find a plan using enforced hill-climbing
(EHC). If a plan is found, it is stored, and the upper-bound
on acceptable plan quality is then set to the quality of this
plan;

• Irrespective of whether a plan is found by EHC, then
search using WA* (where W = 5, g(n) is the plan length
to node n and h(n) is its heuristic value). If the vari-
ables used to record plan cost are monotonically wors-
ening, then nodes in the search space are discarded if the
cost of the plan to reach that state equals or exceeds the
acceptable upper-bound on plan quality. This is similar
to MIPS-XXL (Edelkamp, Jabbar, & Nazih 2006), where
each time a new best solution plan is found, an additional
goal is added to ensure the next plan is of better quality;
but the planner does not start search from the initial state
each time a new best plan is found.
Stochastic-POPF also contains an updated temporal re-

laxed planning graph (RPG) heuristic, where admissible es-
timates on the cost of reaching each fact are maintained. The
approach taken is based on the costed RPG of Sapa (Do &
Kambhampati 2003), extended to handle the case where cer-
tain costs are only relevant to achieving facts that only ap-
pear as goals. This further supports state pruning: if the cost
of reaching the goals from a given state would definitely
lead to a plan being found that is worse than the incumbent,
the state can be pruned. extended to perform pruning (rather
than preferring
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Background
Heuristic search has been the mainstream approach in plan-
ning for more than a decade, with planners such as FF,
FD, and LAMA being able to solve problems with hun-
dreds of actions and variables in a few seconds (Hoff-
mann and Nebel 2001; Helmert 2006; Richter and Westphal
2010). The basic idea behind these planners is to search
for plans using a search algorithm guided by heuristic es-
timators derived automatically from the problem (McDer-
mott 1996; Bonet and Geffner 2001). State-of-the-art plan-
ners, however, go well beyond this idea, adding a number
of techniques that are specific to planning. These tech-
niques, such as helpful actions and landmarks (Hoffmann
and Nebel 2001; Hoffmann, Porteous, and Sebastia 2004;
Richter, Helmert, and Westphal 2008), are designed to ex-
ploit the propositional structure of planning problems; a
structure that is absent in traditional heuristic search where
states and heuristic evaluations are used as black boxes.
Moreover, new search algorithms have been devised to make
use of these techniques. FF, for example, triggers a best-first
search when an incomplete but effective greedy search (en-
forced hill climbing) that uses helpful actions only, fails. In
FD and LAMA, the use of helpful or preferred operators is
not restricted to the first phase of the search, but to one of
the open lists maintained in a multi-queue search algorithm.
In both cases, dual search architectures that appeal either to
two successive searches or to a single search with multiple
open lists, are aimed at solving fast, large problems that are
simple, without giving up completeness on problems that are
not.

PROBE
The planner PROBE implements a new dual search archi-
tecture for planning that is based on the idea of probes: sin-
gle action sequences computed without search from a given
state that can quickly go deep into the state space, terminat-
ing either in the goal or in failure.

PROBE is a complete, standard greedy best first search
(GBFS) STRIPS planner using the standard additive heuris-
tic (Bonet and Geffner 2001), with just one change: when
a state is selected for expansion, it first launches a probe

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

from the state to the goal. If the probe reaches the goal, the
problem is solved and the solution is returned. Otherwise,
the states expanded by probe are added to the open list, and
control returns to the GBFS loop. The crucial and only novel
part in the planning algorithm is the definition and computa-
tion of the probes

The main contribution in PROBE is the design of these
probes. A probe is an action sequence computed greedily
from a seed state for achieving a serialization of the prob-
lem subgoals that is computed dynamically along with the
probe. The next subgoal to achieve in a probe is chosen
among the first unachieved landmarks that are consistent.
Roughly, a subgoal that must remain true until another sub-
goal is achieved, is consistent, if once it is made true, it does
not have to be undone in order to make the second subgoal
achievable. The action sequence to achieve the next subgoal
uses standard heuristics and helpful actions, while maintain-
ing and enforcing the reasons for which the previous ac-
tions have been selected in the form of commitments akin
to causal links.

Probes are described in (Lipovetzky and Geffner 2011).
As shown in that work, a single probe from the initial state
manages to solve by itself 683 out of 980 problems from
previous IPCs, a number that compares well with the 627
problems solved by FF in EHC mode, with similar times
and plan lengths. Moreover, when a probe is launched from
each expanded state in a standard greedy best first search
informed by the additive heuristic, the number of problems
solved jumps to 900 (92%), which compares well with 827
problems solved by FF (84%), and the 879 problems solved
by LAMA (89%). In this note we focus on the changes made
to PROBE to adapt it to the Int. Planning Competition 2011.

Improving the First Solution: Anytime Search
In the IPC, planners are given a time window and are re-
warded when they compute good quality solutions. Since
the time window is often much larger than the time required
to find a solution, the IPC version of PROBE follows LAMA
in trying to compute a plan fast, and then using the rest of
the time to iteratively improve the best plan found so far.
The first part is achieved by using PROBE as described in
(Lipovetzky and Geffner 2011), i.e. by performing a Greedy
Best First Search with probes. The second part in turn
is achieved by iteratively triggering a Weighted A* search
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without probes, with a reduced weight W on the heuristic
term, and by keeping the cost of the best solution as a bound
so that plan prefixes whose cost does not improve the bound
are pruned. The heuristic used by the WA* phase in PROBE
is given by the size of the ‘cost sensitive relaxed plan heuris-
tic’, which is given by the size of the relaxed plan as pro-
duced by the additive heuristic (Keyder 2010),

Dealing with Non-Uniform Costs
The direct approach of replacing length-based heuristics by
cost-based heuristics when plan cost is different than plan
length is known to run into a problem: if length estimates
are ignored, the coverage over many domains is reduced
(Richter, Helmert, and Westphal 2008; Keyder 2010). In or-
der to avoid this problem, PROBE treats costs in two ways:
in the first stage, for finding the first solution (GBFS with
probes), action costs are ignored (i.e., they are all taken to
be 1), while in the second stage (WA*), they are taken into
account. We found that some problems could be solved in
this manner that could not be solved if the real action costs
were used in both stages.

An important issue appears with the presence of zero cost
actions that can lead to heuristic plateaus in which the ap-
plication of such operators does not decrease the cost to the
goal. In order to avoid these situations, we added a base cost
of 0.01 to all zero cost actions (Keyder 2010).

When Probes Fail
In most classical benchmarks a single probe suffices to find
a solution, suggesting that most problems admit good land-
mark serializations On the other hand, in problems with
no perfect serializations, such as Sokoban or the 8-puzzle,
too many probes turn out to be needed to find a solution,
something which rather than boosting the performance of
the GBFS loop, slows it down. In order to avoid triggering
probes that are not likely to help, we measure the progress
that the probes do in solving the problem. Basically, we as-
sume that a probe is useless if the end state of the probe is
no better than the first state in the probe, where the notion of
better is given as in FF by the heuristic: the final state of the
probe is better than the seed state of the probe if its heuris-
tic value is smaller. When a probe is found to be useless in
this sense, i.e. it doesn’t improve the value of the seed state,
then a parameter R, called the probe ratio is increased by 1.
The meaning of this parameter is that the planner launches a
probe every R expanded nodes. The parameter is initially set
to 1, and then when probes fail without doing ‘useful work’,
it is increased, so that probes end up being triggered less and
less often, thus reducing their overhead.

Experimental Results
We compare PROBE with FF and LAMA over the domains
of the last IPC.1 PROBE is written in C++ and uses Metric-
FF as an ADL to Propositional STRIPS compiler (Hoffmann
2003). LAMA and PROBE are executed without the plan

1FF is FF2.3, while LAMA is the 2008 IPC version. with a
more recently fixed parser.

Domain I FF LAMA PROBE

Cyber 30 4 30 30
Elevator 30 30 30 30
Openstacks 30 30 30 30
Parc-Printer 30 30 25 30
Pegsol 30 30 30 30
Scanalyzer 30 30 30 28
Sokoban 30 27 25 24
Transport 30 29 30 30
Woodworking 30 17 28 30

Total 270 227 257 264
Percentage 84% 95% 98%

Table 1: Coverage of PROBE vs. FF and LAMA over instances
of the last IPC where I is the number of instances per domain

improvement option, reporting the first plan that they find.
All experiments were conducted on a dual-processor Xeon
’Woodcrest’ running at 2.33 GHz and 8 GB of RAM. Pro-
cesses time or memory out after 30 minutes or 2 GB. As the
first solution of PROBE ignores costs, all action costs are as-
sumed to be 1 so that plan cost is plan length also for LAMA
and FF. Table 1 compares PROBE with FF and LAMA over
270 instances from last IPC. In terms of coverage, PROBE
solves 7 more problems than LAMA and 37 more than FF.
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Abstract

Best-first search is one of the most fundamental techniques
for planning. A heuristic function is used in best-first search
to guide the search. A well-observed phenomenon on best-
first search for planning is that for most of the time dur-
ing search, it explores a large number of states without
reducing the heuristic function value. This phenomenon,
called “plateau exploration”, has been extensively studied for
heuristic search algorithms for satisfiability (SAT) and con-
straint satisfaction problems (CSP).
In planning, plateau exploration consists of most of the search
time in state-of-the-art best-first search planners. Therefore,
their performance can be improved if we can reduce the
plateau exploration time by finding an exit state (a state with
better heuristic value than the best one found so far). In this
paper, we present a random-walk assisted best-first search
algorithm for planning, which invokes a random walk pro-
cedure to find exits when the best-first search is stuck on
a plateau. The resulting planner, Roamer, building on the
LAMA and Fast-Downward planning system, uses a best-first
search in first iteration to find a plan and a weighted A∗ search
to iteratively decreasing weights of plans. Roamer is an any-
time planner which continues to search for plans with better
quality until exhausting the whole state space or being termi-
nated because of time limits.

Introduction
Roamer is a best-first state space search planner based
on Fast-Downward and LAMA planners (Helmert 2006;
Richter and Westphal 2010). The core feature of Roamer
is the use of Monte-Carlo Random Walks assisted heuristic
search to escape from plateaus. The Monte-Carlo random
exploration method for deterministic planning is introduced
in (Nakhost and Msller 2009).

One of the most successful approaches to planning is best-
first search. Best-first search typically employs a heuristic
function that maps any state to a real number that estimates
the distance to goal. The number of states expanded by
best-first search depends largely on the quality of the heuris-
tic function. Best-first search with a perfect heuristic func-
tion only needs to expandO(|L|) states whereL is the so-
lution path from the initial state to a goal state (Russell and
Norvig 2003). On the other hand, best-first search for plan-
ning with almost perfect heuristic may still explore an expo-
nential number of states before finding a goal (Helmert and

Röger 2008). In practice, since the length of the solution
pathL is much smaller than the number of expanded states,
it is easy to see that most of the states explored by a best-first
search are not on the solution path.

During the best-first search, for any states explored, we
define the incumbent heuristic valueh∗(s) as the smallest
heuristic function value of all states explored so far tills.
Evidently,h∗ decreases monotonically during search and fi-
nally reaches0 when a goal is found.

For a given planning problem, letS be the set of all gen-
erated states, since we have|S| ≫ h∗(s0), andh∗(s) is a
monotonic mapping fromS to [0, h∗(s0)], we see that for
most of the state pairs(s, s′) wheres′ is explored right after
s during the search,h∗(s) = h∗(s′).

The reasoning above shows that most of the time a best-
first search for planning explores states without reducing
h∗. This phenomenon is namedplateau explorationas it
involves state exploration without changingh∗. Therefore,
to improve the performance of best-first search for planning,
it is important to find a way that can reduce plateau explo-
ration.

To address this challenge, in the Roamer planner, we use
random walks to assist best-first search for planning to es-
cape from plateau more quickly. Specifically, when the best-
first search makes no progress onh∗ for an extended period,
we use a random walk algorithm to explore the search space
and help escape from the plateau.

There are three advantages of using random walks to as-
sist best-first search for planning. First, a random walk has
the potential to directly and quickly jump out of a local min-
ima region where it is not likely to find an “exit” state that re-
ducesh∗, whereas a best-first search will have to explore all
possible states around the local minima. Second, comparing
to best-first search in which heuristic functions are evaluated
at each state, the random walk algorithm can skip heuristic
evaluations of most of the intermediate states during explo-
ration, making space exploration more efficient. Third, ran-
dom walks require little memory, and therefore do not add
space complexity to the original best-first search.

Plateau Explorations
Plateaus during search have been well studied for both SAT
and CSP problems (Hampson and Kibler 1993). In SAT
and CSP problems, a plateau is defined as a set of neigh-
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boring variable assignments that lead to the same number
of unsatisfied constraints or clauses (Frank, Cheeseman, and
Stutz 1997; Russell and Norvig 2003). Plateau structures
have also been studied in planning under the context of local
search. A detailed analysis on why some planning problems
are simple and how long the maximum exiting distance is in
enforced hill-climb are presented in (Hoffmann 2002). G-
value plateau in planning has also been studied in (Benton
et al. 2010).

Many works have been done to accelerate plateau ex-
ploration for local search algorithms. In CSP and SAT,
tabu search (Glover and Laguna 1997) can be used to avoid
falling back to the same states on a plateau. WalkSAT (Kautz
and Selman 1996) is a random-walk based algorithm that
can find an exit to escape from a local minima.

There are several lines of work to accelerate plateau ex-
ploration in best-first search. First, space reduction tech-
niques like preferred operations (Richter and Helmert 2009)
and partial order reduction (Chen and Yao 2009; Chen, Xu,
and Yao 2009) can effectively reduce the number of states
explored by the search algorithm, and subsequently reduce
the number of states on a plateau. However, space reduc-
tion approaches are indirect approaches to accelerate plateau
exploration. These approaches cannot efficiently accelerate
plateau exploration when preferred operators or partial or-
der reductions are not effective. Second, Monte Carlo ran-
dom walk (MRW) algorithms have been used to solve plan-
ning problems with good performance (Nakhost and Msller
2009). It is capable of escaping from local minima. How-
ever, it is slower comparing to deterministic best-first search
when heuristic functions are informative.

Our proposed random-walk assisted best-first search
(RW-BFS) for planning is inspired by both the MRW ap-
proach and best-first heuristic search approach. We use
a best-first search procedure for planning to conduct state
space search for most of the time, as best-first search gives
good performance when the heuristic functions are informa-
tive. In addition, under certain conditions, a random-walk
procedure is invoked to assist the best-first search.

Random-Walk Assisted Best-First Search
Algorithm

Now we introduce our random walk assisted best-first search
(RW-BFS) algorithm framework.

Our proposed RW-BFS algorithm is presented in Algo-
rithm 1. It is a variant of a standard best-first search pro-
cedure. In addition to the original best-first search algo-
rithm, RW-BFS adds adetect plateaucheck after expand-
ing a new state (Line 13 in Algorithm 1). If a plateau is de-
tected, therandom walk explorationprocedure will be called
to explore the search space in order to find a state that can
reduceh∗. Meanwhile,h∗, the incumbent heuristic value,
is updated whenever a state with a smaller heuristic value is
found (Line 6-7 in Algorithm 1).

Algorithm 2 presents therandom walk explorationpro-
cedure. It essentially adopts the Monte-Carlo exploration
algorithm proposed in (Nakhost and Msller 2009). Given a
states andh∗, it exploress’s neighbors using a sequence of

Algorithm 1: The RW-BFS Algorithm
input : Initial states0

1 open← s0 ;
2 while open is not emptydo
3 s← fetch(open);
4 if s is goalthen
5 return solution found;

6 if h(s) ≤ h∗ then
7 h∗ ← h(s) ;

8 if s is not a dead endthen
9 closed← s;

10 foreach si ∈ successor(s) do
11 evaluateh(si);
12 open← (si, h(si)) ;

13 if detect plateauthen
14 open← random walk exploration(s, h∗);

15 return no solution

Algorithm 2: Random Walk Exploration

input : a states, the incumbent heuristic valueh∗

1 s′ ← s;
2 for j ← 1 to t do
3 decide parametersl, n ;
4 s′ ← walk(s′, l, n) ;
5 if s′ is dead-endthen
6 s′ ← s;

7 else if h(s′) < h∗ then
8 return s′;

Algorithm 3: Walk
input : a states, the parameterl, the parametern

1 c← 0 ;
2 s′ ← s ;
3 for c← 1 to n do
4 for j ← 1 to l do
5 o← a random applicable action ins′ ;
6 s′ ← apply(s′, o) ;

7 if h(s′) < hmin then
8 smin ← s′ ;

9 return smin ;
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(t) random walks. A state is returned if its heuristic function
value is lower thanh∗ (Line 7-8 in Algorithm 2).

At each iteration, it initializes parametersl, n that are used
in walk. Then, it invokeswalk to visit a new states′ (Line 4).
If s′ is a dead-end, this algorithm will restart from the input
states (Line 5-6). If s′ has even smaller heuristic value than
h∗, this state will be returned to Algorithm 1. Otherwise,s′

will be used as a new starting state for the next walk. The
number of walks is bounded byt, so that this algorithm al-
ways returns in finite time, whether a better states′ is found
or not.

Algorithm 3 gives a detailed view of thewalk procedure.
Given a starting states and two parametersl andn, Algo-
rithm 3 will try n paths, where each path is a random se-
quence ofl actions. The procedure will return the best end-
ing state among then paths. Note that for any path yielded
by Algorithm 3, heuristic functions are evaluated only at the
end of thel actions (Line 7).
Plateau Detection. The performance of our algorithm also
depends on the performance of thedetect plateauprocedure
used in Algorithm 1.

This plateau detection test can neither be too sensitive nor
too unresponsive. If it is too sensitive, therandom walk
explorationprocedure will be invoked frequently and the
progress of the best-first search may be hindered by con-
stant interruption. On the other hand, if this detection is
unresponsive, our designed random walks cannot help the
best-first search as desired. Therefore, a balanced plateau
detection mechanism is needed. In our proposed algorithm,
the best-first search is currently on a plateau if the value of
h∗ is not reduced form consecutive states. In Roamer, we
setm = 3000+ (np− 1) ∗ 1000, wherenp is the number of
plateaus found so far.
Parameter settings. The Random Walk Exploration algo-
rithm has a few parameters affecting its performance, among
which n and l are the most important since they directly
control the process of escaping from extensive local min-
ima and plateaus. Ifn andl are too small, the local search
method is greedy as it tries to immediately exploit their local
knowledge instead of exploring the neighborhood of current
state. Following a misleading heuristic value may quickly
lead to a much worse state than what could be achieved
with a little more exploration. On the other hand, if they
are too large, the search may take a long time on explor-
ing the neighborhood of the current state. In our algorithm,
we sett = 4 and letl = 1 + (10 − 1) ∗ j/(t − 1), n =
200 + (1000− 200) ∗ j/(t− 1) for j = 1 · · · t.

Multiple Heuristic Evaluations
Using multiple heuristic functions in search usually gives
better performance than a single one. Since different
heuristic functions sort states inopen lists in different or-
ders (Helmert 2006), it involves different search topologies.
When one heuristic function becomes uninformative on its
value plateau, other heuristics may give informative guid-
ance and find exits on a plateau. However, extra heuristic
function calculation and extra open lists may increase the
overall time and space complexity of the search algorithm.

The default heuristic evaluation of LAMA planner adapts
action costs, which estimates the minimum cost of a relaxed
plan from current state to goal. In our experimental results,
it performs not as good in domains which some actions have
large costs while others are small as other domains. In our
planner, we add a heuristic evaluation which estimates the
length of the relaxed plan besides estimating the minimum
cost of the relaxed plan. Respectively, we add anopenlist in
our planner which sorts states by the order of the length of
the relaxed plan. This synthetic heuristic evaluations achieve
a good trade-off performance in our experimental results.

Experimental Results
In this section, we report experimental results of our plan-
ner. We evaluate performances for four planners, i.e.,
a baseline planner - LAMA, Roamer with random walk
(Roamerrw), Roamer with multiple heuristic evaluations
(Roamermh), and Roamer which integrating these two tech-
niques. We test all domains in IPC-6 (The Sixth Interna-
tional Planning Competition 2008), including Elevators (El-
evator), Openstacks (Open), PARC printer (Parc), Peg soli-
taire (Peg), Scanalyzer-3D (Scan), Sokoban (Sokoban),
Transport (Trans) and Woodworking (Wood). All experi-
ments are ran on a PC workstation with a 2.40 GHz CPU
and 2GB memory. The running time limit for each instance
is set to 300 seconds.
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Figure 1: Number of instances (out of all the instances in the
testing domains) that are solvable for a given time limit.

In Figure 1, we present the number of instances that are
solvable in the testing domains with respect to a given time
limit. Clearly, both Roamerrw and Roamermh both solve
more problem instances than the baseline planner. Roamer
gives the best performance in these three algorithms.

Conclusions
In this paper, we have presented a random walk assisted
best-first search algorithm, which can improve the efficacy
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of heuristic search, and a multiple heuristic evaluations tech-
nique to balance the performance in different problem do-
mains. Comparing to the baseline planner, the experimental
results show that our planner, Roamer, outperforms in num-
ber of solved instances in testing domains.
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Abstract 

SatPlanLM and SatPlanLM-c are both built on top of 
SatPlan. The most important feather of the two planners is 
the exploitation of landmarks. Specifically, landmarks and 
their orderings are encoded as clauses, which serve as 
additional constraints. SatPlanLM supports the STRIPS 
subset of PDDL, while SatPlanLM-c additionally supports 
action costs in the language used in IPC-5. In this year's IPC, 
SatPlanLM uses siege as the default solver and SatPlanLM-
c uses MiniSat as the default solver. We also implemented 
an approach in SatPlanLM-c that translates planning 
problems with action costs into sequences of partial 
weighted MaxSAT problems, which is more suitable for 
planning with action costs. 

Introduction   
SatPlanLM and SatPlanLM-c use a kind of knowledge, 
landmarks (Porteous et al. 2001; Hoffmann et al. 2003). 
Specifically, they encodes landmarks and their orderings of 
a planning task T into clauses, and integrates the clauses 
into the encoding of T. SatPlanLM uses siege 
(http://www.cs.sfu.ca/research/groups/CL/software/siege/) 
as the default solver and entered the planning and learning 
track. SatPlanLM-c supports action costs specified in the 
language used in IPC-5, uses MiniSat (Eén and Sörensson 
2003) as the default solver and entered the satisficing track 
of the deterministic part. We also designed a method in 
SatPlanLM-c that handles planning problems with action 
costs more suitably by encoding a planning task into a 
sequence of partial weighted MaxSAT problems (Fu and 
Malik 2006) like the way proposed by Robinson et al. 
(2010) and using the SMT solver Yices 
(http://yices.csl.sri.com/). In the rest of this paper, we first 
introduce our encoding schema of landmark knowledge 
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and then describe an approach that is sensitive to action 
costs. 

Encoding Landmarks and Their Orderings 
SatPlanLM and SatPlanLM-c use the thin-gp based 
encoding in SatPlan’06 (Kautz et al. 2006). Additionally, 
they encode landmarks and their orderings (Richter et al. 
2008) of a time bounded planning task into clauses, and 
then integrate these clauses into the problem encoding of 
the task. Landmarks and their orderings are encoded in the 
following way. Let T be a planning task, the time bound on 
T be k, and p, q be facts. 
(1) For each fact that p is a landmark, generate a clause  
p0 ∨ … ∨ pk. 
(2) For each natural ordering q → p, and for each time i = 
0… k, generate a clause ¬pi ∨ qi-1 ∨ …∨ q0. 
(3) For each necessary ordering “q →n p”, and for each 
time i = 0… k, generate a clause ¬pi ∨ pi-1 ∨ qi-1.  . 
(4) For each greedy necessary ordering q →gn p, for each 
time i = 0… k, generate a clause ¬pi ∨ pi-1 ∨ … ∨ p0 ∨ qi-1. 
 We make some simple optimizations in the above 
encoding schema. In (1), we skip a fact p if it is in initial 
conditions or goal conditions of T. In (1), (2), (3) and (4), 
we use first_level(p), which is the first level of p in the 
planning graph for the current bounded task, to reduce 
clause length. Specifically, for a landmark p, if time step i 
< first_level(p), then pi is removed from the respective 
clauses, as pi cannot be true in these clauses. 
 SatPlan and SatPlanLM-c uses LAMA (Richter et al. 
2008) to compute landmarks and the corresponding 
orderings. Specifically, a planning task T is first given to 
LAMA for extracting landmarks and landmark orderings. 
The knowledge is output to an external file. After that, the 
description of T and the file are given to SatPlan’06, where 
encodings of T and the landmark knowledge of T are 
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integrated. Note that in SatPlanLM-c the encoding 
produced above are given to MiniSat. It is obvious that the 
approach is not cost sensitive. However, for efficiency 
concern, we use this approach as the default configuration 
for SatPlanLM-c. 

An Action Cost Sensitive Approach 
In SatPlanLM-c, we also implemented an approach that is 
sensitive to costs of actions. It is like that proposed by 
Robinson et al. (2010). The most important idea is 
encoding an action a with positive cost c into a unit clause 
¬a whose weight is c. The difference is that we use the 
thin-gp based encoding to present hard constrains and we 
use the SMT solver Yices. Also note that, our approach 
doesn’t guarantee optimality in terms of action costs. The 
effect of landmark knowledge on the approach is under test 
and will be studied in our future work. 
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Abstract

The paper presents a planner called Sharaabi. It is an
extension to DRIPS, a planner which tackled required
concurrency with overall preconditions requiring con-
tinuous support. The paper describes the motivation be-
hind the work and the way the planner operates. The
extensions to DRIPS are described in brief. Examples
are provided to show that the planner works.

Introduction
The solutions of temporal planning problems more often
than not require the concurrent execution of durative actions
due to goal deadlines or interactions among actions. The
latter case has been labeled as Coordination/Required
Concurrency (RC)(Halsey, Long, and Fox 2004;
Cushing et al. 2007) and the problems for which
it happens have been categorized as temporal plan-
ning problems with coordination/required concurrency.
The planner CRIKEY (Halsey, Long, and Fox 2004;
Coles et al. 2009b) has been specifically designed to handle
this class of problems by maintaining envelopes of possibly
interacting actions. It searches in the space of split actions-
where a durative action D is divided into two point actions
Dstart and Dend. The at-start effect and preconditions are
added to Dstart and the at end preconditions and effects are
added to Dend. The invariants are maintained in a separate
queue to check for violations. At each step, CRIKEY
decides on actions to add to the plan, If it chooses a start
action, it updates the state description with immediate
effects and creates a new envelope. If it chooses an end
action, it must choose a start action to pair it with and close
an envelope. It uses a simple temporal network (Dechter,
Meiri, and Pearl 1991) to check for the validity of the
current plan under consideration after every such addition
of an action. There have been several variants to CRIKEY,
notably CRIKEYshe (Coles et al. 2009b), and CRIKEY3
(Coles et al. 2008) and COLIN (Coles et al. 2009a) (which
maintains a LP problem to tackle continuous durative
planning). POPF (Coles et al. 2010) is a forward state space
temporal POCL planner. Instead of committing on the start
times of actions as in SAPA, or committing and then lifting

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a partial order in CRIKEY, LPG.s etc., POPF maintains a
partial order from the start and tries to exploit this order for
solving RC problems.

The Invariant Class
All these planners except (Coles et al. 2010) do not solve a
class of problems we labelled The Invariant Class. The no-
table feature of this class is that every problem has all its
plans requiring atleast one action with an overall precondi-
tion that needs to be supported/covered by an overlap of ac-
tions providing/establishing the condition. A few motivating
examples are shown in the figure 1. Figure 1(a) shows the
type of problems which the planners described in the pre-
vious paragraph can solve- problems where each producer
supports multiple consumers. The problems shown in fig-
ure 1(b) require at least one consumer to be supported by
multiple producers. The reason the above planners can not
tackle these problems is because they do not generate the
necessary temporal constraints which force the producers to
overlap. In the absence of those constraints, each check for
schedulability either takes a significant amount of time and
the planner gets stuck or the planner returns invalid plans/no
plan messages.

DRIPS
I designed a planner called DRIPS (Kavuluri 2010) to tackle
this class of problems. DRIPS is a modification of SAPA
(Minh and Kambhampati 2003). SAPA is a metric-temporal
planner which searches in the space of time stamped states.
It checks for applicable actions whenever an event occurs.
Events occur when an action is applied on a state or when de-
layed effects of actions are applied on a state from its event
queue -the time is advanced to the time stamp of the event.
SAPA was modified by adding two more types of states after
the at start effects of an action are applied.
• A state which signifies the time just before the end of each

action
• A state which indicates the passage of one clock tick with-

out any action
This causes the planner to check for actions before the pro-
ducers finish and also causes the planner to generate all pos-
sibilities at each clock tick. In the event the planner fails to
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Figure 1: Required Concurrency and Invariant Class

find a plan using the first type of states, the clock tick based
states ensure that completeness is not lost. So, given enough
time and memory, if the given problem has a plan whose step
size is not smaller than the clock tick, DRIPS theoretically
should find a plan. More details about DRIPS are available
in (Kavuluri 2010).

Sharaabi
The entry for this planning competition Sharaabi consists of
modifications that have been made to DRIPS upto this point.
The modifications are listed below.

• Sharaabi tackles derived predicates

• Sharaabi tackles problems requiring time-aware temporal
planning

Both features of Sharaabi are described here with example
problems.

Handling Derived Predicates
Derived predicates were implemented by implementing a
class called Predicate formula and associating it with each
derived predicate class. The derived predicates are evaluated
when testing whether the action is applicable. Once the de-
rived predicate is checked, its truth value is stored in the state
so that it need not be computed again. The figures 2, 3 and 7
give an example match problem involving derived predicates
where you need either a match or a bulb to be on to mend the

fuse. The derived predicate bright becomes true when either
of the derived predicates lightavail and bulbavail is true.

(define (problem fixfuse)
(:domain matchcellar)
(:objects
match1 - match
bulb - bulb
fuse1 fuse2 - fuse)
(:init
(unused match1)
(working bulb)
(handfree))
(:goal (and (mended fuse1))))

Figure 2: Derived Predicate Example- Problem

;; Search time 22 milisecs
;; State generated: 9 State explored: 4
0.0: (LIGHT MATCH match1) [7.0]
0.0: (MEND FUSE fuse1) [9.0]
6.99: (Put on bulb) [4.0]

Figure 3: Plan for the derived match problem

(at start
(assign (convoy-tail-left-at ?v1 ?e) (+ t (/ (convoy-length ?c)
(convoy-speed ?c))))) - effect
(at start
(<= (convoy-tail-left-at ?v1 ?e) (+ (+ t (- 0 (+ (inner-
convoy-distance) (convoy-edge-travel-time ?e)))) (?dura-
tion)))) - precondition

Figure 4: Time-aware temporal planning example

(define (problem fixfuse)
(:domain TAPmatchcellar)
(:objects
match1 match2 match
fuse1 fuse2 - fuse)
(:init
(unused match1) (unused match2)
(= (cansolve) 7.0) (handfree) (q))
(:goal (and (mended fuse2)))))

Figure 5: Time-aware temporal planning example contd..

;; Search time 14 milisecs
;; State generated: 12 State explored: 8
0.0: (setTime) [1.0]
5.0: (LIGHT MATCH match2) [15.0]
5.0: (MEND FUSE fuse2 match2) [9.0]

Figure 6: Time-aware temporal planning example contd..
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(define (domain matchcellar)
(:requirements :typing :durative-actions :derived-predicates)
(:types match fuse bulb)
(:predicates
(light ?match - match)
(bulblight ?bulb - bulb)
(switchon ?bulb - bulb)
(handfree)
(unused ?match - match)
(working ?bulb - bulb)
(mended ?fuse - fuse))
(:durative-action LIGHT MATCH
:parameters (?match - match)
:duration (= ?duration 7)
:condition (and
(at start (unused ?match))
(over all (light ?match)))
:effect (and
(at start (not (unused ?match)))
(at start (light ?match))
(at end (not (light ?match)))))
(:durative-action Put on
:parameters (?bulb - bulb)
:duration (= ?duration 4)
:condition (and
(at start (working ?bulb)))
:effect (and
(at start (not (working ?bulb)))
(at start (bulblight ?bulb))
(at start (switchon ?bulb))
(at end (not (switchon ?bulb)))
(at end (not (bulblight ?bulb)))))

(:durative-action MEND FUSE
:parameters (?fuse - fuse)
:duration (= ?duration 9)
:condition (and
(at start (handfree))
(over all (bright)))
:effect (and
(at start (not (handfree)))
(at end (mended ?fuse))
(at end (handfree))))
(:derived (lightavail)
(and ((exists (?z) (light ?z)))))
(:derived (bulbavail)
(and ((exists (?z) (bulblight ?z)))))
(:derived (bright) (or ((lightavail) (bulbavail)))))

Figure 7: Example for Derived Predicates- Domain

Time-aware temporal planning
Time-aware temporal planning indicates that the current
time and action durations are part of actions preconditions
and effects. An example of the same is provided in figure 4.
The first expression (effect) assigns the value of the current
time plus the time the convoy takes to travel a distance equal
to its length to the convoy-tail-left-at function. The precon-

(define (domain TAPmatchcellar)
(:requirements :fluents :typing :durative-actions)
(:types match fuse)

(:predicates
(light ?m - match)
(handfree)
(unused ?m - match)
(mended ?f fuse) (p) (q) )

(:functions (cansolve) )

(:durative-action setTime
:parameters ()
:duration (= ?duration 1)
:condition (and (at start (q)))
:effect (and (at start (assign cansolve 5.0))
(at end (p)) (at start (not (q)))) )

(:durative-action LIGHT MATCH
:parameters (?m - match)
:duration (= ?duration 15)
:condition (and
(at start (p))
(at start ( == cansolve t))
(at start (unused ?m)) (over all (light ?m)))
:effect (and
(at start (not (unused ?m)))
(at start (light ?m))
(at end (not (light ?m)))))

(:durative-action MEND FUSE
:parameters (?f - fuse ?m - match)
:duration (= ?duration 9)
:condition (and (at start (handfree))
(over all (light ?m)))
:effect (and (at start (not (handfree)))
(at end (mended ?f))
(at end (handfree)))))

Figure 8: Time-aware temporal planning example Domain

dition verifies if the convoy-tail-left-at function satisfies the
inter-convoy distance to be maintained if the convoy were to
start now.

This was implemented by using the #t and ?duration
features in SAPA. This was done to add a function called
time which returns the current time of the state when it
is called. An example is shown in the figures 5, 6 and 8
to demonstrate this capability. The time when the planner
can begin to solve the problem is set by the setTime ac-
tion and this is verified in the preconditions of the action
LIGHT MATCH. The domain and problem files are given
in figures 5 and 6. The plan is shown in Figure 8.

Conclusions and Future Work
This paper presents Sharaabi, an extension to DRIPS which
deals with Derived predicates and Time-aware temporal
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planning. The paper explains in brief how these features
were implemented and demonstrates the planners capabil-
ities with brief examples. Currently we are verifying the
implementation for scalability and coverage. Future work
would entail improving the efficiency of the planner like
looking at different heuristic functions to improve speed.
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Abstract

The idea of computing lookahead plans from relaxed
plans and using them in the forward state-space heuris-
tic search YAHSP planner has first been published in
2003. We show in this paper that this simple idea still
leads to very efficient planners in comparison with state-
of-the-art planners, in terms of running time. We de-
scribe the new implementation of lookahead search that
has been made in the second version of the YAHSP
planner, which has been considerably simplified since
the first implementation. We then show through an ex-
tensive comparison, over all existing IPC benchmarks,
that the resulting YAHSP2 planner outperforms state-
of-the-art planners in terms of cumulated number of
solved problems and running time. We also briefly de-
scribe YAHSP2-MT, an attempt to parallelize YAHSP2
for multi-core machines with shared memory.

Introduction
Since the 6th edition of the deterministic part of the Inter-
national Planning Competition (IPC) in 2008, an empha-
sis has been put on solution quality rather than on speed
in computing a single plan. In the 2008 and 2011 competi-
tions, deterministic planners were run during a fixed amount
of time and their objective was to find the best possible
plan within this time constraint. Although for real-world
applications plan quality is generally as important as find-
ing a solution (if not even more), we think that designing
fast planners is still a relevant task. Particularly, determin-
istic planners can be embedded into wider systems that fre-
quently call them with different initial states, goals or even
domain definitions, and use the solution plans for a partic-
ular objective. For example, the probabilistic planners FF-
Replan (Yoon, Fern, and Givan 2007) and RFF (Teichteil-
Königsbuch, Kuter, and Infantes 2010), winners of the prob-
abilistic tracks of the non-deterministic IPCs in 2004 and
2008 respectively, make heavy use of the FF planner to solve
determinized problems extracted from the probabilistic one.
They then combine the solutions given by FF into a policy
for the probabilistic problem. Another example is the DAEX
planner (Bibai et al. 2010; Dréo et al. 2011), which embeds
the YAHSP planner (Vidal 2004) into an evolutionary algo-
rithm whose objective is to produce optimized plans. Opti-
mization is performed through the evolution of a population

of individuals, which represent sequences of intermediate
goals that must be reached in turn from the initial state to
the goal of the problem, by successive calls to YAHSP with
an upper bound on the number of expanded nodes. Within a
typical single run of DAEX during 30 minutes, YAHSP may
be called hundreds of thousands of times. The need for a
fast planner to embed in DAEX motivated the design of the
YAHSP2 planner. Indeed, in opposition to modern planners
such as LAMA (Richter and Westphal 2010) which require
heavy preprocessing techniques for each different problem,
even on the same domain (transformation to SAS+, land-
mark generation, landmark orderings, etc.), YAHSP does
not perform any preprocessing, computing everything on-
the-fly during search. Embedded into a wider system, search
in YAHSP for a new initial state and goal can then be per-
formed immediately, allowing fast and frequent calls.

The goals in the design of a new version of YAHSP were
(1) to extend its expressivity to cost-based and temporal
planning, and (2) to simplify its implementation with ef-
ficiency in mind. The former has been easily performed:
YAHSP2 simply does not take into account costs and du-
rations when computing a single solution, and performs a
post-deordering (Bäckström 1998) of the sequential solution
plans to produce concurrent plans (de facto forbidding tem-
porally expressive planning). The idea behind this is that the
planner embedded into DAEX should concentrate on the task
of finding a plan, working only on the combinatorial prob-
lem, the optimization being held by the evolutionary algo-
rithm. In order to fully use the time contract of 30 minutes
in the IPC, search in YAHSP2 alone is pursued when solu-
tions are found and states whose cost (plan length, sum of
action costs, or makespan after deordering) exceeds the best
cost found so far are pruned. One subtlety is that deorder-
ing for temporal planning is made during search, in order
to be able to perform that pruning. The latter goal in the de-
sign of YAHSP2, simplicity, has consisted in simplifying the
way relaxed plans and lookahead plans are computed, and
removing many other ideas introduced in the first version of
YAHSP which were not strictly needed to reach good per-
formance. Indeed, some of these ideas were useful in some
cases on the very limited number of benchmarks available
when YAHSP has been conceived, but do not reveal to be
that interesting when performing experiments on the full set
of benchmarks which is now available.
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We provide in this paper a complete picture of the tech-
niques and algorithms used in the YAHSP2 planner as it has
been entered into the 7th International Planning Competi-
tion. We also show through an extensive experimental evalu-
ation that YAHSP2 improves the state-of-the-art (before the
competition!) in terms of cumulated number of solved prob-
lems and running time efficiency for finding a single plan.
We finish by a short description of YAHSP2-MT, an attempt
to benefit from multi-core processors in lookahead heuristic
search planning previously detailed in (Vidal, Bordeaux, and
Hamadi 2010).

Background
The basic STRIPS model of planning can be defined as
follows. A state of the world is represented by a set of
ground atoms. A ground action a built from a set of atoms
A is a tuple 〈pre(a), add(a), del(a)〉 where pre(a) ⊆ A,
add(a) ⊆ A and del(a) ⊆ A represent the preconditions,
add effects and del effects of a respectively. A planning
problem can be defined as a tuple Π = 〈A,O, I,G〉, where
A is a finite set of atoms, O is a finite set of ground actions
built from A, I ⊆ A represents the initial state, and G ⊆ A
represents the goal of the problem. The application of an ac-
tion a to a state s is possible if and only if pre(a) ⊆ s and
the resulting state is defined by s′ = (s\del(a))∪add(a). A
solution plan is a sequence of actions 〈a1, . . . , an〉 such that
for s0 = I and for all i ∈ {1, . . . , n}, the intermediate states
defined by si = (si−1 \ del(ai)) ∪ add(ai) are such that
pre(ai) ⊆ si−1 and G ⊆ sn. This simple STRIPS model
has been enriched in many ways through the evolution of
PDDL. However, the objective in the design of YAHSP2 is
to consider the combinatorial difficulty of finding a solution
plan only, and thus we stick to the basic STRIPS model. Ac-
tion costs and durations are simply ignored, a temporal plan
being obtained by a deordering of a valid sequential plan.

The lookahead strategy implemented in the first version
of YAHSP has been described in (Vidal 2004). Briefly, the
idea is to produce in polynomial time a sequence of actions
that hopefully can bring search closer to a goal state, and
to introduce this state in the open list of a best-first search
algorithm just as if it was a normal state. To this end, re-
laxed plans (Hoffmann and Nebel 2001) which are often of
high quality are used in YAHSP to compute such a sequence.
This is performed by a simple algorithm which tries to ap-
ply as much actions as possible from a relaxed plan to the
state for which it has been computed. When no more action
can be applied, a simple repair strategy tries to replace an
action of the relaxed plan by another one, taken from the
global set of actions, which can be applied and produces
an unsatisfied precondition of another action in the relaxed
plan. The idea of producing lookahead plans and states has
been recently enriched, for example by the computation of
low-conflicts relaxed plans and a repair strategy based on
insertion instead of replacement (Baier and Botea 2009), or
by computing lookahead plans in a different way than ex-
tracting them from relaxed plans, using sophisticated tech-
niques such as landmarks and causal chains (Lipovetzky and
Geffner 2011).

YAHSP2: The Algorithms
In the design of the second version of the YAHSP planner,
we took the opposite direction: instead of augmenting the
techniques and components used inside the planner, we sim-
plified its design and removed many unnecessary steps, fol-
lowing in that the KISS principle: “Keep It Simple, Stupid”.
The motivations behind this work were first to implement a
planner that could be easy to maintain and to embed into a
wider system such as DAEX, and second to better under-
stand what makes YAHSP an efficient planner. Indeed, if
some ideas were sometimes useful on the small set of bench-
marks available when YAHSP was written, experiments on
the much larger set of benchmarks now available changes
the picture. The implementation, with respect to the version
described in (Vidal 2004), has been modified and simplified
in the following main ways:

• The relaxed plans used to compute lookahead plans are
not any more computed from relaxed planning graphs. We
found more convenient and easy to extract relaxed plans
directly from the computation of a critical path heuristic
such as hadd or h1: all what is needed is a cost associated
to each action. This has the advantage to avoid the need
of complex data structures to build planning graphs, and
considerably simplifies the algorithm.

• The heuristic value of states is no longer the length of re-
laxed plans, but the hadd value of the goal set. Among
several variants that we have experimented, we found that
using hadd for both evaluating states and extracting looka-
head plans was a good strategy.

• Some refinements introduced in YAHSP are abandoned,
due to their lack of robustness on the whole set of bench-
marks. Among them are helpful actions first introduced in
FF and used in YAHSP to define a lexicographic order on
the nodes to be expanded (always preferring nodes com-
ing from the application of an helpful action). Although
some recent experiments show that they may be of in-
terest (Richter and Helmert 2009), their use in YAHSP
finally does not reveal to be that interesting. Also, goal-
preferred actions (actions that do not delete a goal) which
were used to compute twice a relaxed planning graph: the
first one with goal-preferred actions only, and the second
one with all actions of the problem in case of a failure in
reaching the goals, are not used any more.

The simplified design of YAHSP2 allows us to completely
describe the algorithms, which are implemented in around
450 lines of C code. The prerequisites are a parsing and
grounding process (without any complex preprocessing such
as mutex, landmarks, etc.), and a few helpers to easily access
some data (in particular, the list of actions which consume,
add and delete an atom are precomputed). States are imple-
mented with bit vectors such that checking the presence of
an atom in a state is performed in constant time. The open
and closed lists are represented with red-black trees. Nodes
of the search tree are tuples n = 〈s, p, t, l, f, a〉 where s is
a state, p is the parent node of n, t is the sequence of ac-
tions (a single action for a classical transition, a sequence
for lookahead states) yielding n from p, l is the length of
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Algorithm 1: plan-search
input : a planning problem Π = 〈A,O, I,G〉 and a weight

ω for the heuristic function
output : a plan if search succeeds, ⊥ otherwise

open← closed← ∅
create a new node n:

n.state← I
n.parent← ⊥
n.steps← 〈〉
n.length← 0

n′ ← compute-node(Π, ω, n, open, closed)
if n′ 6= ⊥ then return extract-plan(n′)
else

while open 6= ∅ do
n← arg minn∈open n.heuristic

open← open \ {n}
foreach a ∈ n.applicable do

create a new node n′:
n′.state← (n.state \ del(a)) ∪ add(a)
n′.parent← n
n′.steps← 〈a〉
n′.length← n.length + 1

n′′ ← compute-node(Π, ω, n′, open, closed)
if n′′ 6= ⊥ then return extract-plan(n′′)

return ⊥

the plan reaching n from the initial state, f is the numerical
heuristic evaluation of s and a is the set of actions applicable
in s. The notations n.state, n.parent, n.steps, n.length,
n.heuristic and n.applicable refer to s, p, t, l, f and a re-
spectively. The operator ⊕ concatenates two sequences.

Algorithm 1 (plan-search) constitutes the core of the
best-first search algorithm (a weighted-A* here). The first
call to compute-node allows to find a solution to the prob-
lem without search, by recursive calls to the lookahead pro-
cess. Nodes are extracted from the open list following their
heuristic evaluation and are expanded with the applicable ac-
tions (already computed and stored in nodes inserted into the
open list), and a solution plan is returned as soon as possible.
In the version submitted to the 7th IPC, search is pursued in
order to improve the solution, with pruning of partial plans
whose quality is lower than that of the best plan found so far.
Also, the weight ω is set to 3.

Algorithm 2 (compute-node) first performs duplicate
state detection, even if the quality (length, cost or makespan)
of the plan which yields such a state is improved; as we de-
liberately avoid optimization. It then computes the heuris-
tic, checks if the goal is obtained or contrarily cannot be
reached, and updates the node with the heuristic and the ap-
plicable actions given by compute-hadd. The node is then
stored in the open list and a lookahead state/plan is com-
puted by a call to lookahead. A new node corresponding
to the lookahead state is then created and compute-node is
recursively called. Recursion is stopped when a goal state, a
duplicate state or a dead-end state is reached.

Algorithm 2: compute-node
input : a planning problem Π = 〈A,O, I,G〉, a weight ω

for the heuristic function, a node n, the open and
closed lists

output : a goal node if search succeeds, ⊥ otherwise; open
and closed are updated

if ∃n′ ∈ closed |n′.state = n.state then return ⊥
else

closed← closed ∪ {n}
〈cost, app〉 ← compute-hadd(Π, n.state)
gcost← Σg∈G cost[g]
if gcost = 0 then return n
else if gcost =∞ then return ⊥
else

n.applicable← app
n.heuristic← n.length + ω × gcost
open← open ∪ {n}
〈state, plan〉 ← lookahead(Π, n.state, cost)
create a new node n′:

n′.state← state
n′.parent← n
n′.steps← plan
n′.length← n.length + length(plan)

return compute-node(Π, ω, n′, open, closed)

Algorithm 3 (compute-hadd) computes hadd and returns
a vector of costs for all atoms and actions, as well as ac-
tions applicable in the state for which hadd is computed ob-
tained as a side-effect. Several ways are possible to compute
hadd, e.g. by mutually recursive functions triggered by the
updates; the one shown here has the advantage to be very
simple and efficient, even if it looks laborious at first sight
because of multiple iterations over the whole set of actions.

Algorithm 4 (lookahead) computes a lookahead
state/plan from a relaxed plan given by a call to extract-
relaxed-plan. Once a first applicable action of the relaxed
plan is encountered, it is appended to the lookahead plan and
the lookahead state is updated. A second applicable action
is then sought from the beginning of the relaxed plan, and
so on. When no applicable action is found, a repair strat-
egy tries to find an applicable action of minimum cost from
the whole set of actions, in order to replace an action of the
relaxed plan which produces an unsatisfied precondition of
another action of the relaxed plan, and the process loops.

Algorithm 5 (extract-relaxed-plan) computes a re-
laxed plan from a vector of action costs. A sequence of
goals to produce is maintained, starting from the goals of
the problem. The first one is extracted, and an action which
produces it with the lowest cost is selected and stored in the
relaxed plan. Its preconditions are appended to the sequence
of goals, and the process loops until the sequence of goals
is empty. An atom already satisfied, i.e. produced by an ac-
tion of the relaxed plan, is not considered twice. The relaxed
plan is finally sorted before being returned, by increasing
costs first, and for equal costs by trying to order first an ac-
tion which does not delete a precondition of the next action.
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Algorithm 3: compute-hadd
input : a planning problem Π = 〈A,O, I,G〉 and a state s
output : the vector of action and atom costs and the set of

actions applicable in s

foreach a ∈ O do
cost[a]←∞
update[a]← (pre(a) = ∅)

foreach p ∈ A do
if p ∈ s then

cost[p]← 0
foreach a ∈ O | p ∈ pre(a) do

update[a]← true

else cost[p]←∞
app← ∅
loop← true
while loop do

loop← false
foreach a ∈ O do

if update[a] then
update[a]← false
c← Σp∈pre(a) cost[p]
if c < cost[a] then

cost[a]← c
if c = 0 then app← app ∪ {a}
foreach p ∈ add(a) do

if c + 1 < cost[p] then
cost[p]← c + 1
foreach a ∈ O | p ∈ pre(a) do

loop← true
update[a]← true

return 〈cost, app〉

Experiments
We performed extensive experiments on the whole set of
benchmarks, from the 1st to the 6th IPC, that YAHSP2 can
handle (i.e. without ADL and numerical domains). The ob-
jective of the experiments is to demonstrate that a simple
heuristic search planner with a lookahead strategy is com-
petitive with the state-of-the-art in terms of number of solved
problems and running time. All experiments are performed
on an Intel Xeon X5670 running at 2.93GHz with 4GB of
memory and a timeout of 30 minutes.

Sequential Planning
Seven planners are compared on 1534 sequential planning
problems. Costs have been removed from domains of the
6th IPC, in order to run planners that do not accept them
such as FF and LPG-td. The planners are FF (Hoffmann and
Nebel 2001), LAMA (Richter and Westphal 2010), LPG-td
(Gerevini, Saetti, and Serina 2003), Mp (Rintanen 2010),
SGPlan6 (Chen, Wah, and Hsu 2006), YAHSP version 1
with two different settings: Y1lbfs similar to YAHSP2 and
Y1lobfs with the “optimistic” strategy (i.e. expanding first
nodes coming from the application of an helpful action), and
YAHSP2. Most of these planners have been awarded at pre-

Algorithm 4: lookahead
input : a planning problem Π = 〈A,O, I,G〉, a state s, and

a vector of action costs cost
output : a lookahead state and a lookahead plan

plan← 〈〉
rplan← extract-relaxed-plan(Π, s, cost)

// with rplan = 〈a1, . . . , an〉
loop← true
while loop do

loop← false
if ∃ i ∈ {1, . . . , n} | pre(ai) ⊆ s then

loop← true
i← min(i ∈ {1, . . . , n} | pre(ai) ⊆ s)
s← (s \ del(ai)) ∪ add(ai)
plan← plan⊕ 〈ai〉
rplan← 〈a1 . . . , ai−1, ai+1, . . . , an〉

else
i← j ← 1
while ¬loop ∧ i ≤ n do

while ¬loop ∧ j ≤ n do
if i 6= j ∧ add(ai) ∩ pre(aj) 6= ∅ then

candidates← {a ∈ O | pre(a) ⊆ s
∧ add(ai) ∩ pre(aj) ∩ add(a) 6= ∅}

if candidates 6= ∅ then
loop← true
a← arg mina∈candidates cost[a]
rplan← 〈a1 . . . , ai−1, a, ai+1,

. . . , an〉

j ← j + 1

i← i + 1

return 〈s, plan〉

Algorithm 5: extract-relaxed-plan
input : a planning problem Π = 〈A,O, I,G〉, a state s, and

a vector of action costs cost
output : a relaxed plan for Π

rplan← 〈〉
goals← 〈g | g ∈ G〉
satisfied← s
while goals 6= ∅ do

g ← pop-first(goals)
if g /∈ satisfied then

satisfied← satisfied ∪ {g}
a← arg mina∈O | g∈add(a) cost[a]

if a /∈ rplan then
rplan← rplan⊕ 〈a〉
goals← goals⊕ 〈p | p ∈ pre(a)〉

sort rplan = 〈a1, . . . , an〉: ∀ai, aj ∈ rplan | i < j,
cost[ai] < cost[aj ] ∨ (cost[ai] = cost[aj ] ∧
(del(ai) ∩ pre(aj) = ∅ if possible))

return rplan

vious IPCs, except the recent Mp and YAHSP2 planners. We
included Mp as it is the first SAT-based planner competitive
with other types of satisficing planners (Rintanen 2010).
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Figure 3: Comparison of the total running time for the three best sequential planners (except YAHSP1) versus YAHSP2.
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Figure 1: Cumulated number of solved problems for sequen-
tial planners in function of the total running time.
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Figure 2: Cumulated number of solved problems in function
of the search time for the four best sequential planners.

Figure 1 shows the cumulated number of solved prob-
lems in function of the total running time. For each CPU

time t on the x axis, the corresponding value on the y axis
gives the number of problems solved in under t seconds.
YAHSP2 and Y1lbfs clearly outperform the other planners.
Y1lbfs is a bit faster than YAHSP2 for problems solved in
under 10 seconds, but YAHSP2 finally solves more prob-
lems. This mainly comes from the parser of YAHSP1, which
has been better designed and is much more efficient than
that of YAHSP2. The comparison with Y1lobfs clearly con-
firms that giving priority to nodes coming from helpful ac-
tions was finally not a so good idea, in conjunction with the
lookahead strategy. LAMA nearly reaches YAHSP2, solv-
ing 1405 problems (91.6%) with respect to 1444 (94.1%)
for YAHSP2, but is significantly slower than YAHSP2. One
reason is that it performs a heavy preprocessing step in or-
der to translate to SAS+ and to compute landmarks, but Fig-
ure 2 which compares the search time only of the four best
planners shows that search in LAMA is less efficient than in
YAHSP2 and Y1lbfs. It should be mentioned that although
(Rintanen 2010) shows that Mp outperforms LAMA, this
is probably due to the 300 seconds timeout which clearly
disadvantages LAMA: on small runtimes it is the slowest
among all planners compared here, but finally is in the top
three. Figure 3 depicts scatter plot comparisons of the run-
ning time between YAHSP2 and the three other best plan-
ners (except YAHSP1), which are LAMA, Mp and SGPlan6.
YAHSP2 very often outperforms them by several orders of
magnitude. Finally, Table 1 shows the detail of the number
of solved problems, over each IPC and each domain.

Temporal Planning
Four planners are compared on 664 temporal planning prob-
lems. The planners are LPG-td, SGPlan6, TFD (Eyerich,
Mattmüller, and Röger 2009) and YAHSP2. The first three
ones have been awarded at previous IPCs.

Figure 4 shows the cumulated number of solved prob-
lems in function of the total running time. YAHSP2 outper-
forms all planners, solving 594 problems (89.5%) against
434 problems (65.4%) for SGPlan6, the second best plan-
ner. SGPlan6 outperforms LPG-td that solves 403 problems
(60.7%), which itself outperforms TFD that solves 287 prob-
lems (43.2%). Figure 5 depicts scatter plot comparisons of
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IPC domain #pbs
#solved (difference with best)

FF LAMA LPG-td Mp SGPlan6 Y1lbfs Y1lobfs YAHSP2

1

grid 5 5 5 5 4 (1) 5 5 5 5
gripper 20 20 20 20 20 20 20 20 20
logistics 35 35 35 29 (6) 22 (13) 35 35 35 31 (4)
movie 30 30 30 30 30 30 30 30 30
mprime 35 34 (1) 35 35 35 33 (2) 35 35 35
mystery 30 18 (4) 22 20 (2) 18 (4) 19 (3) 18 (4) 20 (2) 22
total

155
142 (5) 147 139 (8) 129 (18) 142 (5) 143 (4) 145 (2) 143 (4)

% solved 91.6% 94.8% 89.7% 83.2% 91.6% 92.3% 93.5% 92.3%

2

blocks 60 48 (12) 55 (5) 60 52 (8) 39 (21) 42 (18) 41 (19) 47 (13)
miconic 150 150 150 150 150 150 150 150 150
freecell 60 60 58 (2) 12 (48) 40 (20) 59 (1) 60 60 60
logistics 198 197 (1) 196 (2) 198 178 (20) 198 198 198 198
total

468
455 (4) 459 420 (39) 420 (39) 446 (13) 450 (9) 449 (10) 455 (4)

% solved 97.2% 98.1% 89.7% 89.7% 95.3% 96.2% 95.9% 97.2%

3

depots 22 22 20 (2) 22 22 22 19 (3) 20 (2) 22
driverlog 20 16 (4) 20 20 20 17 (3) 20 20 19 (1)
freecell 20 20 20 3 (17) 11 (9) 19 (1) 20 20 20
rovers 20 20 20 20 20 20 20 20 20
satellite 20 20 20 20 20 20 20 20 20
zenotravel 20 20 20 20 20 20 20 20 20
total

122
118 (3) 120 (1) 105 (16) 113 (8) 118 (3) 119 (2) 120 (1) 121

% solved 96.7% 98.4% 86.1% 92.6% 96.7% 97.5% 98.4% 99.2%

4

airport 50 30 (16) 38 (8) 45 (1) 46 43 (3) 39 (7) 39 (7) 45 (1)
pipesworld-notankage 50 36 (14) 44 (6) 43 (7) 36 (14) 0 (50) 50 48 (2) 44 (6)
pipesworld-tankage 50 22 (27) 39 (10) 26 (23) 24 (25) 10 (39) 49 21 (28) 43 (6)
promela-optical-telegraph 14 2 (12) 2 (12) 1 (13) 14 14 13 (1) 13 (1) 6 (8)
promela-philosophers 29 14 (15) 13 (16) 2 (27) 29 29 29 5 (24) 29
psr-small 50 42 (8) 50 48 (2) 50 50 50 47 (3) 50
satellite-strips 36 36 34 (2) 36 32 (4) 35 (1) 36 36 36
total

279
182 (84) 220 (46) 201 (65) 231 (35) 181 (85) 266 209 (57) 253 (13)

% solved 65.2% 78.9% 72.0% 82.8% 64.9% 95.3% 74.9% 90.7%

5

openstacks 30 7 (23) 30 22 (8) 20 (10) 23 (7) 30 30 30
pathways 30 10 (20) 28 (2) 30 30 30 20 (10) 26 (4) 29 (1)
pipesworld 50 6 (44) 40 (10) 20 (30) 23 (27) 17 (33) 50 22 (28) 43 (7)
rovers 40 16 (24) 40 30 (10) 40 30 (10) 40 40 40
storage 30 18 (12) 19 (11) 30 30 30 25 (5) 21 (9) 18 (12)
tpp 30 12 (18) 30 15 (15) 30 20 (10) 30 30 30
trucks 30 4 (26) 13 (17) 5 (25) 30 6 (24) 11 (19) 14 (16) 16 (14)
total

240
73 (133) 200 (6) 152 (54) 203 (3) 156 (50) 206 183 (23) 206

% solved 30.4% 83.3% 63.3% 84.6% 65.0% 85.8% 76.2% 85.8%

6

cybersec 30 0 (30) 30 6 (24) 6 (24) 6 (24) 12 (18) 10 (20) 30
elevators 30 30 30 25 (5) 30 30 30 30 30
openstacks 30 30 30 30 15 (15) 27 (3) 30 30 30
parcprinter 30 30 25 (5) 29 (1) 30 30 30 26 (4) 30
pegsol 30 30 29 (1) 11 (19) 30 12 (18) 30 30 30
scanalyzer 30 30 30 24 (6) 28 (2) 29 (1) 28 (2) 26 (4) 28 (2)
sokoban 30 27 (2) 26 (3) 0 (29) 6 (23) 8 (21) 24 (5) 25 (4) 29
transport 30 29 (1) 30 20 (10) 23 (7) 30 30 30 30
woodworking 30 17 (13) 29 (1) 16 (14) 30 30 29 (1) 26 (4) 29 (1)
total

270
223 (43) 259 (7) 161 (105) 198 (68) 202 (64) 243 (23) 233 (33) 266

% solved 82.6% 95.9% 59.6% 73.3% 74.8% 90.0% 86.3% 98.5%
total

1534
1193 (251) 1405 (39) 1178 (266) 1294 (150) 1245 (199) 1427 (17) 1339 (105) 1444

% solved 77.8% 91.6% 76.8% 84.4% 81.2% 93.0% 87.3% 94.1%

Table 1: Number and percentage of solved problems in all sequential domains of the IPCs from 1998 to 2008. Numbers in bold
indicate the best results and numbers in parenthesis indicate the number of unsolved problems with respect to the best result.

the running time between YAHSP2 and the three other plan-
ners, and confirms that YAHSP2 has much better perfor-
mances. The detail of the number of solved problems over
each IPC and each domain can be found in Table 2.

YAHSP2-MT: A Multi-Threaded Planner
We now briefly describe YAHSP2-MT, a multi-threaded ver-
sion of YAHSP2 which aims at benefiting from the com-

puting power offered by multi-core processors with shared
memory. A more detailed description can be found in (Vidal,
Bordeaux, and Hamadi 2010).

The key idea is similar to that of KBFS (Felner, Kraus,
and Korf 2003): always expanding first the best node of the
open list, giving a maximum trust to the heuristic, may lead
search to unpromising parts of the search space; while better
parts could have been reached by expanding nodes ranked
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Figure 5: Comparison of the total running time for all temporal planners versus YAHSP2.
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Figure 4: Cumulated number of solved problems for tempo-
ral planners.
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Figure 6: Comparison between the sequential version and
the multi-threaded version with restarts of YAHSP2.

lower by the heuristic. KBFS expands the K best nodes of
the open list, and then adds all their children to the open list.
With the goal of avoiding as much as possible modifications
to the existing YAHSP2 code, we simply start K threads

that share the same open and closed list, expanding nodes in
a concurrent way. This can be made very easily by inserting
OpenMP directives between carefully selected lines of code.
This simple strategy is used in conjunction with restarts trig-
gered by limits on the number of evaluated nodes, where
each restart increases the number of active threads. We also
used a slightly different strategy than (Vidal, Bordeaux, and
Hamadi 2010): two distinct open and closed lists are each
attacked by half of the threads. The first half behave classi-
cally, whereas the second half runs an incomplete algorithm,
pruning nodes which are obtained with the same number of
actions and have the same heuristic value. Figure 6 com-
pares the wall-clock time between YAHSP2 and YAHSP2-
MT on a 12-core machine with 24GB of memory and a wall-
clock timeout of 30 minutes, on the full set of 2198 prob-
lems. The restart strategy starts from 1 thread and goes up to
384 threads (128 for the version submitted to the 7th IPC).
YAHSP2 solves 2038 problems (92.7%), while YAHSP2-
MT solves 2082 problems (94.7%). We can see that very of-
ten, the multi-threaded version offers super-linear speedups.
Furthermore, much less problems are solved faster by the
sequential version than in previous tests (Vidal, Bordeaux,
and Hamadi 2010), probably because a 4-core machine was
used.

Conclusion
We described in this paper the new version of YAHSP, a
heuristic search planner that uses a lookahead strategy. Its
design has been led by an objective of simplicity, both in
the algorithms and the source code, implying many changes
with respect to the first version. The resulting planner out-
performs state-of-the-art sequential and temporal planners
in terms of cumulated number of solved problems and run-
ning time. We deliberately avoided analyzing plan quality,
as the goal was to produce a fast planner easily embeddable
into a wider system such as the DAEX planner. Thus, we
expect YAHSP2 to be outperformed by at least DAEYAHSP
at the 7th IPC. We also briefly described YAHSP2-MT, the
multi-threaded version of YAHSP2 that aims at exploiting
multi-core processors, which very often obtains super-linear
speedups in comparison with the sequential version.
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IPC domain #pbs
#solved (difference with best)

LPG-td SGPlan6 TFD YAHSP2

3

depots 22 22 21 (1) 2 (20) 22
driverlog 20 20 18 (2) 10 (10) 19 (1)
rovers 20 20 20 19 (1) 20
satellite 20 20 20 20 20
zenotravel 20 20 20 14 (6) 20
total

102
102 99 (3) 65 (37) 101 (1)

% solved 100.0% 97.1% 63.7% 99.0%

4

airport 50 42 (3) 43 (2) 10 (35) 45
airport-timewindows 50 0 (46) 0 (46) 6 (40) 46
pipesworld-notankage-deadlines 30 0 (30) 30 11 (19) 30
pipesworld-notankage 50 43 (1) 0 (44) 20 (24) 44
pipesworld-tankage 50 28 (15) 10 (33) 6 (37) 43
satellite 36 36 35 (1) 7 (29) 36
satellite-timewindows 36 0 (21) 0 (21) 3 (18) 21
total

302
149 (116) 118 (147) 63 (202) 265

% solved 49.3% 39.1% 20.9% 87.7%

5
openstacks 20 18 (2) 20 4 (16) 20
storage 30 30 30 8 (22) 19 (11)
trucks 30 24 (6) 24 (6) 18 (12) 30
total

80
72 (2) 74 30 (44) 69 (5)

% solved 90.0% 92.5% 37.5% 86.2%

6

crewplanning 30 11 (19) 30 29 (1) 30
elevators 30 0 (30) 30 17 (13) 30
openstacks 30 30 30 30 30
parcprinter 30 20 (5) 25 13 (12) 18 (7)
pegsol 30 17 (13) 18 (12) 28 (2) 30
sokoban 30 2 (19) 10 (11) 12 (9) 21
total

180
80 (79) 143 (16) 129 (30) 159

% solved 44.4% 79.4% 71.7% 88.3%
total

664
403 (191) 434 (160) 287 (307) 594

% solved 60.7% 65.4% 43.2% 89.5%

Table 2: Number and percentage of solved problems in all temporal domains of the IPCs from 2002 to 2008. Numbers in bold
indicate the best results and numbers in parenthesis indicate the number of unsolved problems with respect to the best result.

Acknowledgments
This work has been supported by the French National Re-
search Agency (ANR) through COSINUS program (project
DESCARWIN noANR-09-COSI-002). Many thanks to my
colleagues of the DAEYAHSP team for their enthusiasm
and numerous insightful discussions: Johann Dréo, Pierre
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Abstract

BJOLP, The Big Joint Optimal Landmarks Planner uses land-
marks to derive an admissible heuristic, which is then used to
guide a search for a cost-optimal plan. In this paper we review
landmarks and describe how they can be used to derive an ad-
missible heuristic. We conclude with presenting the BJOLP
planner.

Introduction
Landmarks for deterministic planning are (possibly logi-
cally compound) facts that must take place at some point
in every plan for a given planning task (Porteous, Sebas-
tia, and Hoffmann 2001; Porteous and Cresswell 2002;
Hoffmann, Porteous, and Sebastia 2004). For example, if
a goal in a Blocksworld task is to have block A stacked on
block B, and initially this does not hold, then clear(B) must
hold at some point for the goal to be achieved, and thus it is
a landmark for that task. Goals are trivially landmarks, and
thus on(A,B) is a landmark as well. We can also infer that
clear(B) must be achieved before stacking A on B, establish-
ing an ordering between these two landmarks.

The two issues with planning landmarks are how to dis-
cover them, and how to exploit them. Even for propositional
landmarks only, sound and complete discovery of all such
landmarks is known to be PSPACE-complete (Porteous, Se-
bastia, and Hoffmann 2001). Still, many landmarks can of-
ten be efficiently discovered (Hoffmann, Porteous, and Se-
bastia 2004; Richter and Westphal 2010; Keyder, Richter,
and Helmert 2010).

Once discovered, landmarks can be extremely helpful in
guiding the search for a plan, as evidenced by the perfor-
mance of the LAMA planner (Richter and Westphal 2010)
in IPC-2008. LAMA uses landmarks to derive a (inadmis-
sible) pseudo-heuristic, used to guide a satisficing heuristic
search.

In this paper,we describe a method for deriving admis-
sible estimates from a set of planning landmarks, with its
instances varying from easy to compute, to, in some sense,
optimally accurate. The resulting heuristics are what we call
multi-path dependent. We also describe a simple best-first

∗This paper is strongly based upon Karpas and Domshlak
(2009) and Keyder, Richter and Helmert (2010).

search that exploits such heuristics, and finds optimal solu-
tions more efficiently than standard A∗.

Notation and Background
We consider planning in the SAS+ formalism (Bäckström
and Nebel 1995); a SAS+ description of a planning task
can be automatically generated from its PDDL descrip-
tion (Helmert 2009). A SAS+ task is given by a 4-tuple
Π = 〈V,A, s0, G〉. V = {v1, . . . , vn} is a set of state vari-
ables, each associated with a finite domain dom(vi), where
(assuming name uniqueness) the union of the variable do-
mains F =

⋃
i dom(vi) is the set of facts. Each complete

assignment s to V is called a state; s0 is an initial state, and
the goal G is a partial assignment to V . A is a finite set
of actions, where each action a is a pair 〈pre(a), eff(a)〉 of
partial assignments to V called preconditions and effects, re-
spectively. Each action a ∈ A has a non-negative cost C(a).

An action a is applicable in a state s iff pre(a) ⊆ s.
Applying a changes the value of each state variable v to
eff(a)[v] if eff(a)[v] is specified. The resulting state is de-
noted by sJaK; by sJ〈a1, . . . , ak〉K we denote the state ob-
tained from sequential application of the (respectively appli-
cable) actions a1, . . . , ak starting at state s. Such an action
sequence is a plan if G ⊆ s0J〈a1, . . . , ak〉K, and the cost
of the plan is Σki=1C(ai). In cost-optimal planning, we are
interested in finding a plan with a minimal cost.

Let Π = 〈V,A, s0, G〉 be a planning task, φ be a propo-
sitional logic formula over facts F , π = 〈a1, . . . , ak〉 be an
action sequence applicable in s0, and 0 ≤ i ≤ k. Following
the terminology of Hoffmann et al., we say that φ is true at
time i in π iff s0J〈a1, . . . , ai〉K |= φ, φ is first added at time
i in π iff φ is true in π at time i, but not at any time j < i,
and φ is a landmark of Π iff in each plan for Π, it is true at
some time.

In addition to knowing landmarks, it is also useful to
know in which order they should be achieved on the way
to the goal. Hoffmann et al. define different types of po-
tentially useful orderings. In particular, landmark φ is said
to be greedy-necessarily ordered before landmark ψ iff, for
each action sequence applicable in s0, if ψ is first added in
π at time i, then φ is true in π at time i− 1.

Porteous et al. show that deciding if just a single fact is
a landmark, as well as deciding an ordering between two
fact landmarks, are PSPACE-complete problems. There-
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fore, practical methods for finding landmarks are either
incomplete or unsound. In what follows we assume ac-
cess to a sound such procedure; in particular, we combine
the landmarks from the RHW landmark generation method
(Richter and Westphal 2010) and the hm landmark genera-
tion method (Keyder, Richter, and Helmert 2010).

In what follows we assume that a planning task Π is sim-
ply given to us with a landmark structure 〈L,Ord〉, where
L is a set of Π’s landmarks, and Ord is a set of typed order-
ings over L, containing, in particular, the greedy-necessary
ordering over L.

Admissible Landmark Heuristics
Deriving heuristic estimates from landmarks has been pro-
posed by Richter et al. (2010) who estimate the goal distance
of a state s, reached via a sequence of actions π from the
initial state, by the number of landmarks L(s, π) yet to be
achieved from s onwards. Specifically, if the search starts
with the landmark structure 〈L,Ord〉, then

L(s, π) = (L \ Accepted(s, π)) ∪ ReqAgain(s, π) (1)

where Accepted(s, π) ⊆ L and ReqAgain(s, π) ⊆
Accepted(s, π) are the sets of accepted and required again
landmarks, respectively. A landmark is accepted if it is made
true at some time along π. An accepted landmark is required
again if (i) it does not hold in s, and (ii) it is ordered greedy-
necessarily before some landmark which is not accepted, or
is a goal.

The estimate |L(s, π)| is not a proper heuristic in the usual
sense, but rather path-dependent; it is a function of both an
evaluated state s, and a path from s0 to s. However, |L(s, π)|
can still be used like a state-dependent heuristic in best-
first search. In particular, combined with some other help-
ful techniques, it has been successfully used by the LAMA
planner at the Sequential Satisficing Track of the IPC-2008
competition.

Action Cost Sharing by Landmarks
It is not hard to verify that the estimate |L(s, π)| is not ad-
missible. For instance, in a Blocksworld task, let L(s, π) =
{crane-empty, on(A,B)}. While |L(s, π)| = 2, it is possible
a single action stack(A,B) reaches the goal from s. However,
below we show that the gap between the estimate |L(s, π)|
and admissibility is not that hard to close.

Considering the landmarks through the actions that can
possibly achieve them, let cost(φ) be a cost assigned to each
landmark φ, and cost(a, φ) be a cost “assigned” by the ac-
tion a to φ. Suppose also that these (all non-negative) costs
satisfy

∀a ∈ A :
∑

φ∈L(a|s,π)

cost(a, φ) ≤ C(a)

∀φ ∈ L(s, π) : cost(φ) ≤ min
a∈ach(φ|s,π)

cost(a, φ)
(2)

where each action subset ach(φ|s, π) ⊆ A (in particular)
contains all the actions that can possibly be used to directly
achieve landmark φ along a goal-achieving suffix of π, and,
reversely, L(a|s, π) = {φ | φ ∈ L(s, π), a ∈ ach(φ|s, π)}.

Informally, Eq. 2 enforces partitioning of each action cost
among the landmarks this action can possibly establish, and
verifies that the cost of each landmark φ is no greater than
the minimum cost assigned to φ by its possible achievers.

In our planner, we use the (initial-state dependent and
efficiently computable) set of “possible”, and its subset of
“first-time possible”, achievers of φ (Porteous and Cress-
well 2002) to estimate the achievers of simple or disjunc-
tive landmarks (the achievers of a disjunctive landmark φ
can be simply estimated by the set of all actions achieving
some element of φ). The possible achievers of a conjunctive
landmark φ are estimated as the actions which achieve (at
least) one of the conjuncts, without deleting any of the other
conjuncts, and the first-time possible achievers of a conjunc-
tive landmark φ are estimated as the subset of the possible
achievers, which do not have φ as a landmark for achieving
their preconditions.

If φ 6∈ Accepted(s, π), then we set ach(φ|s, π) to the first-
time possible achievers of φ, and otherwise to the possible
achievers of φ. In any event, action cost sharing is all we
need to derive from L(s, π) an admissible estimate of the
goal distance.

Proposition 1 Given a set of action-to-landmark and land-
mark costs satisfying Eq. 2, hL(s, π) = cost(L(s, π)) =∑
φ∈L(s,π) cost(φ) is an admissible estimate of the goal dis-

tance h∗(s).

Proof sketch: Let P = 〈a1, a2, . . . , ar〉 be any plan from
s to the goal. Let lm(a) = {φ|φ ∈ eff(a) ∩ L(s, π)} be
the set of landmarks that are achieved by action a. Then⋃r
i=1 lm(ai) is the set of landmarks that are achieved by P .

By the definition of landmarks, P must achieve all the land-
marks in L(s, π), and therefore L(s, π) ⊆

⋃r
i=1 lm(ai), and

cost(L(s, π)) ≤ cost(
⋃r
i=1 lm(ai)). It is easy to see that

cost(
⋃r
i=1 lm(ai)) ≤

∑r
i=1 cost(lm(ai)), because some

landmarks could potentially be counted twice in the right-
hand side expression (i.e. achieved by two or more actions).
From the requirements on landmark costs we have that
cost(lm(ai)) ≤ C(ai), and therefore

∑r
i=1 cost(lm(ai)) ≤∑r

i=1 C(ai). If we combine all of this we get
hL(s, π) = cost(L(s, π)) ≤ cost(

⋃r
i=1 lm(ai)) ≤∑r

i=1 cost(lm(ai)) ≤
∑r
i=1 C(ai) = C(P )

Proposition 1 leaves the choice of the actual action-cost
partitioning open. The most straightforward choice here is
probably uniform cost sharing in which each action parti-
tions its costs equally among all the landmarks it can pos-
sibly achieve, that is, cost(a, φ) = C(a)/|L(a|s, π)|. The
advantage of such a uniform cost sharing is the efficiency
of its computation. However, the induced action-cost parti-
tion can be sub-optimal. For instance, consider a planning
task with a landmark set {p1, . . . , pk, q} such that the only
possible achiever of each pi is a unit-cost action ai with
eff(ai) = {pi, q}. For 1 ≤ i ≤ k, the uniform cost sharing
assigns here cost(ai, pi) = cost(ai, q) = 0.5, which gives
cost(pi) = cost(q) = 0.5, and thus hL(s, π) = k/2 + 0.5.
In contrast, the optimal cost sharing would assign, for all
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1 ≤ i ≤ k, cost(ai, pi) = 1 and cost(ai, q) = 0, implying
cost(pi) = 1, cost(q) = 0, and thus hL(s, π) = k.

The good news, however, is that such an optimal
cost sharing can be computed in poly-time by compiling
Eq. 2 into strictly linear constraints, and solving the lin-
ear program induced by these constraints and the objec-
tive max

∑
φ∈L(s,π) cost(φ). In addition, this cost sharing

scheme alleviates an annoying shortcoming of ad hoc (e.g.,
uniform) cost sharing schemes, and satisfies monotonicity
along the inclusion relation of the landmark sets L(s, π).
It is not hard to verify that, for any two sets of landmarks
L and L′ such that L ⊆ L′, the LP-based cost sharing en-
sures cost(L′) ≥ cost(L) by the very virtue of being op-
timal, and thus yields at least as informative heuristic es-
timate with L′ as with L. This property is appealing as
it allows separating landmark discovery and landmark ex-
ploitation without any loss of accuracy, leaving the phase of
discovery with the simple principle of “more landmarks can
never hurt”. In contrast, the simple yet ad hoc uniform cost
sharing cannot guarantee such monotonicity. For instance,
the uniform cost sharing in the example above but without
landmark q yields hL(s, π) = k, while with q it results in
hL(s, π) = k/2 + 0.5.

Action Landmarks
The LP-based “admissibilization” of the landmark sets
L(s, π) is optimal, but this, of course, only when the land-
mark costs are estimated with respect to solely Eq. 2. Any
additional information about landmarks may help improv-
ing the accuracy of the estimate. One type of such informa-
tion corresponds to action landmarks (Zhu and Givan 2004;
Vidal and Geffner 2006). Similarly to landmarks over facts,
an action a is an action landmark of a planning task Π iff it
is taken along every plan for Π.

Although it is possible to discover action landmarks in
a pre-processing phase (a sufficient and efficiently testable
condition for a being an action landmark is that a relaxed
planning task without a is not solvable), The BJOLP plan-
ner discovers action landmarks dynamically during uniform
cost-partitioning as follows: whenever |ach(φ|s, π)| = 1
(that is, there is only one achiever of φ), then that single
achiever, which we denote a, is an action landmark. Since a
must be used to achieve φ, it makes no sense to divide its cost
between other landmarks it might possibly achieve. There-
fore we assign the full cost of a to φ (that is, cost(a, φ) =
C(a)), and assign 0 cost from a to its other effects (that is,
cost(a, φ′) = 0 for φ 6= φ′ ∈ L(a|s, π)). This allows us
to improve upon “naive” uniform cost-partitioning. We call
the heuristic resulting from the use of action landmarks hLA.
Clearly hLA is still admissible.

We remark that this dynamic action landmark discovery
was not implemented originally in Karpas and Domshlak
(2009), but was added later in Keyder, Richter, and Helmert
(2010).

From Path to Multi-Path Dependence
Let us now return to the definition of the path-dependent set
L(s, π) in Eq. 1. Both LAMA’s heuristic |L(s, π)|, and the

admissible heuristics hL and hLA, exploit information pro-
vided by the path π to better estimate the goal distance from
s. Suppose now that we are given a set of paths from s0 to
s; such a set of paths can in particular be discovered anyway
by any systematic, forward-search procedure. Proposition 2
shows that such a set of paths can be much more informative
than any of its individual components.

Proposition 2 Let Π be a planning task with a landmark set
L, s be a state of Π, P be a set of paths from s0 to s, and πg
be a goal achieving path from s. Then for each path π ∈ P ,
πg achieves all landmarks in L \ Accepted(s, π).

The proof is straightforward: Assume a landmark φ is
achieved by a path π ∈ P but not by a path π′ ∈ P . The
latter implies that all the extensions of π′ should still achieve
φ, and the extensions of π′ are exactly the extensions of π.

Proposition 2 immediately leads to multi-path dependent
versions of hL and hLA. Given a set of landmarks L, and a
set of paths P from s0 to s, let
L(s,P) = (L \ (Accepted(s,P)) ∪ ReqAgain(s,P) (3)

where Accepted(s,P) =
⋂
π∈P Accepted(s, π), and

ReqAgain(s,P) ⊆ Accepted(s,P) is specified as before by
s and the greedy-necessary orderings over L. Given that,
the multi-path dependent versions of hL and hLA straight-
forwardly reflect their path-dependent counterparts, by re-
placing L(s, π) with L(s,P).

The improvement in accuracy in switching to multi-path
landmark heuristics can be substantial. For instance, if we
have access to two paths to s, each suggesting that half of the
landmarks have been achieved, yet they entirely disagree on
the identity of the achieved landmarks, then the estimate of
the (still admissible) multi-path dependent heuristic might
be twice as high as this of the path-dependent heuristic.

Finally, utilizing multi-path dependent estimates for opti-
mal search requires adapting the standard A∗ search proce-
dure. In fact, a slight adaptation of A∗ is desirable even in
case of such path-dependent heuristics. Designed for state-
dependent estimates, A∗ computes h(s) for each state s only
when s is first generated. This will still guarantee optimal-
ity with path-dependent estimates as well, yet, if π and π′
are the current path and a newly discovered path from s0 to
s, respectively, then we may have h(s, π′) > h(s, π). That
is, a newly discovered path may better inform us about the
goal distance from s. We can slightly modify A∗ to compute
the heuristic value each time a new path to a state is dis-
covered, and utilize the highest estimate discovered so far.
This, of course, preserves search admissibility, and poten-
tially reduces the number of expanded nodes. Note that this
does not contradict “optimal efficiency” of the basic A∗ as
the latter holds only for monotonic, state-dependent heuris-
tics (Dechter and Pearl 1985).

The modification of A∗ for multi-path dependent heuris-
tics is very much similar in spirit. Each time a new path
to state s is discovered, it is stored in the list of such paths
P(s), and s’s heuristic value is marked as “dirty”. Of course,
storing all paths to s is generally infeasible, and the algo-
rithm is usable only in cases where the relevant informa-
tion carried by P(s) can be captured and stored compactly.
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In fact, the adaptation of A∗ to path-dependent heuristics as
above constitutes such a special case of all the relevant in-
formation of a set of paths being the maximal value of the
heuristic estimates induced by them individually. Nicely, the
multi-path dependent landmark heuristics hL and hLA also
constitute a usable special case as above. In our variant of
A∗, referred later as LM-A∗, we associate each state s with
the landmark set L(s,P(s)) as in Eq. 3. When a new path
π to s is discovered (and extends P(s)), the landmarks are
incrementally updated to L(s,P(s)∪{π}) by exploiting the
monotonicity of the intersection set operator.

When a state s is removed from the open list for expan-
sion, before actually performing the expansion, LM-A∗ first
checks whether the s’s heuristic is marked as “dirty” (which
happens when new paths to s have been discovered between
the time s was inserted into the open list, and the time it
is remove from the open list). If s’s h-value is dirty, we
reevaluate h(s) (using the new information), and if the new
heuristic value is higher than the previous heuristic value,
we reinsert s into the open list with the new h-value. Note
that both the old and new h-values are admissible, and so
if the new h-value is lower (which could happen when us-
ing uniform cost-partitioning), admissibility is maintained.
If the s is not “dirty”, or if the newly computed h-value is
not higher than the old value, then s is expanded as usual.
LM-A∗ is described in pseudo-code in Figure 1.

Implementation

We have implemented hL, hLA and LM-A∗ on top of the
Fast Downward planning system. The BJOLP planner
uses LM-A∗ with the hLA heuristic (using uniform cost-
partitioning and the new dynamic action-landmark discov-
ery).

As mentioned before, the landmarks we use for BJOLP
are obtained by combining the landmarks discovered by the
RHW method (Richter and Westphal 2010) and the hm land-
marks (Keyder, Richter, and Helmert 2010) with m = 1.
First the entire landmarks graph is generated by each of
these discovery methods. Then, the landmarks and order-
ings are merged, and dominated (in the sense of logical
implication) landmarks are discarded. For example, if one
method discovers landmark φ and the other discovers land-
mark φ ∨ φ′, then φ ∨ φ′ will be discarded (along with all
its orderings). Dominated orderings are also eliminated by
logical implication (remember that every greedy-necessary
ordering is a natural ordering, but not vice versa).

Finally, this version of BJOLP uses a much more effi-
cient implementation of the way landmark information for
each state is stored. While previous versions used a set (of
the C++ standard template libraries) to store, for each state,
the set of accepted landmarks, BJOLP uses a boolean vec-
tor, which uses one bit per landmark. This speeds BJOLP
up considerably over previous versions and dramatically re-
duces its memory footprint.

LM-A∗

1. Put the start node s on a list called OPEN of unexpanded
nodes. Assign g(s) = 0.

2. If OPEN is empty, exit with failure; no solution exists.
3. Remove from OPEN a node n at which f=g+h is mini-

mum. Break ties in favor of low h (although ties can be
broken arbitrarily, as long as goal nodes are favored).

4. If n is a goal node, exit successfully with the solution ob-
tained by tracing back the path along the pointers from n
to s (pointers are assigned in steps 7 and 8).

5. If n is marked as dirty, calculate h(n). Else, goto step 7.
6. Compare the newly computed h(n) with that previously

assigned to n. If the new value is greater, substitute it for
the old, update f (n), move n back to OPEN, and goto step
2.

7. Place n on a list called CLOSED to be used for expanded
nodes, and expand node n, generating all its successors
with pointers back to n.

8. For every successor n′ of n:
(a) Store the current path to n′ (through n).
(b) Calculate g(n′) = g(n) + C(a), where a is the action

leading from n to n′.
(c) Calculate h(n′).
(d) If n′ is neither in OPEN nor in CLOSED, then add it to

OPEN. Assign the newly computed g(n′) and h(n′) to
node n′.

(e) If n′ already resides in OPEN or CLOSED:
i. Store the new path to n′ and mark n′ as dirty.

ii. Compare the newly computed g(n′) with that previ-
ously assigned to n′. If the new value is lower, substi-
tute it for the old (n′ now points back to n instead of to
its predecessor), and update f (n′). Move the match-
ing node n′ back to OPEN if it resided in CLOSED.

9. Go to step 2.

Figure 1: Pseudo-code of LM-A∗
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Abstract

Symbolic search with BDDs has shown remarkable perfor-
mance for cost-optimal deterministic planning by exploiting
a succinct representation and exploration of state sets. In this
paper we enhance BDD-based planning by applying a com-
bination of domain-independent search techniques: the op-
timization of the variable ordering in the BDD by approxi-
mating the linear arrangement problem, pattern selection for
improved construction of search heuristics in form of sym-
bolic partial pattern databases, and a decision procedure for
the amount of bidirection in the symbolic search process.

Introduction
As documented in the international planning competition
IPC 2008 symbolic search with Binary Decision Diagrams
(Bryant 1986), BDDs for short, has shown considerable suc-
cess for cost-optimal planning and for planning with soft
goals for maximizing the net-benefit, which is defined as
the payoff for satisfying goal preferences minus the total
cost of the actions in the plan, so that our planner GAMER
(Edelkamp and Kissmann 2009) won the corresponding op-
timization tracks.

While explicit-state search is concerned with the expan-
sion of single states and the calculation of successors of a
single state, in symbolic search (McMillan 1993) with BDDs
sets of states are handled. E. g., the assignments satisfying
a Boolean formula can be seen as sets of states. Similarly,
we can represent any state vector (in binary representation)
as a Boolean formula with one satisfying assignment. To
achieve this, we represent any state as a conjunction of (bi-
nary) variables. Thus, a set of states is the disjunction of
such a conjunction of variables, so that we can easily repre-
sent it in form of a BDD.

This paper contains three contributions to improve our ex-
isting symbolic search technology to come up with a new
version of GAMER that clearly outperforms the 2008 ver-
sion.

1. The variable ordering has a significant effect on the size
of the BDD representation for many Boolean functions
(Bryant 1986), but the automated inference of a good or-
dering has not been studied for symbolic planning. As the

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problem of optimizing the ordering in a BDD is hard in
general and existing reordering techniques show perfor-
mance drawbacks in practice, this paper follows an alter-
native approach based on exploiting causal dependencies
of state variables.

2. The BDD exploration on state sets can be improved by in-
cluding heuristics into the search process. Based on pro-
jecting away all but a selected pattern of state variables, in
backward search symbolic versions of pattern databases
(Culberson and Schaeffer 1998) can be constructed. In
this paper we provide an alternative realization for greedy
pattern selection based on constructing symbolic pattern
databases.

3. While symbolic backward search is conceptually simple
and often effective, in some domains the sizes of the
BDDs increase too quickly to be effective for a bidirec-
tional exploration of the original state space due to a large
number of invalid states. For this case we integrate a sim-
ple decision procedure to allow backward search in ab-
stract state space search only.
This paper is structured as follows. First, we introduce

deterministic planning with finite domain variables and the
causal dependencies among them. Next, we turn to the lin-
ear arrangement problem that we greedily optimize to find
a good BDD variable ordering. Then, we present symbolic
search strategies including symbolic BFS, symbolic single-
source shortest-path and symbolic A* as needed for step-
and cost-optimal planning. We continue with a new auto-
mated construction of search heuristics in form of symbolic
pattern databases. Then, we consider a decision procedure
of whether or not to start backward search. Finally, we eval-
uate the new version of GAMER on the full set of problems
from IPC 2008.

Planning and Causal Graphs
In (deterministic) planning we are confronted with a descrip-
tion of a planning problem and are interested in finding a
good solution (a good plan) for this problem. Such a plan is
a set of actions whose application transforms the initial state
to one of the goal states. In propositional planning states are
sets of Boolean variables. However, propositional encod-
ings are not necessarily the best state space representations
for solving propositional planning problems. A multi-valued
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variable encoding is often better. It transforms a proposi-
tional planning task into an SAS+ planning task.

Definition 1 (Cost-Based SAS+ Planning Task). A cost-
based SAS+ planning task P = 〈S,V,A, I, T , c〉 consists
of a set V = {v1, . . . , vn} of state variables for states in
S, where each v ∈ V has finite domain Dv . Some sets of
states are partial assignments, i. e., functions s over V , such
that s(v) ∈ Dv , if s(v) is defined. The initial state I is a
full assignment, i. e., a total function over V . The goal states
T are specified in form of a partial assignment. An action
a ∈ A is given by a pair 〈pre, eff 〉 of preconditions and ef-
fects, where pre and eff are partial assignments. The cost
function c : A 7→ N+

0 specifies the cost of each action.

Definition 2 (Plan and Cost of a Plan). A plan P is
a sequence of actions (A1, A2, . . . , Am) ∈ Am with
Am (Am−1 (. . . A1 (I) . . .)) ∈ T . The total cost C (P ) of
a plan P is the sum of the costs of all actions within P , i. e.,
C (P ) := c (A1) + c (A2) + . . .+ c (Am).

Definition 3 (Optimal Plan). A plan P is called optimal, if
there is no plan P ′ with C (P ′) < C (P ).

The following definition specifies the dependencies
among the variables.

Definition 4 (Causal Graph). The causal graph of an SAS+
planning task P with variable set V is a directed graph
(V,E) with V = V and (u, v) ∈ E if and only if u 6= v
and there is an action 〈pre, eff 〉 ∈ A, such that eff (v) is
defined and either pre(u) or eff (u) is defined. This implies
that an edge is drawn from one variable to another if the
change of the second variable is dependent on the current
assignment of the first variable.

To arrive at a symmetrical relation, the dependencies in
the causal graph are applied in both directions.

Optimal Linear Variable Arrangement
In short, BDDs are memory-efficient data structures used to
represent Boolean functions as well as to perform set-based
search. A BDD is a directed acyclic graph with one root
and two terminal nodes, the 0- and the 1-sink. Each inter-
nal node corresponds to a binary variable and has two suc-
cessors, one representing that the current variable is false
and the other representing that it is true. The assignment of
the variables derived from any path from the root to the 1-
sink corresponds to an assignment for which the represented
function evaluates to true.

The variable ordering problem in a BDD is co-NP-
complete (Bryant 1986), so that optimal algorithms like the
one by Friedman and Supowit (1990) are practically infea-
sible even for small-sized planning problems. Dynamic re-
ordering algorithms as provided in current BDD packages
require sifting operations on existing BDDs and are often
too slow to be effective in planning. One reason is that they
do not exploit any knowledge on variable dependencies.

Thus, we decided to approximate another optimization
problem to find a good variable ordering without BDDs.

Definition 5 (Optimal Linear Arrangement). Given a
weighted graph G = (V,E, c) on n vertices, in the optimal

linear arrangement problem the goal is to find a permuta-
tion π : V → {1, . . . , n} that minimizes

∑
e=(u,v)∈E c(e) ·

|π(v)− π(u)|.

We set the weights c(e) to 1, so that we actually solve
the version called simple optimal linear arrangement. This
problem is (still) NP-hard (via a reduction to Max-Cut and
Max-2-Sat (Garey, Johnson, and Stockmeyer 1976)). It is
also hard to provide approximations within any constant fac-
tor (Devanur et al. 2006).

There are different known generalizations to the opti-
mal linear arrangement problem. The quadratic assignment
problem

∑
e=(u,v)∈E c(e) · c′(π(u), π(v)) for some weight

c′ is a generalization, which includes the traveling salesman
problem TSP as one case (Lawler 1963). Here, we consider
the optimization function

Φ(π) =
∑

(u,v)∈E∨(v,u)∈E

d(π(u), π(v)),

subject to the metric d(x, y) = ||x−y||1 =
∑n

i=1 |xi−yi| or
d(x, y) = ||x−y||22 =

∑n
i=1(xi−yi)2. For our experiments

we chose to use the latter.
In our case G is the causal graph, i. e., the nodes in V

are the multi-valued variables in the SAS+ encoding and the
edges in E reflect the causal dependencies.

As the problem is complex we apply a greedy search pro-
cedure for optimization with two loops. The outer loop cal-
culates a fixed number ρ of random permutation, while the
inner loop performs a fixed number η of transpositions. To
increase the values of ρ and η we decided to incrementally
compute Φ(π) =

∑
(u,v)∈E d(π(u), π(v)) as follows. Let

τ(i, j) be the transposition applied to the permutation π to
obtain the new permutation π′, and let x and y be the asso-
ciated variables to the indices i and j in π. We have

Φ(π′) =
∑

(u,v)∈E∨(v,u)∈E

d(π′(u), π′(v))

= Φ(π)−
∑

(w,x)∈E ∨ (x,w)∈E

d(π(w), i)

−
∑

(w,y)∈E ∨ (y,w)∈E

d(π(w), j)

+
∑

(w,x)∈E ∨ (x,w)∈E

d(π′(w), j)

+
∑

(w,y)∈E ∨ (y,w)∈E

d(π′(w), i).

The complexity for computing Φ(π′) reduces from
quadratic to linear time for the incremental computation.
This has a considerable impact on the performance of the
optimization process as it performs millions of updates in
a matter of seconds instead of minutes (depending on the
causal graph and the domain chosen).

Now that the variable ordering has been fixed we consider
how to optimally solve deterministic planning problems.

International Planning Competition 2011

97



Step-Optimal Symbolic Planning
To calculate the set of successors of a given set of states, the
image operator is used. Though we are able to find efficient
variable orderings for many problems, we cannot expect to
be able to calculate exponential search spaces in polynomial
time. This comes from the fact that the calculation of the
image is NP-complete (McMillan 1993). It is, however, not
essential to compute one image for all actions in common.
Instead, we apply the image operator to one action after the
other and calculate the union of these afterwards.

Using the image operator the implementation for a sym-
bolic breadth-first search (BFS) is straight-forward. All we
need to do is to apply image first to the initial state and af-
terwards to the last generated successor states. The search
ends when a fix-point is reached. For this we must remove
the duplicate states. If we store the set of all reachable states
as one BDD, duplicate elimination is done implicitly by the
BDD, but if we store each BFS layer as a BDD, we must
remove the states of the previous layers. In the first case, the
fix-point is reached if the call of the image operator does not
increase the number of states stored in the BDD, in the sec-
ond case it is reached if the result of the application of the
image operator along with the removal of duplicate states
results in a BDD representing the empty set.

For the search in backward direction we use the
pre-image operator, which is similar to image but calcu-
lates all predecessors of a given set of states.

Given the image and pre-image operators we also de-
vise a symbolic bidirectional breadth-first search. For this
we start one search in forward direction (using image) at
the initial state and another in backward direction (using
pre-image) at the goal states. Once the two searches overlap
we stop and generate an optimal solution.

Cost-Optimal Symbolic Sequential Planning
Handling action costs is somewhat more complicated. Now,
an optimal plan is no longer one of minimal length but rather
one with minimal total cost, i. e., the sum of the costs of all
actions within the plan needs to be minimal.

Dijkstra’s single-source shortest-paths search (1959) is a
classical algorithm used for state spaces with edge weights.
In its normal form it consists of a list of nodes denoted with
their distance to the start node. Initially, the distance for the
start node is 0 and that for the other nodes∞.

It chooses the node u with minimal distance, removes it
from the list and updates the distances of the neighboring
nodes. For each neighbor v it recalculates its distance to
the start node to min (d (v) , d (u) + c (u, v)), with c (u, v)
being the cost of edge (u, v) and d (u) the distance of node
u to the start node calculated so far.

For the symbolic version of this algorithm we need a way
to access the states having a certain distance from I. For
this typically a priority queue is used. As we are concerned
only with discrete action costs we can partition the priority
queue into buckets, resulting in an open list (Dial 1969). In
this list, we store all the states that have been reached so far
in the bucket representing the distance from I that they have
been found in.
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Figure 1: The working of BDDA*. The buckets that are
expanded in the course of the search are shaded in gray, the
numbers in them denote the order of their expansion and
the arrows point to the buckets containing successors of the
current one.

In case of zero-cost actions we calculate a fix-point for the
current bucket by performing a BFS using only the zero-cost
actions. The resulting states correspond to the application of
one non-zero-cost action followed by a number of zero-cost
actions. For duplicate elimination, we might also keep a
BDD closed for all the states we have already expanded.

A* (Hart, Nilsson, and Raphael 1968) corresponds to Di-
jktra’s algorithm with the new costs ĉ (u, v) = c (u, v) −
h (u) + h (v). Both algorithms, Dijkstra’s algorithm with
reweighted costs and A*, perform the same, if the heuristic
function h is consistent, i. e., if for all a = (u, v) ∈ A we
have h (u) ≤ h (v) + c (u, v).

Efficient symbolic adaptations of A* with consistent
heuristics are SetA* by Jensen, Bryant, and Veloso (2002)
and BDDA* by Edelkamp and Reffel (1998). While for Di-
jkstra’s algorithm a bucket list was sufficient (in the case of
no zero-cost actions), in BDDA* we need a two-dimensional
matrix (cf. Figure 1). One dimension represents the distance
from I (the g value), the other one the heuristic estimate on
the distance to a goal (the h value).

A* expands according to f = g + h, which corresponds
to a diagonal in the matrix. If the heuristic is consistent we
will never have to reopen an f diagonal that we already ex-
panded. Furthermore, as we do not allow negative action
costs, the g value will never decrease. So, for each f diago-
nal we start at the bucket with smallest g value, expand this,
go to the next one on the same f diagonal, until either the
diagonal has been completely expanded or we find a goal
state t ∈ T . In the first case we go on to the next f diagonal,
in the second case we are done.

For the case of zero-cost actions, things again get a bit
more difficult, as we – similar to the symbolic version of
Dijkstra’s algorithm – need to store a list of BDDs in each
bucket of the matrix to keep the different layers of the zero-
cost BFS.

If, due to large action costs, the matrix becomes very large
and at the same time very sparse, finding the next non-empty
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bucket takes a long time and after a few steps it will not
fit into the available memory any more. To avoid this we
switched from using a matrix to a map. This way, only the
non-empty (g, h)-positions are stored, which can greatly re-
duce the memory overhead.

A question that still remains is how we can come up with
a consistent symbolic heuristic. For this, in the following we
will present how to compute symbolic pattern databases.

Symbolic Planning Pattern Databases
Pattern databases have originally been proposed by Culber-
son and Schaeffer (1998). They were designed to operate
in the abstract space of a problem. Thus, we first need to
define such an abstract planning problem, for which we use
one of several possibilities.
Definition 6 (Restriction Function). Let V ′ ⊆ V . For a set
of variables v ∈ V , a restriction function φV′ : 2V 7→ 2V

′

is defined as the projection of S to V ′ containing only those
variables that are also present in V ′, while those in V \ V ′
are removed. φV′ (S) is also denoted as S|V′ .
Definition 7 (Abstract Planning Problem). Let P =
〈S,V,A, I, T , c〉 be a planning problem and V ′ ⊆
V a set of variables. An abstract planning problem
P|V′ = 〈S|V′ ,V ′,A|V′ , I|V′ , T |V′ , c〉 is P restricted
to V ′, where S|V′ = {s|V′ | s ∈ S}, and A|V′ =
{〈pre|V′ , eff |V′〉 | 〈pre, eff 〉 ∈ A ∧ eff |V′ 6= ∅}

In other words, the abstraction of a planning problem re-
sults in a (typically smaller) planning problem where certain
variables (those in V \ V ′) are ignored.
Definition 8 (Pattern Database). A pattern database
(PDB) Φ for an abstract planning problem PV′ =
〈S|V′ ,V ′,A|V′ , I|V′ , T |V′ , c〉 is a set of pairs (d, s) where
d ∈ N+

0 denotes the minimal distance of the state s ∈ S|V′

to one of the abstract goal states, i. e., d = δV′ (s).
The construction of symbolic PDBs (Edelkamp 2002)

performs symbolic Dijkstra search. Starting at the goal
states T |V′ it operates in backward direction until all states
are inserted into the database, which consists of a vector of
BDDs, the BDD within each bucket of this vector represent-
ing the abstract states that have a corresponding distance to
an abstract goal state.

If the abstract spaces are too large, the complete database
calculation might take too long. Thus, we probably do not
want the full information we could get. Therefore, we con-
sider combining PDBs with perimeter search (Dillenburg
and Nelson 1994).

Felner and Ofek (2007) propose two algorithms combin-
ing perimeter search and PDBs. The first one, called sim-
plified perimeter PDB (SP PDB) uses a classical PDB and a
perimeter for a distance of d. All states not on the perimeter
and also not within it are known to have a distance of at least
d + 1. Thus, the heuristic estimate for a state n can be set
to h (n) = max (PDB (n) , d+ 1) with PDB (n) denoting
the heuristic estimate that would be calculated by the PDB
alone. So, the perimeter is used merely to correct too low
heuristic estimates from the PDB up to the depth bound of
d+ 1.

The second approach, which they called perimeter PDB
(P PDB), performs a perimeter search up to a depth of d as
a first step, followed by a PDB calculation starting at the
states on the perimeter. The heuristic estimates result from
the PDB and give estimates on the distance to the perimeter.
The forward search is then performed using these heuristic
estimates until a state on the perimeter is reached and chosen
for expansion.

The idea of partial PDBs, which we use in our implemen-
tation, is due to Anderson, Holte, and Schaeffer (2007). A
partial PDB is a PDB that is not calculated completely. Sim-
ilar to perimeter search, it is created up to a maximal dis-
tance d to a goal state, which in this case is an abstract goal
state. For all states that have been reached during the PDB
construction process the heuristic estimate is calculated ac-
cording to the PDB, while for states not within the PDB the
estimate can be set to d (or even to d + 1, if all states up to
distance d are stored in the PDB).

An adaptation to symbolic search is again rather simple.
All we need to do is perform symbolic Dijkstra search start-
ing at the goal states T |V′ up to a maximal distance d and
then stop the PDB creation process. In our implementation
we do not set the value of d explicitly but generate the PDB
until a certain timeout is reached, which we typically set to
half the available time for one planning problem. The max-
imal distance up to which states are within the PDB is then
denoted as d. As we are concerned with symbolic search
and have one BDD for all states sharing the same distance
to the goal states, all unexpanded states have a distance that
is greater than d, so that we assign all such states a distance
of d+ 1.

Automated Pattern Selection
The automated selection of pattens for PDBs has been con-
sidered by Haslum et al. (2007). For one PDB the ap-
proach greedily constructs a pattern V ′ by adding one vari-
able v ∈ V of the unchosen ones at a time. For the greedy
selection process the quality of the unconstructed PDBs
V ′ ∪ {v} is evaluated by drawing and abstracting n ran-
dom samples in the original state space. These subproblems
are solved using heuristic search wrt. the already constructed
PDB V ′. If v is fixed then the PDB for V ′∪{v} is constructed
and the process iterates. The decision criterion for select-
ing the next candidate variable is the search tree prediction
formula for iterative-deepening A* proposed by Korf, Reid,
and Edelkamp (2001).

Similarly, our incremental symbolic PDB is constructed
by greedily extending the variable set that is mentioned in
the goal using backward search. However, we neither use
sampling nor heuristics but construct the symbolic PDBs
for all candidate variables. Moreover, the result is a sin-
gle PDB, not a selection as in Haslum et al. (2007). If the
pattern V ′ ⊂ V is chosen, we construct the symbolic PDBs
for V ′ ∪ {v} for all variables v ∈ V \ V ′ if the causal graph
contains an edge from v to any of the variables in V ′. To
select among the candidate patterns we then compute the
mean heuristic value in the PDBs of the respective candidate
variable by using model counting (sat-count as proposed by
Bryant (1986)), which is a linear operation in the size of the
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constructed symbolic PDB and a little simpler to compute
than evaluating the prediction formula. After we are done
with testing the insertion of all variables we actually add all
those that achieved the best mean heuristic value (if that is
greater than the mean heuristic value of V ′) and start the
process over.

In contrast to explicit search, backward symbolic search
in the according abstract state spaces is often possible even
if the set of goal states is large. If the time reserved for
construction is exhausted we use the PDB constructed so far
as a partial PDB.

Bidirection
We observed that in some (but rare) domains unabstracted
symbolic backward search is rather complex and limited to
very few backward images that dominate the search process
and require lots of resources in time and space. The reason
is that the goal specification is partial, and in these domains
backward search generates lots of states unreachable in for-
ward direction, which results in tremendous work.

Fortunately, for most example problems we investigated
this effect can be detected in the first backward iteration, re-
sulting in a manifold increase of the time to compute the first
pre-image. Hence, we perform one image from I and one
pre-image from T and impose a threshold α on the time ratio
of the two. If the ratio exceeds α we turn off bidirectional
search (for perimeter database construction in the original
space) and insist on partial PDB construction in the abstract
space (as in the previous section), where due to the smaller
size of the state vector the effect of backward search for the
exploration is less prominent.

Experiments
We performed all the experiments on one core of a desktop
computer (Intel i7 CPU with 2.67 GHz and 24 GB RAM).
The planner is written in Java and uses the Java native inter-
face to utilize Fabio Somenzi’s CUDD library for the BDD
calculations.

The set of competitors includes the two best planners
at IPC 20081, namely the 2008 version of our planner
(GAMER08) supporting BDDA* search with a symbolic
perimeter database without abstraction (Edelkamp and Kiss-
mann 2009) as well as the organizers’ baseline planner
BASE. The only difference between GAMER08 and the ver-
sion used at IPC 2008 is the use of the map for the A*
matrix, which we proposed in the our 2009 paper, so that
the problems of the Parcprinter domain, which contains im-
mensely large actions costs, can be handled. Concerning the
other domains there is no difference in the number of solved
instances. The baseline planner BASE performs Dijkstra
search (A* with a zero-heuristic) and is based on LAMA’s
(Richter and Westphal 2010) search code.

After the competition promising improvements for
explicit-state heuristic search planning have been proposed
(see, e. g., Bonet and Helmert (2010) or Katz and Domshlak
(2010)). Unfortunately, so far no results for such a planner

1ipc.informatik.uni-freiburg.de/Results

Table 1: Number of solved instances for cost-optimal plan-
ning benchmarks from IPC 2008.

Domain BASE GAMER08 GPUPLAN GAMER
Elevators 16 22 19 21

Openstacks 23 21 27 30
Parcprinter 11 10 9 10

Pegsol 28 24 29 27
Scanalyzer 12 9 11 9

Sokoban 24 17 23 19
Transport 11 11 11 11

Woodworking 9 13 9 20

Total 134 127 138 147

on the IPC 2008 problems, the first ones to include action
costs, have been published. The most recent planner that can
handle cost-optimal and net-benefit planning problems is the
GPU based planner GPUPLAN by Sulewski, Edelkamp, and
Kissmann (2011), which is the third competitor in our exper-
iments.

For our current version of GAMER we set the parameters
for the variable reordering to ρ = 20 and η = 50,000 re-
sulting in one million incremental updates. Concerning the
bidirection we set the ration to α = 25.

The benchmarks are all the eight domains from the
sequential-optimal track of IPC 2008, each consisting of 30
problem instances and containing non-uniform action costs.
In contrast to the competition setting we use a shorter time-
out of 15 minutes but no limit on the amount of usable mem-
ory.

The results are shown in Table 1. We see that GAMER
performs significantly better than its competitors in the total
number of solved instances.

In some individual domains like Scanalyzer and Sokoban
the gap to explicit-state planners, however, has not always
been bridged. We looked into the Sokoban benchmark and
found that the lack of performance is due to the unfortunate
problem specification in the domain. There are other prob-
lem formulations in which GAMER solves more problems
than explicit-state planners.

In two of the domains, namely Openstacks and Wood-
working, GAMER clearly outperforms all the competitors
and is the only one to find a solution for all 30 Openstacks
instances.

A comparison in terms of runtimes between all these plan-
ners would be rather unfair because the two versions of
GAMER are the only planners in the chosen set that per-
form backward search for half the time (if it does not fin-
ish) and start the actual planning in forward direction only
afterwards, so that in many cases the runtime is dominated
by the time needed for the backward search. In our sce-
nario, the timeout for the backward search is 450 seconds.
To get a feeling for GAMER’s gain in efficiency due to the
modifications we provide a comparison of the runtimes of
all instances solved by at least one version (cf. Figure 2).

We also experimented with computing the optimal net-
benefit, as we intended to participate in the preference track
again, which eventually was cancelled due to too few par-
ticipants. For this, we chose all the net-benefit problems
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Figure 2: Comparison of the runtimes of the two versions
of GAMER on the problems of the sequential optimal track
of IPC 2008. Solved Problems are problems solved by both
planners, while Unsolved Problems are those that were only
solved by one planner.

Table 2: Number of solved instances for optimal net-benefit
planning benchmarks from IPC 2008.

Domain GAMER08 MIPS-XXL GPUPLAN GAMER
Crewplanning 4 8 8 4

Elevators 18 3 19 16
Openstacks 7 1 4 11

Pegsol 29 1 0 29
Transport 14 6 6 14

Woodworking 14 5 15 14

Total 86 24 52 88

from IPC 2008, each of the six domains again consisting of
30 problem instances. The competitors here are the winner
and follow-up of the net-benefit track of IPC 2008, namely,
GAMER08, performing uni-directional symbolic branch-
and-bound-planning implemented in C++, and MIPS-XXL
(Edelkamp and Jabbar 2008), an explicit-state breadth-first
external-memory planner, as well as GPUPLAN. The re-
sults in numbers of solved instances are shown in Table 2
and the runtime comparison of the two versions of GAMER
in Figure 3.

The results are not as good as in cost-optimal planning,
due to the following reasons. First, the search for net-
benefit domains is unidirectional, so that no PDB is gen-
erated and the bidirectional criterion does not appliy. The
only advances are in the variable ordering. However, many
net-benefit benchmarks are metric planning problems which
contain numerical fluents (propositional atoms mapped to
numbers). Fortunately, (after possible rescaling) all fluents
map to small numbers and can be represented as state vari-
ables of finite domains. The only variable improvement we
have applied so far considers the fluents. The dependen-
cies of the corresponding state variables are not computed.
The only reordering we enforced was that half of the nu-
merical variables for the violation of the preferences are put
at the start and half of them are placed to the end of the
ordering. The reason for this rule of thumb is that we do
not have dependencies among the violation variables and
that the accumulated distance measurement to the other state
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Figure 3: Comparison of the runtimes of the two ver-
sions of GAMER on the problems of the net-benefit track
of IPC 2008. Solved Problems are problems solved by both
planners, while Unsolved Problems are those that were only
solved by one planner.

variables (with possible dependencies) can become smaller
having them framed.

Conclusion
In this paper we pushed the envelope for symbolic planning
with action costs and with soft constraints. Even though
each applied technique is rather fundamental or aligns with
ideas that have been applied to explicit-state planning, the
combined impact with respect to the number of solved
benchmarks is remarkable. The improvement wrt. the 2008
version of GAMER across the domains for minimizing action
costs is statistically significant.

In the future we will refine the variable ordering heuristic
for the numerical fluents. Also, experimenting with more
general abstraction schemes and selection algorithms is on
our research agenda. Furthermore, we are searching for a
method for finding and using multiple PDBs effectively in
most benchmark domains.

As there are no results available on action cost domains
for alternative search approaches, we are exited to get hands
on the planners after the planning competition IPC 2011.
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Abstract
The LM-Cut planner uses the landmark-cut heuristic, intro-
duced by the authors in 2009, within a standard A∗ progres-
sion search framework to find optimal sequential plans for
STRIPS-style planning tasks. This short paper recapitulates
the main ideas surrounding the landmark-cut heuristic and
provides pointers for further reading.

Introduction
Heuristic search, either in the space of world states reached
through progression or in the space of subgoals reached
through regression, is a common and successful approach
to classical planning. Apart from the choice of search algo-
rithm, the main feature that distinguishes heuristic planners
is their heuristic estimator. Most current heuristic functions
are based on one of the following four ideas:

1. delete relaxation: e. g., h+ (Hoffmann and Nebel 2001),
hmax (Bonet and Geffner 2001), hadd (Bonet and Geffner
2001), hFF (Hoffmann and Nebel 2001), hpmax (Mirkis
and Domshlak 2007), hsa (Keyder and Geffner 2008)

2. critical paths: the hm heuristic family (Haslum and
Geffner 2000)

3. abstraction: pattern databases (Edelkamp 2001), merge-
and-shrink abstractions (Helmert, Haslum, and Hoffmann
2007), and structural patterns (Katz and Domshlak 2008)

4. landmarks: LAMA’s hLM (Richter, Helmert, and West-
phal 2008; Richter and Westphal 2010) and the admissible
landmark heuristics hL and hLA (Karpas and Domshlak
2009)
These ideas have been developed in relative isolation. For

a long time, apart from Haslum and Geffner’s (2000) result
that hmax is a special case of the hm family (hmax = h1), no
formal connections between these different ideas for devis-
ing heuristic estimators had been known. In a recent paper
(Helmert and Domshlak 2009), we addressed this issue by
proving a number of dominance results, which established,
subject to the usual complexity-theoretic assumption that
polynomial overhead is acceptable, the following relation-
ships:

∗Our presentation in this paper borrows heavily from the earlier
paper in which we introduced the landmark-cut heuristic (Helmert
and Domshlak 2009).

• Landmark heuristics dominate additive hmax heuristics.

• Additive hmax heuristics dominate landmark heuristics.

• Additive critical path heuristics with m ≥ 2 strictly dom-
inate landmark heuristics and additive hmax heuristics.

• Merge-and-shrink abstraction heuristics strictly dominate
landmark heuristics and additive hmax heuristics.

• Pattern database heuristics are incomparable with land-
mark heuristics and additive hmax heuristics.

These statements are informal summaries, and some restric-
tions apply. In particular, the results for landmark heuristics
only apply to relaxation-based landmarks, which are veri-
fiable by a relaxed planning graph criterion. Until very re-
cently, all landmark heuristics in the literature fell into this
class. However, this has changed with the work of Key-
der, Richter, and Helmert (2010), who introduced landmarks
based on the hm heuristic family.

On the positive side, all dominance results are construc-
tive, showing how to compute a dominating heuristic in
polynomial time. Moreover, some of the compilations are
efficient enough to be worth implementing in practice. We
implemented one such construction, from the regular (non-
additive) hmax heuristic to landmarks, to obtain a new heuris-
tic, which we called the landmark-cut heuristic hLM-cut.

The Landmark-Cut Heuristic
The landmark-cut heuristic can alternatively be viewed as a
landmark heuristic, a cost-partitioning scheme for additive
hmax, or an approximation to the (intractable) optimal relax-
ation heuristic h+.

Here, we briefly recapitulate the computation of hLM-cut.
We assume familiarity with fundamental concepts such as
delete relaxation, landmarks, and the hmax and h+ heuris-
tics. For readers who are new to these concepts, we refer to
our original paper on hLM-cut (Helmert and Domshlak 2009)
and the later work by Bonet and Helmert (2010), which re-
lated hLM-cut to hitting sets and showed that a generaliza-
tion of hLM-cut based on hitting sets always achieves the per-
fect delete relaxation estimate h+ when allowed exponential
computation time.

To determine the hLM-cut estimate of a state s, we first
compute hmax(s). If this value is zero or infinite, this implies
that h+(s) is also zero or infinite, respectively, and hence
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this is the best possible information that can be extracted
from the delete relaxation of the task. In these cases, we set
hLM-cut(s) = hmax(s).

Otherwise, the cost to solve the delete relaxation of the
given task from state s is finite and nonzero. In this case,
we compute a nontrivial disjunctive action landmark of the
delete relaxation, which is a set L of actions of nonzero cost
such that each relaxed plan solving the task from the given
state must include an action from L.

After computing such a landmark, we add the minimal
cost c among all actions in L to the heuristic value com-
puted so far (which is initialized to 0), reduce the cost of all
actions in L by c, and then start again by recomputing the
hmax values based on the reduced action costs, computing
a new disjunctive action landmark, and so on. The process
ends once action costs have been reduced to the extent that
the hmax estimate of the resulting problem becomes zero.

The main challenge in this computation is finding a suit-
able landmark L. It is not particularly hard to find some
such landmark: the set of all actions of nonzero cost will
do. However, the larger the set L, the more actions will have
their cost reduced at the end of the current iteration of the
main landmark-cut loop, leading to potentially fewer land-
marks that can be extracted in future rounds. The challenge,
then, is in finding a reasonably small such set.

The landmark-cut heuristic addresses this issue by com-
puting so-called justification graphs, which “justify” the
hmax values of the facts of the planning task by linking each
effect of an action a to the most expensive precondition of a
(or one of the most expensive ones, in case of ties).

Arcs in justification graphs are weighted by the costs of
the actions that induce them. A shortest paths in a justifica-
tion graph corresponds to a causal chain whose cost explains
the hmax value of a fact, and cuts in justification graphs (sets
of arcs whose removal disconnects the current state from the
goal) correspond to disjunctive action landmarks. These re-
lationships are explored in more depth by Bonet and Helmert
(2010), who show that all relevant landmarks of the delete
relaxation can be computed as cuts in justification graphs
when arbitrary preconditions are allowed to induce arcs in
the graph (rather than just preconditions with maximal hmax

value).
The landmark selected by the landmark-cut heuristic is

based on a particular cut close to the goal facts of the task,
which is sufficient to guarantee that the final heuristic value
is always at least as large as hmax(s). (In our experiments, it
is usually much larger.)

The LM-Cut Planner
In our earlier work (Helmert and Domshlak 2009), we
demonstrated experimentally that hLM-cut gives excellent ap-
proximations to h+ and compares favourably to other ad-
missible planning heuristics in terms of accuracy. We also
showed that an optimal planner based on A∗ search with the
landmark-cut heuristic was highly competitive with the state
of the art at the time.

The LM-Cut planner entered into IPC 2011 is almost
identical to the system used in these experiments. The only
two changes since then are:

• minor bug fixes and performance improvements in vari-
ous components of the Fast Downward planner that serves
as the basis of our implementation, and

• support for actions of non-unit cost. (While our original
description of the landmark-cut heuristic was fully gen-
eral, our implementation was restricted to the unit-cost
case.)
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Abstract

Merge-and-shrink abstraction is a general approach to heuris-
tic design whose key advantage is its capability to make very
fine-grained choices in defining abstractions. The Merge-
and-shrink planner uses two different strategies for making
these choices, both based on the well-known notion of bisim-
ulation. The resulting heuristics are used in two sequential
runs of A∗ search.

Introduction
Many optimal planning systems are based on state-space
search using A∗ and admissible heuristics. Merge-and-
shrink abstraction (Dräger et al. 2006; Helmert et al. 2007),
short M&S, uses solution distances in a smaller, abstract
state space to deliver a consistent and admissible heuristic
function.

The abstract state space is built in an incremental fash-
ion, starting with a set of atomic abstractions correspond-
ing to individual variables, then iteratively merging two ab-
stractions – replacing them with their synchronized prod-
uct – and shrinking them – aggregating pairs of states into
one. Thus, despite the exponential size of the state space,
M&S allows to select individual pairs of states to aggregate.
This freedom in abstraction design comes with significant
advantages. M&S dominates most other known frameworks
for computing admissible planning heuristics: for any given
state, it can with polynomial overhead compute a larger
lower bound (Helmert and Domshlak 2009).

The M&S planner employs two different shrinking strate-
gies, which choose the states to aggregate using the notion of
bisimulation. In this paper we briefly describe bisimulation
and label reduction, and conclude with a detailed description
of the M&S planner.

Background
Our approach is based on the notion of bisimulation, a well-
known criterion under which an abstract state space “ex-
hibits the same observable behavior” as the original state
space (Milner 1990). Two states s, t are bisimilar if: (1)
they agree on whether or not the goal is true; and (2) every
transition label, i.e., every planning operator, leads into the
same abstract state from both s and t. If we aggregate only
bisimilar states during M&S, then the heuristic is guaranteed

to be perfect. However, bisimulations are exponentially big
even in trivial examples. Our key observation is that, for the
purpose of computing a heuristic, we can relax bisimulation
significantly without losing any information. Namely, we
do not need to distinguish the transition labels. Such a fully
label-reduced bisimulation still preserves solution distance,
while often being exponentially smaller.

Unfortunately, while full label reduction does not affect
solution distances per se, its application within the M&S
framework is problematic. The merging step, in order to
synchronize transitions, needs to know which ones share the
same label. We tackle this by using partial label reductions,
ignoring the difference between two labels only if they are
equivalent for “the rest” of the M&S construction. We thus
obtain, again, a strategy that guarantees to deliver a perfect
heuristic.

Even label-reduced bisimulations are sometimes too big,
thus for practicality one needs a strategy to approximate fur-
ther if required. The M&S planner uses two such strategies,
each relaxing the strict rules of bisimulation in a different
way.

For more details on bisimulation, label reduction, and us-
ing their combination to create perfect heuristics in polyno-
mial time in some planning domains, we refer to a confer-
ence paper (forthcoming).

The M&S Strategies

The merging strategy we use is linear (meaning only one
non-atomic abstraction is maintained), and follows Fast-
Downward’s “level heuristic” (Helmert 2006). This orders
variables so that those “closest to the root of the causal
graph” go first (this is beneficial for operator projection be-
cause the most influential variables are projected away ear-
lier on).

Our planner uses two shrinking strategies, each having
different strengths and weaknesses. After experimenting
with many shrinking strategies, we did not find one that
greatly outperformed the others. Our choice of strategies for
our planner was therefore guided by the relatively high vari-
ance of tasks solved by the two. Since these strategies are
the core feature of the planner, we describe them in some
more detail in what follows.
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The Greedy Bisimulation Shrinking Strategy
The bisimulation shrinking strategy computes the coarsest
bisimulation, and in the shrinking step, aggregates only
bisimilar (abstract) states. In most benchmark domains,
however, coarsest bisimulations are still large even under op-
erator projection. Greedy bisimulation is a relaxed variant of
bisimulation, which demands the bisimulation property only
for transitions s → s′ where the abstract goal distance from
s is at most as large as the abstract goal distance from s′.
This relaxation forfeits the guarantee of providing a perfect
heuristic.

The greedy bisimulation shrinking strategy therefore
computes the coarsest greedy bisimulation using partial la-
bel reduction, aggregating only greedily bisimilar states.
Since the (greedy) bisimulation strategy is given no limit
on the size of the abstraction, the actual abstraction size de-
pends only on the size of the coarsest greedy bisimulation.
We observed that using greedy bisimulation dramatically re-
duces abstraction size, increasing the number of cases where
the abstraction can be built completely. In fact, when us-
ing the bisimulation strategy, the abstraction was built com-
pletely only in 203 out of 876 IPC tasks we experimented
on. Using greedy bisimulation brings this number up to 795.
This reduction in size also improves speed, making the ab-
straction much faster to compute.

The DFP-gop Shrinking Strategy
Motivated by the size of bisimulations, Dräger et al. (2006)
propose a more approximate shrinking strategy that we will
call the DFP shrinking strategy. When building the coars-
est bisimulation, the strategy keeps separating states until
the size limit N is reached. The latter may happen before
a bisimulation is obtained, in which case we may lose in-
formation. The strategy prefers to separate states close to
the goal, thus attempting to make errors only in more distant
states where the errors will hopefully not be as relevant.

The DFP-gop shrinking strategy (“g” stands for greedy,
“op” for operator projection) enhances the DFP strategy in
two ways. First, partial label reduction is used when com-
puting the coarsest bisimulation. Second, if bisimulation
breaks the abstraction size limit, the greedy coarsest bisim-
ulation is used to select which states to aggregate. For the
abstraction size limit, we chose to set N = 200, 000. Be-
cause DFP-gop aggregates only bisimilar states as long as
N is not reached, its high value allows computation of per-
fect heuristics, in cases where there exist sufficiently small
coarsest bisimulations. In all 20 tasks of the IPC benchmark
domain Gripper, for example, the final abstraction computed
by this strategy is a bisimulation of the original search space,
and therefore provides the perfect heuristic.

The high N value comes at a cost – computing the ab-
straction is slow and requires much memory. Out of the 876
tasks experimented on, only in 490 was the final abstraction
computed without running out of time/memory.

The Planner
The M&S planner is implemented on top of the Fast Down-
ward planning system. For further information on Fast

Downward’s PDDL-to-finite-domain translator, please refer
to the paper by Helmert (2009). For details regarding how
M&S abstractions are used in the search process, refer to the
paper by Helmert et al. (2007). Finally, for general infor-
mation about the planner, we refer the reader to its original
description (Helmert 2006).

The Hybrid Implementation
In order to take advantage of the strengths of both strate-
gies, our planner is designed to divide the given time limit
between two sequential runs, using 4

9 of the available time
for the greedy bisimulation shrinking strategy, followed –
if no solution is found – with DFP-gop for the remaining
time. (The value of 4

9 was determined experimentally based
on data for IPC 1998–2008 benchmarks.) In each run of the
planner, the M&S abstraction is computed according to the
strategy, and A∗search is performed using solution distances
in the abstraction as heuristic values.

We chose the hybrid implementation for two reasons.
First, cutting the time limit had little effect on coverage re-
sults for the two strategies. This allowed us to take advan-
tage of two different M&S strategies. Second, we tried com-
puting both abstractions and using the maximal of the two in
one search run, but this turned out to be too costly both in
time and in memory. In most cases, construction of the two
abstractions either exceeded the 30 minute time limit or the
2GB memory limit.
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Abstract

The SelMax planner combines two state-of-the-art admissible
heuristics using an online learning approach. In this paper we
describe the online learning approach employed by SelMax,
briefly review the Fast Downward framework, and describe
the SelMax planner.

Introduction
One of the most prominent approaches to cost-optimal plan-
ning is using the A∗ search algorithm with an admissible
heuristic. Many admissible heuristics have been proposed,
varying from cheap to compute yet typically not very in-
formative to expensive to compute but often very informa-
tive. Since the accuracy of heuristic functions varies for dif-
ferent problems, and even for different states of the same
problem, we can produce a more robust optimal planner by
combining several admissible heuristics. The simplest way
of doing this is by using their point-wise maximum at each
state. Presumably, each heuristic is more accurate, that is,
provides a higher estimate, in different regions of the search
space, and thus their maximum is at least as accurate as
each of the individual heuristics. In some cases it is also
possible to use additive (Felner, Korf, and Hanan 2004;
Haslum, Bonet, and Geffner 2005; Katz and Domshlak
2008) or mixed additive/maximizing (Coles et al. 2008;
Haslum et al. 2007) combinations of admissible heuristics.

An important issue with both max-based and sum-based
approaches is that the benefit of adopting them over stick-
ing to just a single heuristic is assured only if the planner is
not constrained by time. Otherwise, the time spent on com-
puting numerous heuristic estimates at each state may out-
weigh the time saved by reducing the number of expanded
states. Selective Max (SelMax) is a novel method for com-
bining admissible heuristics that aims at providing the accu-
racy of their max-based combination while still computing
just a single heuristic for each search state.

At a high level, selective max can be seen as a hyper-
heuristic (Burke et al. 2003) — a heuristic for choosing be-
tween other heuristics. Specifically, selective max is based
on a seemingly useless observation that, if we had an or-
acle indicating the most accurate heuristic for each state,

∗This paper is strongly based upon Domshlak, Karpas, and
Markovitch (2010)

then computing only the indicated heuristic would provide
us with the heuristic estimate of the max-based combina-
tion. In practice, of course, such an oracle is not available.
However, in the time-limited settings of our interest, this is
not our only concern: It is possible that the extra time spent
on computing the more accurate heuristic (indicated by the
oracle) may not be worth the time saved by the reduction in
expanded states.

Addressing the latter concern, we first analyze an ideal-
ized model of a search space and deduce a decision rule for
choosing a heuristic to compute at each state when the ob-
jective is to minimize the overall search time. Taking that
decision rule as our target concept, we then describe an on-
line active learning procedure for that concept that consti-
tutes the essence of selective max.

Notation
We consider planning in the SAS+ formalism (Bäckström
and Nebel 1995); a SAS+ description of a planning task
can be automatically generated from its PDDL descrip-
tion (Helmert 2009). A SAS+ task is given by a 4-tuple
Π = 〈V,A, s0, G〉. V = {v1, . . . , vn} is a set of state
variables, each associated with a finite domain dom(vi).
Each complete assignment s to V is called a state; s0 is
an initial state, and the goal G is a partial assignment to V .
A is a finite set of actions, where each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called precondi-
tions and effects, respectively.

An action a is applicable in a state s iff pre(a) ⊆ s.
Applying a changes the value of each state variable v to
eff(a)[v] if eff(a)[v] is specified. The resulting state is de-
noted by sJaK; by sJ〈a1, . . . , ak〉K we denote the state ob-
tained from sequential application of the (respectively appli-
cable) actions a1, . . . , ak starting at state s. Such an action
sequence is a plan if G ⊆ s0J〈a1, . . . , ak〉K.

A Model for Heuristic Selection
Given a set of admissible heuristics and the objective of min-
imizing the overall search time, we are interested in a deci-
sion rule for choosing the right heuristic to compute at each
search state. In what follows, we derive such a decision rule
for a pair of admissible heuristics with respect to an ideal-
ized search space model corresponding to a tree-structured
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Figure 1: An illustration of the idealized search space model
and the f -contours of two admissible heuristics.

search space with a single goal state, constant branching fac-
tor b, and uniform cost actions (Pearl 1984). Two additional
assumptions we make are that the heuristics are consistent,
and that the time ti required for computing heuristic hi is in-
dependent of the state being evaluated; w.l.o.g. we assume
t2 ≥ t1. Obviously, most of the above assumptions do not
hold in typical search problems, and later we carefully ex-
amine their individual influences on our framework.

Adopting the standard notation, let g(s) be the cost of
the cheapest path from s0 to s. Defining maxh(s) =
max(h1(s), h2(s)),we then use the notation f1(s) = g(s)+
h1(s), f2(s) = g(s) + h2(s), and maxf (s) = g(s) +
maxh(s). The A∗ algorithm with a heuristic h expands states
in increasing order of f = g+ h. Assuming the goal state is
at depth c∗, let us consider the states satisfying f1(s) = c∗

(the dotted line in Fig. 1) and those satisfying f2(s) = c∗

(the solid line in Fig. 1). The states above the f1 = c∗

and f2 = c∗ contours are those that are surely expanded
by A∗ with h1 and h2, respectively. The states above both
these contours (the grid-marked region in Fig. 1), that is,
the states SE = {s | maxf (s) < c∗}, are those that are
surely expanded by A∗ using maxh (see Theorem 4, p. 79,
Pearl 1984).

Under the objective of minimizing the search time, ob-
serve that the optimal decision for any state s ∈ SE is
not to compute any heuristic at all, since all these states
are surely expanded anyway. The optimal decision for all
other states is a bit more complicated. f2 = c∗ contour that
separates between the grid-marked and lines-marked areas.
Since f1(s) and f2(s) account for the same g(s), we have
h2(s) > h1(s), that is, h2 is more accurate in state s than
h1. If we were interested solely in reducing state expansions,
then h2 would obviously be the right heuristic to compute at
s. However, for our objective of reducing the actual search
time, h2 may actually be the wrong choice because it might
be much more expensive to compute than h1.

Let us consider the effects of each of our two alternatives.
If we compute h2(s), then s is no longer surely expanded
since f2(s) = c∗, and thus whether A∗ expands s or not
depends on tie-breaking. In contrast, if we compute h1(s),
then s is surely expanded because f1(s) < c∗. Note that not
computing h2 for s and then computing h2 for one of the
descendants s′ of s is surely a sub-optimal strategy as we do

pay the cost of computing h2, yet the pruning of A∗ is lim-
ited only to the search sub-tree rooted in s′. Therefore, our
choices are really either computing h2 for s, or computing
h1 for all the states in the sub-tree rooted in s that lie on the
f1 = c∗ contour. Suppose we need to expand l complete
levels of the state space from s to reach the f1 = c∗ contour.
This means we need to generate order of bl states, and then
invest blt1 time in calculating h1 for all these states that lie
on the f1 = c∗ contour. In contrast, suppose we choose to
compute h2(s). Assuming favorable tie-breaking, the time
required to “explore” the sub-tree rooted in s will be t2.

Putting things together, the optimal decision in state s is
thus to compute h2 iff t2 < blt1, or if we rewrite this, if

l > logb(t2/t1).

As a special case, if both heuristics take the same time to
compute, this decision rule boils down to l > 0, that is,
the optimal choice is simply the more accurate (for state s)
heuristic.

The next step is to somehow estimate the “depth to go”
l. For that, we make another assumption about the rate
at which f1 grows in the sub-tree rooted at s. Although
there are many possibilities here, we will look at two esti-
mates that appear to be quite reasonable. The first estimate
assumes that the h1 value remains constant in the subtree
rooted at s, that is, the additive error of h1 increases by
1 for each level below s. In this case, f1 increases by 1
for each expanded level of the sub-tree (because h1 remains
the same, and g increases by 1), and it will take expanding
∆h(s) = h2(s)− h1(s) levels to reach the f1 = c∗ contour.
The second estimate we examine assumes that the absolute
error of h1 remains constant, that is, h1 increases by 1 for
each level expanded, and so f1 increases by 2. In this case,
we will need to expand ∆h(s)/2 levels. This can be gen-
eralized to the case where the estimate h1 increases by any
constant additive factor c, which results in ∆h(s)/(c + 1)
levels being expanded. In either case, the dependence of l
on ∆h(s) is linear, and thus our decision rule can be refor-
mulated to compute h2 if

∆h(s) > α logb(t2/t1),

where α is a hyper-parameter for our algorithm. Note that,
given b, t1, and t2, the quantity α logb(t2/t1) becomes fixed
and in what follows we denote simply by threshold τ .

Dealing with Model Assumptions
The idealized model above makes several assumptions,
some of which appear to be very problematic to meet in
practice. Here we examine these assumptions more closely,
and when needed, suggest pragmatic compromises.

First, the model assumes that the search space forms a tree
with a single goal state and uniform cost actions, and that the
heuristics in question are consistent. Although the first as-
sumption does not hold in most planning problems, and the
second assumption is not satisfied by some state-of-the-art
heuristics, they do not prevent us from using the decision
rule suggested by the model. Furthermore, there is some
empirical evidence to support our conclusion about expo-
nential growth of the search effort as a function of heuristic
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error, even when the assumptions made by the model do not
hold. In particular, the experiments of Helmert and Röger
(2008) with heuristics with small constant additive errors
clearly show that the number of expanded nodes typically
grows exponentially as the (still very small and additive) er-
ror increases.

The model also assumes that both the branching factor
and the heuristic computation times are constant across the
search states. In our application of the decision rule to plan-
ning in practice, we deal with this assumption by adopt-
ing the average branching factor and heuristic computation
times, estimated from a random sample of search states. Fi-
nally, the model assumes perfect knowledge about the surely
expanded search states. In practice, this information is ob-
viously not available. We approach this issue conservatively
by treating all the examined search states as if they were on
the decision border, and thus apply the decision rule at all
the search states. Note that this does not hurt the correctness
of our algorithm, but only costs us some heuristic compu-
tation time on the surely expanded states. Identifying the
surely expanded region during search is the subject of on-
going work, and can hopefully be used to improve search
efficiency even further.

Online Learning of the Selection Rule
Our decision rule for choosing a heuristic to compute at a
given search state s suggests to compute the more expen-
sive heuristic h2 when h2(s) − h1(s) > τ . However, com-
puting h2(s) − h1(s) requires computing in s both heuris-
tics, defeating the whole purpose of reducing search time by
selectively evaluating only one heuristic at each state. To
overcome this pitfall, we take our decision rule as a tar-
get concept, and suggest an active online learning proce-
dure for that concept. Intuitively, our concept is the set
of states where the more expensive heuristic h2 is ”signif-
icantly” more accurate than the cheaper heuristic h1. Ac-
cording to our model, this corresponds to the states where
the reduction in expanded states by computing h2 outweighs
the extra time needed to compute it. In what follows, we
present our learning-based methodology in detail, describ-
ing the way we select and label training examples, the fea-
tures we use to represent the examples, the way we construct
our classifier, and the way we employ it within A∗ search.

To build a classifier, we first need to collect training ex-
amples, which should be representative of the entire search
space. One option for collecting the training examples is to
use the first k states of the search where k is the desired num-
ber of training examples. However, this method has a bias
towards states that are closer to the initial state, and therefore
is not likely to well represent the search space. Hence, we
instead collect training examples by sending “probes” from
the initial state. Each such “probe” simulates a stochastic
hill-climbing search with a depth limit cutoff. All the states
generated by such a probe are used as training examples,
and we stop probing when k training examples have been
collected. In our evaluation, the probing depth limit was
set to twice the heuristic estimate of the initial state, that
is 2 maxh(s0), and the next state s for an ongoing probe
was chosen with a probability proportional to 1/maxh(s).

evaluate(s)
〈h, confidence〉 := CLASSIFY(s, model)
if (confidence > ρ) then return h(s)
else

label := h1

if h2(s)− h1(s) > α logb(t2/t1) then label := h2

update model with 〈s, label〉
return max(h1(s), h2(s))

Figure 2: The selective max state evaluation procedure.

This “inverse heuristic” selection biases the sample towards
states with lower heuristic estimates, that is, to states that
are more likely to be expanded during the search. It is worth
noting here that more sophisticated procedures for search
space sampling have been proposed in the literature (e.g.,
see Haslum et al. 2007), but as we show later, our much
simpler sampling method is already quite effective for our
purpose.

After the training examples T are collected, they are first
used to estimate b, t1 and t2 by averaging the respective
quantities over T . Once b, t1 and t2 are estimated, we can
compute the threshold τ = α logb(t2/t1) for our decision
rule. We generate a label for each training example by cal-
culating ∆h(s) = h2(s) − h1(s), and comparing it to the
decision threshold. If ∆h(s) > τ , we label s with h2, oth-
erwise with h1. If t1 > t2 we simply switch between the
heuristics—our decision is always whether to compute the
more expensive heuristic or not; the default is to compute
the cheaper heuristic, unless the classifier says otherwise.

Besides deciding on a training set of examples, we need to
choose a set of features to represent each of these examples.
The aim of these features is to characterize search states with
respect to our decision rule. While numerous features for
characterizing states of planning problems have been pro-
posed in previous literature (see, e.g., Yoon, Fern, and Gi-
van (2008); de la Rosa, Jiménez, and Borrajo (2008)), they
were all designed for inter-problem learning, and most of
them are not suitable for intra-problem learning like ours. In
our work we decided to use only elementary features corre-
sponding simply to the actual state variables of the planning
problem.

Once we have our training set and features to represent the
examples, we can build a binary classifier for our concept.
This classifier can then play the role of our hypothetical or-
acle indicating which heuristic to compute where. However,
as our classifier is not likely to be a perfect such oracle, we
further consult the confidence the classifier associates with
its classification. The resulting state evaluation procedure of
selective max is depicted in Figure 2. If state s is to be evalu-
ated by A∗, we use our classifier to decide which heuristic to
compute. If the classification confidence exceeds a parame-
ter threshold ρ, then only the indicated heuristic is computed
for s. Otherwise, we conclude that there is not enough infor-
mation to make a selective decision for s, and compute the
regular maximum over h1(s) and h2(s). However, we use
this opportunity to improve the quality of our prediction for
states similar to s, and update our classifier. This is done by
generating a label based on h2(s)−h1(s) and learning from
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this new example.1 This can be viewed as the active part of
our learning procedure.

The last decision to be made is the choice of classifier.
Although many classifiers can be used here, there are sev-
eral requirements that need to be met due to our particular
setup. First, both training and classification must be very
fast, as both are performed during time-constrained problem
solving. Second, the classifier must be incremental to allow
online update of the learned model. Finally, the classifier
should provide us with a meaningful confidence for its pre-
dictions. While several classifiers meet these requirements,
we found the classical Naive Bayes classifier to provide a
good balance between speed and accuracy (Mitchell 1997).
One note on the Naive Bayes classifier is that it assumes a
very strong conditional independence between the features.
Although this is not a fully realistic assumption for planning
problems, using a SAS+ formulation of the problem instead
of the classical STRIPS helps a lot: instead of many binary
variables which are highly dependent upon each other, we
have a much smaller set of variables which are less depen-
dent upon each other.

As a final note, extending selective max to use more
than two heuristics is rather straightforward—simply com-
pare the heuristics in a pair-wise manner, and choose the
best heuristic by a vote, which can either be a regular vote
(i.e., 1 for the winner, 0 for the loser), or weighted accord-
ing to the classifier’s confidence. Although this requires a
quadratic number of classifiers, training and classification
time (at least with Naive Bayes) appear to be much lower
than the overall time spent on heuristic computations, and
thus the overhead induced by learning and classification is
likely to remain relatively low.

The Fast Downward Planning Framework
We have implemented selective max on top of the Fast
Downward planning system. In this section we review the
relevant (for optimal planning) capabilities of the IPC-2011
version of the Fast Downward planning system. Since Fast
Downward incorporates many different algorithms and ap-
proaches, which have each been published separately in
peer-reviewed conferences and/or journals, we will simply
list the available components with pointers to further infor-
mation for the interested reader.

The Fast Downward planning system (Helmert 2006) is
composed of three main parts: the translator, the preproces-
sor, and the search component, which are run sequentially
in this order. The translator (Helmert 2009) is responsible
for translating the given PDDL task into an equivalent one
in SAS+ representation. This is done by finding groups of
propositions which are mutually exclusive and combining
them into a single SAS+ variable. The preprocessor per-
forms a relevance analysis and precomputes some data struc-
tures that are used by the search and certain heuristics. The
search component then searches for a solution to the given
SAS+ task.

1We do not change the estimates for b, t1 and t2, so the thresh-
old τ remains fixed.

Search The search component features three main types
of search algorithms: eager best-first search, lazy best-
first search (Richter and Helmert 2009), and enforced hill-
climbing (Hoffmann and Nebel 2001). For the purposes of
optimal planning, only eager search is relevant, since A∗ is
implemented on top of eager search by using f = g+ h and
tie-breaking on h.

Heuristics Selective-max can combine arbitrary admissi-
ble heuristics from among the following admissible heuris-
tics which are implemented in Fast Downward:

• Blind — 0 for goal states, 1 (or cheapest action cost for
non-unit-cost tasks) for non-goal states

• hmax (Bonet, Loerincs, and Geffner 1997; Bonet and
Geffner 1999) — the relaxation-based maximum heuristic

• hm (Haslum and Geffner 2000) — a very slow implemen-
tation of the hm heuristic family

• hM&S (Helmert, Haslum, and Hoffmann 2007; 2008) —
the merge-and-shrink heuristic

• hLA (Karpas and Domshlak 2009; Keyder, Richter, and
Helmert 2010) — the admissible landmark heuristic

• hLM-cut (Helmert and Domshlak 2009) — the landmark-
cut heuristic

Chosen Configuration
Given the number of parameters available for selective-max,
as well as the wealth of options of choosing which heuristics
to combine, it is difficult to choose one configuration for a
submission to the IPC. One option (which was implemented
in the FD Autotune planner) is to use some automated al-
gorithm configuration tool (Hutter et al. 2009) to choose a
configuration.

In this submission, we chose to combine the two best
heuristics available in Fast Downward (according to pre-
vious empirical results): hLM-cut (Helmert and Domsh-
lak 2009) and hLA (Karpas and Domshlak 2009; Keyder,
Richter, and Helmert 2010). Since we are using hLA, we
also use the LM-A∗ search algorithm (rather than regular
A∗).

The hLA heuristic uses landmarks generated by two meth-
ods: the RHW method (Richter, Helmert, and Westphal
2008) and hm landmarks with m = 1 (Keyder, Richter, and
Helmert 2010), which were combined into the same land-
mark graph (see BJOLP submission paper for details). The
parameters for selective-max were chosen based on a lim-
ited set of experiments, and are described in the following
table:

Parameter Value
α (heuristic difference bias) 1
ρ (confidence threshold) 0.6
initial sample size 1000
Sampling Method Probing
Classifier Naive Bayes
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Abstract

ArvandHerd is a satisficing parallel planner that has been
entered in the 2011 International Planning Competition (IPC
2011). It uses a portfolio-based approach where the portfolio
contains four configurations of the Arvand planner and one
configuration of the LAMA planner. Each processor runs a sin-
gle planner, and the execution is mostly independent from the
other processors so as to minimize overhead due to communi-
cation. ArvandHerd also uses the Aras plan-improvement
system to improve plan quality.

Introduction
If a planner is to be successful, it must be able to handle
problems from a diverse set of domains. Unfortunately, no
single algorithm can be expected to dominate all other chal-
lengers on all possible domains. Even within a single do-
main, it has been shown that to achieve the best possible
performance, it is often necessary to use different param-
eterizations or configurations of an algorithm on different
problems (Valenzano et al. 2010). These issues suggest the
use of an algorithm porfolio. This means that instead of us-
ing a single strategy, problems should be tackled with a set
of strategies that differ by their configuration or in the un-
derlying algorithm.

For parallel planning, different members of the portfolio
can be assigned to separate processors. This is a simple al-
ternative to the difficult process of parallelizing a single-core
algorithm and it mostly avoids overhead from communica-
tion and synchronization. These ideas form the backbone of
our ArvandHerd planner.

In this paper, we begin with a description of the indi-
vidual members of the ArvandHerd portfolio. This is
followed by a description of the general architecture of
ArvandHerd, including communication between proces-
sors, memory management, and the use of the Aras plan-
improvement system.

The ArvandHerd Portfolio
The portfolio was selected so as to maximize the cover-
age of ArvandHerd by including different configurations
of two significantly different planning approaches. More

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

specifically, the portfolio contains four configurations of the
random walk based Arvand planner (Nakhost and Müller
2009) and one configuration of the WA*-based LAMA plan-
ner (Richter and Westphal 2010). Below, these planners and
their configurations are described in more detail.

The Arvand Planner
Arvand is a sequential satisficing planner that uses heuristi-
cally evaluated random walks as the basis for its search. The
execution of Arvand consists of a series of search episodes.
In the simplest version of Arvand, each search episode be-
gins with n random walks, each being a sequence of m legal
random actions originating from the initial state si, where n
and m are parameters. The heuristic value of the final state
reached by each random walk is also computed using some
heuristic function. Once all n walks have been performed,
the search jumps to the end of the walk whose final state, s,
has the lowest heuristic value. This means that Arvand now
runs a new set of n random walks of length m, only this time
the walks originate from state s. This is followed by another
jump to the end of the most promising walk from this new
set of walks. This process repeats until either a goal state
is encountered, or some number of jumps are made without
any improvement in the heuristic values being seen. In the
latter case, the current search episode is terminated and a
new episode begins with random walks originating from si.
Arvand has been shown to be able to solve many difficult

problems that traditional planners have been unable to solve
(Nakhost and Müller 2009). This increase in coverage gen-
erally comes at the expense of solution quality, though the
quality can be improved significantly by using the any-time
and plan-improvement strategies described later in this pa-
per. Arvand also requires very little memory which makes
it ideal for running simultaneously in a shared-memory en-
vironment with other memory-intensive planners.

Configurations Four different Arvand configurations
have been included in the ArvandHerd portfolio. Below,
the parameters that differ between configurations in the port-
folio are described in more detail. We omit any descrip-
tion of most of the other system parameters. For a more
comprehensive discussion of all the parameters in Arvand,
see (Nakhost and Müller 2009), (Nakhost, Hoffmann, and
Müller 2010), (Nakhost et al. 2011).

International Planning Competition 2011

113



Bias Initial Extending
Config Type Walk Length Rate

1 MDA 1 2.0
2 MDA 3 1.5
3 MHA 1 1.5
4 MHA 10 1.5

Table 1: Arvand configurations used in ArvandHerd.

The first important difference between configurations re-
lates to the biasing of the random action selection. Arvand
allows for random walks to either be unbiased, biased to
avoid actions that have previously led to dead-ends (referred
to as MDA), or biased to using helpful actions identified by
the heuristic function (referred to as MHA). These different
biasing strategies have been shown to be useful for different
domains (Nakhost and Müller 2009). The bias used for each
configuration in the portfolio is shown in Table 1.

The portfolio configurations also differ in parameters re-
lated to the random walk length. In Arvand, this length is
adjusted online if little progress is being made in the heuris-
tic values seen during a set of random walks. Such stagna-
tion may occur if the current state is in a heuristic plateau.
In an attempt to escape these plateaus, the walk length is
increased over time. The initial walk length, the frequency
with which walks are lengthened, and the factor by which
they are lengthened (called the extending rate) are all pa-
rameters affecting this process. The initial walk length and
the extending rate for each configuration in the portfolio is
shown in Table 1. Note, the frequency with which walks
were lengthened did not vary between configurations.

Heuristic Function All Arvand configurations use the
FF heuristic (Hoffmann and Nebel 2001). For this heuris-
tic, a possibly suboptimal plan starting at the current state is
found to a relaxed version of the problem. This relaxation
corresponds to the removal of delete effects from operators.

Techniques used for solving the relaxed problem vary.
The implementation used for Arvand is from the Fast
Downward planning system (Helmert 2006). In this im-
plementation, the heuristic value ignores operator costs and
is given by the number of operators in the relaxed plan. This
heuristic will be referred to as the FFFD heuristic.

Smart Restarts If Arvand makes a number of jumps
without seeing any progress in the heuristic values encoun-
tered, the current search episode is terminated. However,
instead of always restarting from scratch, as is done in the
simplest version of Arvand, the planner can build upon
progress made by previous search episodes through the use
of a walk pool (Nakhost, Hoffmann, and Müller 2010). For
some a (called the pool size), the walk pool holds the a
“best” trajectories seen in all search episodes performed thus
far. A trajectory t1 is preferred over a trajectory t2 if the
state with the lowest heuristic value in t1 is lower than the
state with the lowest heuristic value in t2. Qualifying trajec-
tories are added to the walk pool at the termination of the
corresponding search episode. For each new search episode,
a trajectory t is randomly selected from the walk pool. In-
stead of starting from si, the new search episode then begins

from a state that has been randomly selected from t.
Note, for the first b search episodes — where b is a pa-

rameter called the pool activation level — the search begins
from the initial state. It is only after the first b episodes are
completed that partial trajectories from the walk pool are
used to find new starting positions for search. This prevents
the walk pool from becoming completely biased towards tra-
jectories that are all similar to the very first trajectory.

Configuration Selection as a Bandit Problem Arvand
has been enhanced with a system that, given a set of configu-
rations C, selects a configuration for the next search episode
from C based on the performance of the configurations dur-
ing previous search episodes. This system views configura-
tion selection as a multi-armed bandit problem in which C
is the set of bandits and the search episodes correspond to
arm pulls. This paradigm requires the definition of a pay-
off function for search episodes. For this system, the reward
given to a search episode e performed with configuration c
is given as follows: where s is the state on the trajectory of
e that achieved the lowest heuristic value, the reward given
to c is max(0, 1 − h(s)/h(si)), where h(r) is the heuristic
value of state r.

Using this reformulation of the problem, configurations
can be selected online using any of the multi-armed bandit
algorithms. In Arvand , the UCB algorithm (Auer, Cesa-
Bianchi, and Fischer 2002) is used.

Any-time Planning with Arvand The solutions found
by Arvand are generally suboptimal and so this planner
does not terminate once a solution is found. Instead, the so-
lution is added to the walk pool and a new search episode is
started. The cost of the best solution found thus far is used
as a bound on all future trajectories. This planner can then
be run indefinitely or until some resource limit is reached.

The LAMA Planner
LAMA is a WA*-based planner that won the sequential satis-
ficing track of IPC 2008 (Helmert, Do, and Refanidis 2008).
It uses both multiple heuristic functions and helpful action
open lists. Given a set of k heuristics H = {h1, ..., hk},
LAMA will have two sets of k open lists, denoted O =
{o1, ..., ok} and Op = {op1, ..., o

p
k}. LAMA must also be

given a second set of heuristics, denoted Hp = {h′
1, ..., h

′
j},

for the generation of helpful actions. Note, we will let
prefh′

i
(s) denote the set of children corresponding to the

helpful actions found with heuristic h′
i for state s.

When it is time to expand a state, one of the open lists
from either O or Op is selected in a process described below.
This open list will return the state s it identifies as the best
state it contains. If s is a goal state, the solution is extracted
from the closed list and returned. If s is not a goal state, the
children of s, denoted C, are then generated, as is the set
of preferred children of s, given by C ′ = prefh′

1
(s) ∪ ... ∪

prefh′
j
(s). The states in C are then added to each of the lists

in O for which states in any oi ∈ O are sorted by the cost
function fi(s

′) = g(s′)+w ∗hi(r), where r is the parent of
s′ and w is the weight used for the current WA* search. For
example, the cost given to c ∈ C in open list oi is given by
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g(c) + w ∗ hi(s). This technique is called delayed heuristic
evaluation and has been shown to be effective in planning.
The states in C ′ are then added to each of the lists in Op.
For every opi ∈ Op, states in opi are ordered using the same
cost function as oi. However, notice that oi and opi do not
contain the same states as oi contains all generated but not
expanded states, while opi only contains preferred children.

When selecting which open list to remove a state from, the
strategy in use is to alternate between all lists in O∪Op. The
alternation is supplemented with a preferred children open
list bonus. Whenever a state is seen such that for at least one
of the heuristics it is the state with the lowest heuristic value
seen so far, the open lists in Op are all given a bonus of j
state expansions. This means that the alternation will be re-
stricted to only the open lists in Op until each has expanded
j nodes (or more if additional bonuses are accrued during
this phase), at which point alternation will continue among
all lists in O ∪Op.

Heuristics Two heuristics were used in the version of the
LAMA planner entered in IPC 2008: the landmark-count
heuristic and a variation of the FF heuristic. These will
be denoted as LM and FF+, respectively. Both heuristics
were also used for helpful action generation.

While the LM heuristic was one of the major advances
introduced in the LAMA planner, the heuristic was used as
is in ArvandHerd and so interested readers are referred
to the journal paper on LAMA (Richter and Westphal 2010).
However, instead of using FF+, ArvandHerd uses two
related heuristics. To explain why, we briefly describe FF+.

Just as in FFFD, LAMA’s version of the FF heuristic com-
putes a plan for the relaxed problem. This plan yields two
obvious heuristics. The first, denoted by FFsize, is given
by the number of actions in the relaxed plan just as is done
in FFFD. This heuristic is intended to capture the expected
depth of the solution from the current state. The second,
denoted by FFcost, is given by the sum of the cost of the
actions in the relaxed plan and is designed to capture the ex-
pected cost of the solution from the current state. FF+ is
given by the sum of FFsize and FFcost as a way to balance
between the two heuristics. Note, as Fast Downward
and LAMA compute the relaxed plan differently, the values
of FFFD and FFsize are often different, as are the set of
generated helpful actions.

In our experiments, we found that coverage was increased
if, instead of using FF+, we used both FFcost and FFFD

as a way to balance between these metrics. This means that
three heuristics are used in the version of LAMA used in
ArvandHerd: LM , FFcost, and FFFD. However, only
FFFD and FFcost were used to generate helpful actions.

Any-time Planning Once a solution is found with LAMA,
the search is restarted from the initial state with a lower
weight value. The previous best solution found is then used
to prune all future searches. Changing the weight introduces
diversity into the search which helps the planner avoid mak-
ing the same early mistakes it has made previously. In the
version of LAMA used in ArvandHerd, the first iteration
runs greedy best-first search which means open lists are or-
dered by heuristic values alone. This is then followed by

iterations with weights 10, 5, and 2, followed by 4 iterations
with a weight of 1, and a final iteration with a weight of
0. A similar strategy has been shown to significantly outper-
form other forms of any-time planning (Richter, Thayer, and
Ruml 2010). The WA* iterations have been further diversi-
fied effectively by randomizing the order in which generated
children of the same parent are added to any one open list.
This causes ties between children of the same state to be
broken differently in different iterations.

The caching of heuristic values, helpful actions, and the
best path found for each state in the closed list has also been
shown to increase the speed of LAMA since many heuristic
values will not need to be re-computed during future itera-
tions (Richter, Thayer, and Ruml 2010). This feature was
not part of LAMA as submitted to IPC 2008, but has been
added to LAMA as used in ArvandHerd.

The ArvandHerd Architecture
For the sequential satisficing multi-core track of IPC 2011,
4 processors are allotted for each planner. As both
Arvand and LAMA are built on top of Fast Downward,
ArvandHerd is run from a single binary. When problem-
solving begins, this binary spawns threads for different
members of the portfolio. However, before this can be-
gin, the planner first requires a translation from PDDL to
a SAS+-like formalism, and a knowledge compilation step
that builds data structures necessary for the LM heuristic.
We have not parallelized these components and simply use
this portion of the original LAMA code as is. For more infor-
mation on this process, see the work on LAMA (Richter and
Westphal 2010) or the work on Fast Downward (Helmert
2006) on which this process is based.

Once the translation and knowledge compilation stages
are complete, one of the processors is assigned to run LAMA
while the other three are each given one of the four Arvand
configurations to run. Most of the communication between
the processors is limited to those running Arvand. Specif-
ically, the three processors share a walk pool and a single
UCB configuration selection system. When a processor has
completed a search episode, it submits the corresponding
trajectory to the shared walk pool, and gets a new trajec-
tory in return, or the empty trajectory if the activation level
has not yet been reached. The processor then submits the
reward for its current configuration to the UCB system and
in return is given a configuration to use in its next search
episode. This sharing of the UCB system among the proces-
sors running Arvand allows them to more quickly identify
strong configurations than they would be able to with inde-
pendent UCB systems. The walk pool, for which both the
activation level and size are set to 100, is shared for similar
reasons. LAMA is also given the ability to add walks to the
solution pool, though in the submitted planner it only adds
solution trajectories.

So as to maintain the correctness of the walk pool and the
configuration learner, each system uses a lock that limits ac-
cess to one processor at a time. As the search episodes dom-
inate the Arvand execution time and LAMA is not expected
to find solutions very often, there is little synchronization or
contention overhead caused by sharing these resources.
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The final shared value is the cost of the best solution found
by any planning method thus far. This value is used to prune
LAMA’s WA* search.

Plan Improvement with Aras
While Arvand usually performs well in terms of coverage,
it often finds low quality solutions. To address this issue,
the Aras plan improvement system was created (Nakhost
and Müller 2010). Aras involves two phases: action elimi-
nation (AE) and plan neighbourhood graph search (PNGS).
AE involves a scan of the current solution and the removal
of unneccesary actions. For PNGS, a plan neighbourhood
graph is built around the current solution using a breadth-
first search. The plan neighbourhood graph is then searched
for a shorter path between the start and any goal states.

The execution of Aras alternates between iterations of
AE and PNGS until some time or memory limit is hit. How-
ever, instead of rebuilding the neighbourhood graph on each
new PNGS iteration, the previous bread-first search is sim-
ply continued so as to grow the neighbourhood graph.

In ArvandHerd, whenever a solution is found by any
processor, an instance of Aras is created and run on the cur-
rent solution. If the initial solution was found by Arvand,
Aras is given a 60 second time-limit. If the initial solution
was found by LAMA, Aras is given a 40 second time-limit.
This limit is lower for LAMA since that planner already has
a fairly effective plan improvement scheme.

Recall that LAMA uses the cost of the best solution found
by any method for pruning. Such pruning is ineffective for
Arvand which instead only uses the best cost of a solution
found strictly with Arvand as a bound. This is because
bounds given by LAMA or Aras solutions are often too tight
for Arvand in which case Arvand is unable to find any
new solutions. As such, it was generally found to be more
effective to create a diverse set of plans with Arvand and
improve them with Aras, than to force Arvand to create
low cost plans directly by using the global bound.

Memory Management
As the memory requirements of Arvand are limited to
space for the current trajectory, the best random walk seen
thus far, the walk pool, and the UCB configuration selection,
Arvand is expected to almost never hit the 6 GB memory
limit given to planners for IPC 2011. This is not the case for
Aras and LAMA. As such, these processes need to be pre-
vented from exhausting all the memory given to the planner,
thereby crashing the whole system, and preventing further
search by the processors running Arvand . To address this
problem, the PNGS phase of each Aras instance is limited
to using only 500 MB, and the total memory of the open
and closed lists in LAMA is set as 2.7 GB. If the Aras limit
is hit, Aras quits and returns the best solution found thus
far. If the LAMA limit is hit, the current search iteration is
ended and the open lists are emptied. The next iteration of
LAMA then begins with the possibility that the diversity in-
troduced by changing the weight and tie-breaking may avoid
the mistakes made on the previous iterations. If the final 0-
weight iteration also runs out of memory, the processor run-
ning LAMA will run another copy of Arvand instead.

Conclusion
We have described the main features of the ArvandHerd
parallel planner which uses a portfolio containing the
Arvand and LAMA planners. Due to the use of the porfolio,
ArvandHerd is expected to have strong coverage, while
the use of Aras and LAMA’s any-time strategies should lead
to good solution quality.
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Abstract

Many planning systems operate by performing a heuristic for-
ward search in the problem state space. In large problems
that approach fails, exhausting a computer’s memory due to
the burden of storing problem states. Moreover, it is an open
question exactly how that approach should be parallelized to
take advantage of modern multiple-processor computers and
the proliferation of massively parallel compute clusters. This
extended abstract proposes an answer to this second question,
while also going some way to addressing the memory prob-
lems.
We present AYALSOPLAN, our entry in the Multi-Core Track
of the 2011 International Planning Competition (IPC-2011).
Our approach is to run many independent and incomplete
state-based searches in parallel. Our approach deliberately
exploits hashing collisions to limit the set of states an individ-
ual search can encounter. Also, none of the parallel searches
store all expanded states, each corresponding to a memory ef-
ficient state-based reachability procedure, albeit incomplete.
As soon as a search determines reachability, the parallel pro-
cessing ceases, and a single-core computer can efficiently
construct the plan.
Because the 2011 IPC evaluation environment of the Se-
quential Multi-Core Track is not a massively parallel com-
puter, and moreover because it imposes a very limited time-
out, we have limited expectations regarding how AYALSO-
PLAN might be ranked in that evaluation. Therefore, this ex-
tended abstract commits some space to presenting empirical
data we collected when evaluating our approach on our local
cluster, without any runtime restrictions – i.e., searches can
only fail when memory is exhausted. It is in that setting that
we demonstrate the positive characteristics of our approach.

1. Introduction
Most of the fastest modern planning systems – including
LAMA (Richter and Westphal 2010), the winner of the Se-
quential Satisficing track of the 2008 IPC – implement a
best-first search of the state space. Those searches oper-
ate by maintaining an open list of states that have been vis-
ited but not completely expanded, and a closed list of states
which have been visited and completely expanded. The stor-
age burden associated with keeping track of visited states is
a major hindrance to the scalability of modern systems. This
is the case for both frontier variants of best-first search (Korf
et al. 2005), and more classical implementations. Indeed,

we are unaware of any planning system that can solve all
IPC benchmark problems, including the big ones, given un-
limited processing time and reasonable limitations on avail-
able memory.

Bitstate hashing (Courcoubetis et al. 1992; Holzmann
1998) is a memory-efficient technique for keeping track of
visited states in state-based searches. The technique tracks
the visitation status of a state using a single element, usu-
ally a single bit, in an integer indexed array. When a state s
is visited during search, the evaluation of a hash function at
s maps that state to an index in the array. That s has been
visited is recorded by the status of the indexed bit.1 Bitstate
hashing thus trades storage required to record visited states
against the probability of collisions, which occur when two
different states are indexed to the same array entry and there-
fore cannot be distinguished. Bitstate hashing in a planning
context has been explored previously in (Edelkamp 2002;
Edelkamp and Jabbar 2005). In this abstract we introduce
the related technique of bitstate pruning, initially proposed
for model checking (Ernits et al. 2006; Ernits 2005), to
the planning setting. Bitstate pruning deliberately exploits
the collisions of bitstate hashing to dynamically limit the
set of states the search can encounter. Bitstate pruning can
reduce the memory requirements of search at the expense
of completeness. Also in a model checking setting, more-
recently a technique that utilises deliberately undersized bit-
state hash tables was proposed to alleviate the processing
(resp. storage) burden of computing the heuristic value of
states (resp. keeping track of states). In detail, Kupfer-
schmid et al. (2006) proposed treating states that hash to the
same entry of the undersized array to be of equal heuristic
value.

Bitstate pruning as an approach can be applied in any
planner that uses state space search to prove goal reach-
ability – constructively or otherwise – while maintaining
a collection of visited states. Moreover, the incomplete-
ness of the resulting search can be mitigated by running
multiple searches in parallel, each using a different array
size. Our competition entry, AYALSOPLAN, is based on
an implementation of bitstate pruning in LAMA. In order
to help us demonstrate the effectiveness of bitstate pruning

1Some variants use multiple bits in multiple arrays according to
a set of state hashing functions.
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in planning, we have also implemented it in the straight-
forward satisficing state-based search of AYPLAN (Robin-
son, Gretton, and Pham 2008). In the remainder of this ab-
stract, when addressing a specific implementation, we write
AYALSOPLANlm if the base search procedure is LAMA,
and AYALSOPLANay for the AYPLAN implementation.

When exploiting the parallelisation that bitstate prun-
ing makes possible on a cluster of computers, both
AYALSOPLANay and AYALSOPLANlmare parallel satisfic-
ing planners that consistently solves larger problems than the
procedures of their respective base systems, AYPLAN and
LAMA. Here, it is important we clarify that our evaluation
does not impose a timeout, and therefore when we speak of
scalability, we do so where planning failure occurs solely
due to memory exhaustion – i.e., given all the time in the
world, the parallel incomplete searches of AYALSOPLANay

can solve larger problems than the serial satisficing proce-
dure of the base planner AYPLAN. Moreover, we also find
that the parallel incomplete searches of AYALSOPLANay can
often solve larger and more difficult problems than LAMA
with a 2GB memory limit and unlimited time. In this
work we have not exhaustively evaluated AYALSOPLANlm

because the many heuristics and search optimisations em-
ployed in LAMA obscure the results, and pose a massive
burden on our limited cluster resources, if we have to eval-
uate all the varieties of LAMA. Finally, we believe that our
evaluation using AYALSOPLANay already makes a clear em-
pirical case for bitstate pruning for planning on massively
parallel architectures.

This extended abstract is organised as follows: In the
next section we provide a brief introduction to the use of
search in planning algorithms. In Section 3, we then present
the bitstate pruning approach and show how the probability
of a search reaching a state can change as the size of the
hashtable changes. In Section 4, we discuss the specifics of
how we have implemented bitstate pruning in a number of
planning systems, and present an empirical evaluation of one
of those systems in Section 5. In Section 6, we summarise
our contribution, making some concluding remarks.

2. Best-First Forward Search
In the early 90s implementations of best-first search ex-
hausted “the available memory on most machines in a mat-
ter of minutes” (Korf 1992). Nowadays it continues to be
considered a memory intensive approach (Korf et al. 2005),
nonetheless the approach underlies a majority of good plan-
ning systems. Indeed, the dominant satisficing planning sys-
tems are based exactly on a best-first search of the state
space, the more successful approaches typically employ-
ing a variant of A∗ (Hart, Nilsson, and Raphael 1972).
This is evidenced by the successes at recent IPCs of such
systems. These include LAMA, SGPLAN versions 4 and
5 (Hsu et al. 2006; Chen, Hsu, and Wah 2004),2 FAST-

2For the underlying search procedure SGPLAN uses: metric-
FASTFORWARD, MCDC (a variant of Metric-FASTFORWARD),
and LPG. Only the first two can be characterised as a best-first for-
ward search. LPG is a local search procedure for planning inspired
by the Boolean SAT(isfiability) procedure WALKSAT.

DOWNWARD (Helmert 2006), FASTFORWARD (Hoffmann
and Nebel 2001), and HSP (Bonet and Geffner 2001). Over-
all, LAMA, the base procedure for our competition entry, is
one of the more recent and scalable procedures in this vein.

Although the recent success of best-first search in a plan-
ning setting might partly be attributed to the relatively vast
quantities of memory available on modern computers, it can
mostly be attributed to three important developments. First,
that of heuristics for the satisficing case, such as the FF-
heuristic hff (Hoffmann and Nebel 2001), the causal-graph
heuristic hcg (Helmert 2006), and the landmark-counting
pseudo heuristic hlm (Richter and Westphal 2010);3 sec-
ond, the development of planning-specific preprocessing al-
gorithms, such as relevance analysis methods (e.g., (Haslum
and Jonsson 2000; Bacchus and Teh 1998)) and plangraph
analysis (Blum and Furst 1997), and representational op-
timisations, such as compilations to multi-valued setting
and the related hierarchical decompositions of planning
tasks (Helmert 2006); third, search tricks, such as de-
ferred(/lazy) heuristic evaluation and preferred operators
that have been shown to drastically improve the efficiency of
some heuristic search techniques in many planning bench-
marks (Richter and Helmert 2009).

We provide a brief sketch of state-based best-first forward
search as it typically appears in the discussed planning pro-
cedures, since we will use the terms later. The search can be
described in terms of a bound ranking function from states to
numbers f : S → N, two container data-structures open and
closed, and a search graph. Here, the evaluation of the rank-
ing function at a state, f(s), maps each state to a numeric
value, thereby ranking states. Structure open contains states
encountered by the search, forward from the starting-state
s0, whose successors have not all been evaluated – i.e, there
are actions whose effects on states in open have not been
evaluated. The closed structure contains states that were pre-
viously in open, and for which all successor states have been
evaluated. Typically we say that states in closed have been
“expanded”, and that states in open are “unexpanded” (or in
some searches “partially expanded”). The search graph has
one vertex for each state occurring in either open or closed,
and a directed edge (s,s′) labelled with actions whose ex-
pansion at s induced a state transition to s′. Here, we use
the notation s to refer both to the state s ∈ S and its corre-
sponding vertex.

At the commencement of search open is a singleton con-
taining s0 and closed is empty. The search proceeds inter-
leaving the selection of a state from open to expand and its
expansion. This process executes until a goal state is reached
during an expansion, or otherwise until all promising states
have been expanded – e.g., in the case that the goal is not
reachable according to the search constraints. State selection
is done greedily according to the given evaluation function
f(s) = c(s) + βh(s). Here, c(s) is the (sometimes approx-
imated) length of the shortest path from s0 to s, while h(s)
estimates the value of expanding s. The factor β, usually
1, determines how greedy the search is with respect to h.

3Nowadays these heuristics are often used in combination in a
so-called multi-heuristic setting (Helmert 2006).
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Once a state s is selected it undergoes expansion. For one or
more actions available at s, the search evaluates the succes-
sor states of s, adds them to open if they are not already con-
tained in either open or closed, and updates the search graph
to reflect node additions and/or altered connectivity. If this
step exhausts the action possibilities at s, then s is moved
from open to closed. If h is inadmissible, when expanding
a state it might be that a better, less costly path to a visited
successor s is discovered, and therefore that a better approx-
imation of c(s) is discovered. Many searches propagate that
better estimate through the search graph. For example, in
order to emphasise a laziness in computation, in some de-
scriptions a state is said to be reopened – e.g. see (Hansen
and Zhou 2007) – in the sense that when a better approxi-
mation of c(s) is found, s is added again to open, and the
c-value change starts to propagate when the reopened state
s is again chosen from open for expansion.

During the expansion of a state the search establishes
whether or not evaluated successor states are new. The de-
tails of how this is achieved are very important to our con-
tribution. In practice, all encountered states (i.e., elements
in open and closed) are stored in a sorted associative con-
tainer,4 or more commonly a hash table. When a successor
state is considered during expansion, its membership in that
container is tested to decide if a new state should be added
to open, and how the details of the search graph should be
altered. In many planning benchmarks solvers fail on large
problem instances because storage of encountered states ex-
hausts system memory.

Nowadays it remains an open question how best to exploit
modern distributed computing environments to achieve bet-
ter scalability and efficiency in state-based searches. In par-
ticular, how best to trade-off available processing and mem-
ory resources, avoiding exhaustion of system memory be-
fore search yields a solution.

3. Bitstate Pruning
Let us consider a best-first search that utilises bitstate hash-
ing to distinguish between new and already visited states.
At the beginning of search an array of bits H is initialised to
contain zeros. Whenever a state s is added to open a bit in
the hash array at the address of hh(s) is set, H[hh(s)] := 1.
Here, let hh be a state hashing function that satisfies the
standard uniform hashing assumption for analysis purposes.
When expanding the actions of a state s in open, a successor
s′ is added to open iff H[hh(s′)] 6= 1.

A hash collision occurs when several states hash into the
same address in H . In the limit as |H|, the size of the hash
array, goes to infinity, we can invoke a special hh that hashes
each distinct state to a distinct bit in that array. However,
since in practice we are constrained by available memory re-
sources, |H| is small and hash collisions occur. In previous
applications of bitstate hashing several measures are taken to
reduce such effects. For example, in Bloom filters (Bloom
1970), each state uses several bits in the hash table, and the
addresses for a state are calculated by multiple hash func-
tions. That approach decreases the probability of collisions

4This is the case in LAMA.

if the hash table contains a small number of entries. Other
analyses of bitstate hashing (Holzmann 1998; Dillinger and
Manolios 2004; Kuntz and Lampka 2004) have also been
concerned with reducing the collision/omission probability.
(Holzmann 1998) proposes a sequential multihash princi-
ple that performs hashing repeatedly using independent hash
functions. The overall effect is to reduce the probability of
collisions occurring at the same places and thus avoiding
omissions.

In our setting hash collisions are valuable, as we use them
to reduce the number of states explored by a given instance
of best-first search. In more detail, suppose the number of
reachable states n in the search graph is much larger than
|H|. Then the probability of collisions is 1 and states are
dropped by a search. That problem can be mitigated by
using sequential multihashing, but rather than reducing the
state drop-rate to increase the exhaustiveness of a search, we
use a sequential multihash idea to increase the probability of
reaching a goal state early in multiple independent searches.
We call the overall approach bitstate pruning.

To increase the probability of finding a goal according to
bitstate pruning, it is necessary to either repeat the search
with a different hash function, change the search policy,5 or
change the size of H . As such repetitions are independent
and involve no communication, they can be performed in
parallel. Essentially, we can leverage an abundance of inde-
pendent processing units to quickly (wall time) find a good
hash function and the corresponding plan.

In our approach hh(s) is a combination of two things:
a hash function that takes the bitvector of a state as input
and produces a hash value of some size, typically 32 or 64
bits, and the use of the modulo function (mod) to calculate
the address of the bit in H . Thus, changing the size of |H|
provides an easy way of changing the hash function.

A desirable side effect of bitstate pruning is that it imposes
a limit to the open data structure: there can never be more
states in open than there are bits in H . The exhaustion of
memory due to a large number of states in open is one of the
reasons why search with very large bitstate hash tables fails.
Thus, by pruning the search graph slightly differently under
each instantiation of bitstate pruning, we trade memory for
CPU, admittedly with some repeated exploration of problem
states.

Example
The Three Integer Problem has states consisting of the val-
ues of three integer variables and has three actions a1, a2 and
a3 that each increment one of those variables. The search
graph for this problem is shown in Figure 1 expanded up to
search depth 2.

We index states si in a sequence that corresponds to
depth-first exploration of the state space.

Let us assume that we start exploring the state graph in
Figure 1 using depth-first search, a depth limit of 2 actions,

5In iterative deepending, we can change the search depth, and
in A∗ we can alter β, h, and even alter how c is (approximately)
evaluated.
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Figure 1: Search graph for the three integer problem. Pr(si)
denotes the probability of reaching state si, and Pc(si, ai)
denotes the probability of hash collision when executing ac-
tion ai at state si. N is the size of the bitstate hash table.

and a bitstate hash table of 2 bits. The probability of reach-
ing the initial state, written Pr(s0), is 1. The probability of
reaching s1 is Pr(s0)(1 − 1/|H|) = 1/2. When the size
of the bitstate hash table is only 2, s2 is not reachable, be-
cause to reach s2, s1 must be reached and then the hash
table is full. As a result all actions from s1 yield a colli-
sion. Although s2 is not reachable, it is possible to reach s5
with probability Pr(s0)Pc(s0, a1)(1 − 1/|H|) = 1/4 – i.e.
Pc(s0, a1) us the probability of a collision when expanding
a1 at s0, therefore overall the expression gives the probabil-
ity of reaching s0 times the probability of action a1 yielding
a collision, times the probability of a collision not occur-
ing in s5. Using a similar reasoning it is possible to reach
s8 with the probability of Pr(s0)Pc(s0, a1)Pc(s0, a2)(1 −
1/2) = 1/8. It should be noted that in the given exam-
ple there is also a 1 − 1/2 − 1/4 − 1/8 = 1/8 probability
that neither s1, s5 or s8 is reached with a bitstate hash table
size 2. With the bitstate hash table size 3 the probability of
reaching any node in the search graph in Figure 1 using a
depth-first search policy becomes nonzero.

4. Our Approach
We develop a satisficing planning approach, AYALSOPLAN,
that can leverage the processing resources of cluster com-
puting environments to obtain better scalability according to
the bitstate pruning scheme just described. Our competition
entry is based on AYALSOPLANlm, an implementation of
this approach using LAMA, and our experimental evalua-
tion is predominantly based on an implementation using AY-
PLAN. AYALSOPLAN uses multiple searches, each of which
implement bitstate pruning for a distinct array size in what
is otherwise a frontier search procedure (Korf et al. 2005).
In order to construct a plan AYALSOPLAN operates in two
phases: the first performs parallel plan existence searches,
then if a plan exists, the second constructs a plan by repeat-
ing a successful incomplete search on a single core, this time
storing all the encountered states. It is worth noting that be-
cause the frontier searches are independent, they can be run
in parallel, in sequence, or a combination thereof. Therefore,
in practice one can use several different cluster resources for
planning.

Each executed search in the first phase corresponds to a
frontier search (FS), a best-first search that uses only a frac-
tion of the memory used by ordinary best-first searches of a
state space. In detail, FS deletes states designated to closed,
implicitly removing these from the search graph. Conse-
quently FS is a sound approach to obtaining a proof of plan
existence,however it is not constructive, because there is
no data from which to extract a plan directly once a goal
state is reached. Existing varieties of FS-based systems are
rendered constructive by using them according to a divide-
and-conquer query strategy, or otherwise by keeping closed
on a secondary (slow) storage device. In this respect AY-
ALSOPLAN differs from existing FS variants. AYALSO-
PLAN deletes states designated for closed, but also, accord-
ing to bitstate pruning, an instance of search forbids multiple
states which hash to the same entry of a bitarray from being
considered. This implies two important consequences be-
yond the scalability obtained by exploiting bitstate pruning
in multiple parallel instantiations of AYALSOPLAN. First,
as with any FS variant, AYALSOPLAN uses relatively little
memory when performing plan existence proofs. Second,
a plan can be extracted relatively quickly during our post-
processing phase using relatively little memory, by using the
|H| and search depth limit from a successful bitstate pruning
FS search.

Overall, our contribution is in a similar vein to systems
such as HDA∗ (Kishimoto, Fukunaga, and Botea 2009),
which also tackle the A∗ memory consumption problem in
a parallel setting. HDA∗-like systems use a more-or-less
brute-force approach, distributing state storage over a clus-
ter of multiple independent networked machines. A key ad-
vantage of our approach is that we require no inter-process
communication. Also, because we perform a frontier search,
we have diminish memory requirements, and improved scal-
ability with the number of processors.6

5. Experimental Results
To demonstrate the efficacy of bitstate pruning, we com-
pare AYALSOPLANay with AYPLAN, a straightforward im-
plementation of best-first search that stores all the visited
states in open and closed explicitly. In this evaluation we
also include the performance results of a August 2010 ver-
sion of LAMA using the IPC-6 run script (without WA*
iteration) as a reference. That system represents a state-of-
the-art domain independent system for most of the bench-
mark problems we have considered. Finally, we also present
preliminary experimental results using AYALSOPLANlm.

It remains to discuss a few planning specific details
of AYALSOPLANay that reduce the burden on search.
Based on AYPLAN, AYALSOPLANay incorporates a prepro-
cessing phase that employs a number of computationally
cheap problem analysis techniques. In particular, following
(Haslum and Jonsson 2000), when grounding domain oper-
ators we omit from consideration actions whose precondi-

6Clarifying, this comment is not to be interpreted in the lan-
guage of “speedup factors”, rather, it is a comment about being
able to solve larger problems given many CPU-cores, each with
limited memory and unlimited time in which to solve a problem.
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Table 1: Number of problems solved by of AY-
PLAN, AYALSOPLANay , and LAMA. For some problems
AYALSOPLANay proves plan existence, however a plan can-
not be extracted in phase-2 given the 1GB memory limit.
In that case we report two figures: (a) outside parenthesis,
the number of problems for which a plan could be extracted,
and (b) in parenthesis, the number of problems for which the
existence problem was solved.

Domain AYPLAN AYALSOPLANay LAMA
transport 9 30 30
pipes-tankage 23 43(44) 39
elevators 16 30 26
peg solitaire 30 30 30
scanalyzer 27 27 30
openstacks 14 17(18) 30
sokoban 12 15 (25) 25

tions are statically false. We further reduce the size of the
set of ground operators and state propositions by perform-
ing static relevance testing as described in (Bacchus and
Teh 1998). Although recent versions of AYPLAN implement
a number of useful planning heuristics, in AYALSOPLANay

and AYPLAN we rank states in open according to how many
goal propositions they satisfy. In many cases we find that
other heuristics can be detrimental to performance of bit-
state pruning on massively parallel machines in the bench-
marks we have considered – This usually occurs because a
heuristic encourages many of the parallel searches to be uni-
form, therefore the processing resources are not exploited
for coverage. In Figure 4 this problem is indicated for the
case of PIPES-TANKAGE P23, where as the bitarray becomes
large the probability of AYALSOPLANlm searches failing in-
creases.

Our evaluation compares the planners on several domains:
The IPC 2004 PIPES-TANKAGE domain that poses an NP-
Hard satisficing problem (Helmert 2006), and several of
the IPC 2008 domains. In evaluation all AYPLAN-based
processes were limited to use maximum 1GB of memory.
LAMA was run on a single core of a computer with Intel
quad core CPU Q9650 and 4 GB of RAM. AYPLAN-based
processes were run on a compute cluster with 20 quad-core
Xeon E5345 CPUs totalling 80 CPU cores with 1GB mem-
ory per core. In no case do we impose any time limit. The
default search depth for AYALSOPLANay in all cases was
limited to the minimum of 100000 and |H|.

Table 1 gives a summary of the results across the domains.
Each row shows the number of problems solved (i.e. satis-
ficing plans extracted) in the domain by each planner. The
numbers in parenthesis in the AYALSOPLANay column in-
dicate the number of plan existences found as in some cases
the plan extraction step exceeded the 1GB memory limit.
Figure 2 summarizes the hash table sizes that were required
to find plans. In many of the domains the |H| values were in
the order of tens or hundreds of thousands. In those cases,
it is even feasible to AYALSOPLANay serially on a single

core. Figure 3 reports plan costs that were obtained by AY-
PLAN, AYALSOPLANay and LAMA. Here, we are report-
ing the costs of the first solution found by each planner.7 In
the PIPES-TANKAGE case the plan cost is equivalent to plan
length. For that domain AYALSOPLANay usually produces
better initial plans than AYPLAN. In the PEG SOLITAIRE
case, the plan qualities of first plans obtained are also of
good quality. We should not that it would be a simple matter
to implement a cost cutoff for AYALSOPLANay in a manner
similar to our maximum depth cutoff.

The results in Table 1 show that in all cases
AYALSOPLANay made it possible to solve more problems
than AYPLAN, and in some cases, like PIPES-TANKAGE
and ELEVATORS even more than LAMA. In SOKOBAN
AYALSOPLANay was able to detect plan existence in more
cases than AYPLAN and LAMA, but we were only able
to extract plans for 15 problem instances during phase-2
processing. In the SCANALYZER domain AYALSOPLANay

and AYPLAN found solutions to all problems that could get
through AYPLAN preprocessing.

A selection of the results (easier problems solved by
all planners are omitted) for PIPES-TANKAGE domain are
given in more detail in Table 2. As we described above,
AYALSOPLANay uses frontier search to further decrease its
memory requirements. On termination a plan is constructed
using a second phase, that performs an ordinary search
parametrised by the array size that yields a solution. For re-
sults presented in Table 2, the time and memory recorded
for AYALSOPLANay represent the time (memory) to run
AYALSOPLANay in FS mode to prove the existence of a plan,
in addition to the time (memory) required to extract a plan
in the second phase – by running a plan extraction instance
of AYALSOPLANay with the size of the hash table discov-
ered by a successful instance of FS search. Space limitations
mean that we cannot include results from all the domains we
tested in Table 2, however we present PIPES-TANKAGE to
highlight some of the interesting findings. The first four and
last two columns show respectively the performance of AY-
PLAN, AYALSOPLANay and LAMA in terms of time and
memory requirements. A dash in the memory requirements
column indicates that after that amount of time the planner
ran out of memory without producing a plan. Thus, AY-
PLAN failed on ten of the 14 problems in the table, LAMA
failed on three, and AYALSOPLANay solved all of them.
The three columns following AYALSOPLANay show the
performance of the plan existence (frontier search) part of
AYALSOPLANay . The hashtable size column shows the bit
length of the hash array required to find a plan, the memory
column is the total memory required by AYALSOPLANay to
detect plan existence on this size array, and the time column
shows the average runtime for runs of AYALSOPLANay with
array sizes close to the presented bitstate hash table size that
led to a plan. The reason we choose this measure is that the
runtime is typically much faster when a plan is found than
when one is not found, so these times represent the time
for an exhausive search given a hashtable of the largest size
that needs to be evaluated. A reasonable approximation to

7None of the costs are guaranteed to be optimal.
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Table 2: Memory and time requirements for finding satisficing solutions for some of the problems in the PIPES-TANKAGE
domain using AYPLAN, AYALSOPLANay and LAMA. AYALSOPLANlmcould find solutions to problems P23, P26 and P28.

Problem AYPLAN AYALSOPLAN AYALSOPLAN existence LAMA
time memory time memory time memory hashtable time memory
(s) (MB) (s) (MB) (s/iter) (MB) size (bits) (s) (MB)

P16 NET2 B14 G6 T80 1747 - 10.78 89 2.69 81 31441 6 32
P17 NET2 B16 G5 T20 26.4 191 2.44 38 .1 38 3066 5 20
P18 NET2 B16 G7 T60 786 - 5.25 78 .1 78 1356 3.24 23
P19 NET2 B18 G6 T60 23.65 165 7.06 113 .17 112 2169 5.70 14
P20 NET2 B18 G8 T90 1698 - 14.49 166 .13 166 4843 12.60 26
P21 NET3 B12 G2 T60 596 - 2.74 42 0.03 42 832 2.86 6
P22 NET3 B12 G4 T60 15.2 94 3.59 42 0.323 42 5607 4.2 23
P23 NET3 B14 G3 T60 1451 - 9.69 115 1.16 115 9410 800 -
P24 NET3 B14 G5 T60 1451 - 13.0 115 2.54 115 12711 9.0 43
P25 NET3 B16 G5 T60 1717 - 407 574 151 326 510642 46.7 77
P26 NET3 B16 G7 T70 1928 - 191 506 97.9 308 384214 2280 -
P27 NET3 B18 G6 T70 743 - 112 301 81.4 233 223881 11.6 82
P28 NET3 B18 G7 T70 739 - 371 879 184 505 904270 1150 -
P29 NET3 B20 G6 T70 1221 - 1065 1560 517 827 1428472 22.1 117

Figure 2: Hash table sizes in bits required by AYALSOPLANay to find a plan in the corresponding domain.
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Figure 3: Initial plan costs of plans found by AYPLAN, AYALSOPLANay , and LAMA.

the total time required to find a plan (distributed over all the
parallel processors) is the time per iteration multiplied by the
hashtable size and divided by two and divided by the num-
ber of processors we have available. In addition, it is easy to
see that the smaller the |H| the faster the search.

Though very preliminary, in Figure 4 we explore the be-
haviour of AYALSOPLANlm in PIPES-TANKAGE problem
P23, a problem that LAMA is not able to solve and that
AYALSOPLANlm solves very quickly – in the best case in 8
seconds while using 20 MB of memory at |H| = 6834. Not
surprisingly, on the lower graph, we show that the maximum
memory consumed by search instances grows linearly with
the bitarray size |H|. The data also demonstrates the diffi-
culty of predicting the time a search at some |H| will take.
Most importantly, from the data-points we have, it is clear
that LAMA’s search guidance has a negative impact in this
problem instance, stopping goal states from being discov-
ered at larger |H| values.

6. Final Remarks
We describe an approach to state-based planning in mas-
sively parallel systems that corresponds to an application
of bitstate pruning in domain independent satisficing plan-
ners. Our approach instantiates multiple independent and
incomplete searches in parallel on separate CPU-cores, each
of which has limited memory resources. Each individual
search can be characterised as an incomplete variant of the
one bit per state approach described in (Korf et al. 2005).
Given sufficient processors, in the limit as the number of
processes goes to infinity the overall search is sound and ex-
haustive, one of the searches eventually finding a goal state
(if reachable).

We have implemented our approach using both LAMA
and AYPLAN as base planners, the former corresponding
to our entry, AYALSOPLAN, at IPC-2011. In this ex-
tended abstract we have performed an empirical evaluation
of AYALSOPLANay , our implementation of bitstate pruning
using AYPLAN. That evaluation is over several important

IPC benchmarks, and demonstrates that given an abundance
of processor resources each with limited memory resources,
the technique of bitstate pruning can outperform the same
planner without it by a significant margin where planning
failures only occur due to memory exhaustion (resp. a time-
out). The relative memory efficiency of AYALSOPLAN al-
lows it to solve very large planning problems, some of which
cannot be solved by good serial systems, such as LAMA.

AYALSOPLAN can be used in the same way as AYPLAN
and LAMA for iterative plan refinement after the first plan
for a problem has been discovered. Indeed, our competi-
tion entry AYALSOPLANlm uses the entire evaluation pe-
riod to iteratively improve the plan prescribed in finality.
Our experiments suggest that the costs of plans produced
by AYALSOPLANay are not significantly worse than those
produced AYPLAN, in fact, in the PIPES-TANKAGE domain
the initial plans by AYALSOPLAN were better.

Finally, it is worth noting that when LAMA’s
search guidance is very useful, the performance of
AYALSOPLANlm can be worse than that of the base plan-
ner. Therefore, our entry in the Multi-Core Track runs the
August 2010 of LAMA in one thread.
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Abstract

Parallel computing involves the use of several processes
working together on a single set of code as the same
time. It is shown that this offer some advantages that
can be applied in the currently planners with a mini-
mal numbers of changes. In this paper we presented an
experimental planner called PHSFF (Parallel Heuristic
Search Fast Forward), which concurrent programming
has been applied in the heuristic search process for the
algorithm Enforce Hill Climbing (EHC).

Introduction
In recent years, parallel computing is a resource used to opti-
mize algorithms or solve problems that had not been solved
with traditional methods. In many cases the use of this type
of programming involves the modification partial or total
code of algorithms, although in some cases it is possible to
use the sequential algorithms by performing a set of small
changes to obtain a high yield.

Parallel computing is the concurrent use of multiple pro-
cessors or cores to do computational work. In sequential
programming, a single processor executes the program in-
structions in a step-by-step manner. Some operations, how-
ever, have multiple steps that do not have dependencies with
each others and can therefore be splited into multiple tasks
to be executed simultaneously. For instance, adding a num-
ber to all the elements of a matrix does not require that the
result obtained from summing one element be acquired be-
fore summing the others elements. Elements in the matrix
can be made available to several processors and the sums
performed simultaneously, with the results available much
more quickly than if the operations had all been performed
serially.

To applicate parallelization in an algorithm, it is necessary
find a task t, that can be divided in n (this is usually the
number of cores o CPUs) independent tasks t0......t(n−1). In
this case each task can be executed in different cores, but in
some cases may appear dependencies among tasks (shared
variables). These dependencies are resolved through critical
sections, where threads access shared resources.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

There currently exists different libraries, extensions for
languages and systems for specific parallel computers, as the
MPI library (MPI standar library, 1997) provides the send
and receive operations needed for a CSP-like message pass-
ing model. OpenMP (OpenMp standar library, 1997) offers
extensions to different sequential languages that can follow
a particular model of parallel computation, reflects a PRAM-
like shared memory.

Planning is a good environment to obtain benefits using
the new processors with multiple cores with shared-memory.
This is possible because the algorithms and techniques that
are used in automated planning can be very easily adapted
to use the advantages of this type of programming.

Related Works
In the last years, several approaches to parallel search and
planning has been proposed. Parallel Retracting A* (PRA*)
(Evett et al, 1995) which is based on A* (Nilson et al, 1968),
simultaneously tackles the problem of duplicate state and
state distribution among the threads. In this algorithm each
thread maintains open and closed lists and a hash function
distributes the states to the corresponding processor. The
main advantage is that state duplicate detection but pro-
duces a significant overhead in the state distribution pro-
cess. Transposition-table driven work scheduling in Dis-
tributed Search (TDS) (Romein et al, 1999), a parallel ver-
sion of IDA* (?). Parallel Frontier A* with Delayed Du-
plicate Detection (Niewiadomski, Amaral, and Holte 2006)
uses a strategy based on intervals computed by sampling
to distribute the work among several workstations. In 2009
(Kishimoto et al, 2009) Hash Distributed A* (HDA*) that
combines ideas from previous parallel algorithms, the hash-
based work distribution strategy of PRA* and the asyn-
chronous communication strategy of TDS. Finally Adaptive
K-Parallel Best-First Search (Vidal et al, 2010) where KBFS
is parallelized using OpenMP.

Parallel Multi-Heuristic Search Fast Forward
We now introduce the main features of the planner PMHSFF
(Parallel Multi-Heuristic Search Fast Foward). This ap-
proach is a modification of the FF planner (Hoffmann et al,
2001) (Hoffmann, 2005), where the heuristic calculation
process is executed for multiple nodes in the same time
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for the algorithm EHC. To make these modifications in the
planner, we used the generic library in C for threads.

Initialization of global and local data
In the first stage the planner detect the number of available
cores in the computer. Then, creates the control variables
for each thread that will be writer during the heuristic
calculation process.

Parallelizing the main loop
The algorithm EHC design in FF is based on the commonly
used hill-climbing algorithm for local search, but differs in
that breadth-first search forwards from the global optimum
is used to find a sequence of actions leading to a heuristi-
cally better successor if none is present in the immediate
neighborhood. In the parallel version of this algorithm for
the first node the heuristic value is compute in sequence.
Then the process select a number n (n have to be less or
equal to the number of available cores) of successors of the
node selected from the open list and computed the heuristic
value at the same time (one for each thread). Next choose
the best node with lower heuristic value. It was possible to
parallelize the process of generation of successors but it may
involve the occurrence of bottleneck with a large number of
thread, increasing in some cases the execution time rather
than decrease. This parallelization allows us to avoid bot-
tlenecks, because we maintain the largest number of items
shared (reader variables) and the variables or structures fre-
quently used (writer variables) are replicated for each thread.
In this case the delete relaxation (shared structure) is used to
compute the heuristic value simultaneously by all nodes in
each iteration. Through parallelization is possible to obtain
two advantages over the sequential process.
• Reduce the execution time, computing the heuristic value

in multiple nodes at the same time.
• Increase the size of the search tree in order to find other

solutions with better quality that have not been selected
by the sequential algorithm.

N

N1 N2

H = 19

a1 a2

H = 20 H = 18

Figure 1: Sequential search process example

Figure 1 shows an example of the search process in se-
quential mode. In this case the search algorithm expands

only two nodes, because the heuristic value of the second
successor less than the parent node. The time using for this
process is show in the equation (1), where tg is the genera-
tion time of a node and th is the heuristic value calculation
time.

ts = 2 ∗ (tg + th) (1)

N

N1 N3

H = 19

a1 a3

H = 20 H = 18

N2
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a2

N4

a4
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Figure 2: Parallel search process example

Figure 2 shows an example of the search process in par-
allel mode with four threads. In this case the parallel algo-
rithm has generated sequentially four nodes (one per thread).
Then it is computed the heuristic value of the nodes simul-
taneously. The time for this process can be calculate with
the equation (2), where tg is the node generation time , th
is the heuristic value calculation time and tsinc it the syn-
chronization time among threads to ensure completion of all
tasks.

tp = 4 ∗ tg + (th + tsinc) (2)

Equation 3 show that computing the heuristic value of two
nodes in sequential process is more expensive than compute
the heuristic value of n nodes in parallel process. This prop-
erty is possible because we have been prevented by the bot-
tlenecks for the use of shared items.

th < (th + tsinc) < 2th ⇒ tsinc << th (3)

However in automated planning in some cases, distribut-
ing the work among several cores could not be beneficial.
For example, if the selected nodes are always on the left of
the search tree (first node generated by the algorithm), use
a large number of threads may increase the execution time
and do not offer advantages over the sequential algorithm.

Conclusions
In this paper, we presented a simple parallelization over a
currently planner for the International Planning Competition
2011. This techniques offers a temporary reduction in the
search process. Furthermore allows to expand the searched
space in order to find other solutions with different cost. The
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application of this technique in planning offers great oppor-
tunities that should be investigated. For future works we plan
to use simultaneous search algorithms or better heuristic cal-
culation techniques obtaining a set of values for each node
in order to make our heuristic more informed.
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Abstract 

LMTD is a satisfied planning system based on heuristic 
search. Based on the work of Eyerich et al (2009), it extends 
the precedence constraints contexts heuristic (hpcc) (Cai et al. 
2009) to a temporal and numeric setting. Its core feature is 
the rules, which are derived from landmarks and used to 
account precedence constraints among comparison variables 
and logical variables. It builds on the TFD Planning System, 
using multi-valued state variables and any time search. The 
planner will continue to search for plans of better quality 
until the limited search time is due or the remaining search 
space is empty.  

 Introduction  
LMTD is a temporal planning system based on heuristic 
state space search. It builds on the TFD (Eyerich et al, 
2009), inheriting the general structure of TFD. PDDL tasks 
with binary state variables are translated to SAS+ 
formulism with multi-valued state variables, and 
comparison variables are introduced for considering 
numeric resources. A search architecture is designed to 
search solution in the search space. Every search state is 
time stamped, due to temporal planning considering 
temporal dependencies. A heuristic named temporal 
precedence constrains contexts (htpcc) is derived from 
landmarks to guide the search, in the spirit of temporal hcea 
notated as htcea (Eyerich et al, 2009) and hpcc (Cai et al. 
2009). htpcc considers the precedence constraints over both 
comparison variables and logical variables, while htcea 
considers dependencies among fluents and hpcc only suit for 
fluents. 

Structure of Planner   
LMTD consists of three separate programs: 
1. the translator (written in Python). This part is used to 

translate temporal PDDL tasks to temporal SAS+ tasks. 
Here we directly use the translator in TFD. 

2. the knowledge compilation module (written in C++). In 
this part, a number of data structures, including data 

transformation graphs (DTG) and causal graph (CG), 
are built from the temporal SAS+ task representation 
generated by the translator. These data structures play 
a central role in the generation of landmarks and 
search. The more details about knowledge compilation 
are referred to (Helmert, 2004). To handle numeric 
resources, comparison variables are introduced. In 
these data structures, comparison variables are also 
considered. The more details about comparison 
variables are referred to (Eyerich et al, 2009). 

3. the search engine (also written in C++). Using the data 
structures generated by the knowledge compilation 
module, the search engine attempts to find a plan 
using heuristic search with some enhancements, such 
as the use of preferred operators and deferred 
heuristic evaluation (just like that in Fast Downward). 
LMTD applies a greedy best-first search as the search 
algorithm and use the temporal precedence constraints 
context heuristic (htpcc) to guide the search (in the next 
section, we will introduce the heuristic in detail). Once 
a plan solution is found, it searches progressively for 
better solutions until the search is terminated. 

 To solve a planning task, the three programs are called 
in sequence; they communicate via text files. 
 

Temporal Precedence Constraints Context 
Heuristic 

Like in TFD, for using the heuristic to guide search, Instant 
actions are extracted to approximate the durative actions. 
And for the numeric variables, they do not directly occur in 
conditions or in the goals but only influence them via 
comparison variables, so it is sufficient to consider these 
comparison variables and logical variables (details are 
referred to Eyerich et al (2009)). In , notice that other 
conditions is evaluated in the context state satisfying the 
pivot condition. That’s mean for an atom, we first achieve 
the pivot condition of the chosen rule and get a context 
state, and then the remaining conditions are satisfied in the 
gotten context state. However, in many cases, it is not 
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reasonable to evaluate conditions in this order. Here we 
follow the example in Eyerich et. al (2009). Assuming that 
there are three locations , and , robot  is at with 
a water tank which has capacities of  units and is 
initially empty , additionally, the robot can only 
refill its tank at  and there is a path between every two 
locations. Now it is required to water flower  at location 

 and flower  at location  with each has current 
water levels  and needs to be watered until levels 

is reached ( ). For water some flower at , 
the rule could have the form 
“ ” 
( , so the water tank must be fill in at least 10 
units water). Hence the estimated cost of  
based on is (  is the distance between  
and ). While it is more reasonable if we first achieve the 
condition , and then achieve  in the 
context state satisfying . We can obtain a 
more precise estimated cost . Therefore, in this 
section, we define the  heuristic function, extending 

to capture the order information discussed above. 
Here we first give out an important notation and introduce 
the equation of , then we give the highlight to how to 
obtain the precedence constraints which indicating the 
orders over conditions. 

Context Functions 
Here we borrow Cai et al.’s notation, each instant action is 
transformed to a set of rules, and rules are considered to 
satisfy some condition. Context function is a partial 
function , where  indicates 
that the context of condition  should be the state that 
results from achieving . Given a rule , assume 
that we have constructed the context function for 
conditions (how to construct it? We will leave this for 
later), then a directed and acyclic graph corresponding to 
the context functions can be build, which explicitly show 
the precedence constraints between conditions. Each node 
indicates one condition in , and there is an edge from  
to  if . Moreover, each node has at most one 
parent to ensure that every condition in just has one 
context. So we can get that the corresponding graph is a 
forest, 
and  
denotes the leaves,   
denotes the roots. 

The definition of  
By introducing the precedence constraints over 
conditions , we derive  from , and  
 
 
 

                                                                                          
 

(1) 
 This equation has the similar structure with  and 
naturally be extended. In our heuristic function we don’t 
just limit the context state to the pivot condition, but also 
consider the context state corresponds to the other 
conditions. Each condition  is evaluated in the resulted 
state after achieving its direct parent condition in the 
landmark graph. The resulted state is projected by the 
function . This function is a map from three sets: 
states, rules and conditions to the sets of states. In this 
function,  is applied to achieve  from the 
corresponding context state ,  is specified to achieve in 
the new state obtained by the function itself. Similarly, we 
have the following formal result: 

                                                                                     (2) 
 In the first case in equation (2), that’s if  is 
undefined, then the context state of  is the same as the 
original state  applying . While in the second case, 
that’s if , then the context state of  is the 
state that results from achieving , in corresponding  
context state indicated by , captured by iterating 
from its respective root .  also consider the 
changes by the rule  applied to achieve . Moreover, 
what is the state after achieving ? Here we need to 
consider two things. One is that for achieve , we should 
achieve the conditions of the chosen rule (“best rule”) , 
according to equation (1), in the order obtained in advance 
and indicated by . Recall that the graph indicating the 
precedence constraints for conditions of each rule is a 
forest, so the result must be the state after achieving some 
leaf (the leaf is the last one to achieve) in its 
respective context state, denoted as . 
However, there may be several leaves in the forest, which 
one we should pick up? Since they have no order 
constraints to each other, we can arbitrarily pick one up 
and treat it as  in equation (1). The other is that 
incorporating the changes made by  itself. This can be 
solved by capturing its “side effects” as in  (Helmert 
and Geffner, 2008). Therefore, the final state 
corresponding to  is . 
 We embed the  into the best-first-search algorithm, 
and use it to guide the search process. For every time 
stamped state met in search, we using the to evaluate 
the cost to the goals, and choose the state having smallest 
heuristic cost as the expanded state and to generate a new 
search state till the goals are achieved. 

Obtaining Temporal Precedence Constraints 
Recently, landmarks attract a large number of researchers, 
and it is well known that the current heuristic estimators 
based on them works well in the planning, eg the 
inadmissible heuristic in the LAMA planner (Richter, 
Helmert and Westphal, 2008), the admissible heuristics 

,  and (Helmert and Domshlak, 2009). For 
a given propositional planning task, Porteous, Sebastia and 
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Hoffmann (2001) define that landmarks are propositions 
that must be true at some point in every solution plan. Also, 
they propose an algorithm called to extract 
landmarks and their orderings from the relaxed planning 
graph of a planning task. Richter, Helmert and Westphal 
(2008) firstly derive landmarks to SAS+ tasks and propose 
a landmark-based heuristic  mentioned above. Herein, 
we derive landmarks to temporal and numeric planning 
task, and apply them to generate the precedence constraints 
over rule conditions.  
Definition 1 landmark 
Let  be a temporal planning task. 
A logical landmark is an atom associate logical variable 
that must be true at some point in every plan of . 
A comparison landmark is a atom associating comparison 
variable that decided by the numeric expression which 
must hold at some point in every plan of  . 
 The logical landmark is as same to that in LAMA. While 
for explaining the comparison landmark, we return back to 
the example mentioned above. For achieve the goal that 
flower  is watered until its level , it’s easy to 
know that the numeric expression  as the 
condition of the action water  must hold at some point in 
every plan. Patrick et. al introduce auxiliary variables to 
represent the numeric condition, see Fig. 1.  is a 
comparison variable, the figure visualize the comparison 
axiom of  and also show the dependency graph of 

and numeric variables , . 
express the condition from the angle of 

comparison variable and  must be true at some 
point in every plan. Hence  is a comparison 
landmark.  
 
The precondition 

 must holds. 
 

 
 

 
 

 
 

 
 
Figure 1: visualization of numeric and comparison axioms. 
 How do we apply the landmarks to generate the 
precedence constraints for temporal planning task? Firstly, 
we build a landmark graph in which nodes indicate 
landmarks and arcs indicate orderings between landmarks 
(to guarantee landmark graph acyclic, possible cycles are 
broken). Secondly, according to the landmark graph adding 
some rules, we extract the temporal precedence constraints 
and explicate them as context functions. 
 To build the landmark graph, we borrow the methods 
from Hoffmann et .al (2003) and Richer et .al 
(2008).Following is the briefly explain, and the details 
refer to the original paper: 1. Set the goals as the initial 
landmarks, backtrack the relaxed graph to get other 

landmarks and orderings (If A is a landmark in step i of 
relaxed graph, and the operators in step i-1 that achieve A 
has a common precondition B, then B is a candidate 
landmark which is ordered before A). In addition, one-step 
lookahead and domain transition graph are applied to find 
further landmarks. Disjunctive landmarks are considered 
too 2. A sufficient criterion is applied to eliminate non-
landmarks: each fact A is tested by removing all achievers 
of A from the original task, and then check whether the 
task is still relaxed solvable (since Hoffmann et al. (2003) 
show that deciding if a fact is a landmark and deciding 
orderings between facts are PSPACE-complete, the 
detection of landmarks and orderings is approximate, so 
there is no guarantee that the generated landmarks are 
sound). 3. Further orderings is introduced. For two 
landmarks A and B, if achieving A must delete B, or if 
achieving A can decrease the cost of achieving B, then we 
add the order .  
 To obtain precedence constraints, we consider each rule 

appearing in the heuristic cost computation and extract 
for by the following several rules:  

Rule 1 and ,  are landmarks, if is directly 
orders before  in landmark graph, then . 
Rule 2 , is a comparison fact and is a logical 
fact. If , then 

(  directly orders before ).  
 According to Rule 1, we traverse the topology order for 

 from Landmark Graph, if is directly order 
before , then . But if there are more 
than one facts (in ) directly order before , we 
arbitrarily choose one. However, how to embed the 
comparison facts into the topology order? Rule 2 is applied 
to solve this question for obtaining more information about 
temporal precedence constraints. To explain this, we 
consider the example of watering . 

 is chosen to be the “best rule” (transformed from the 
propositional form 

, the 
detail of transforming is referred to Helmert (2004)) and 
the current state is 

. 
We can know that (fill the water tank of robot 
at location ) is an action that can change the value of 

since it can increase , so  
. Supposing we set 

, when achieve ,  
is deleted due to ’s addition, and according to 
Koehler and Hoffmann’s (2000) goal orderings (if achieve 
A should delete B, then ),  
holds, contradictory to our suppose. Hence, we should set 

. 
 As we known that when we detect the rules to obtain the 
“best rule” in equation (4), we will meet some facts that are 
not in landmark graph. That’s mean not all the conditions 
of actions are landmarks. How do we capture the orderings 
between those facts? We draw on the previous works on 
goal orderings (Koehler, Hoffmann, 2000). For logical 

 
 0 

  

  

 

International Planning Competition 2011

130



facts we just directly follow the methods in Koehler and 
Hoffmann, and leave comparison facts to Rule 2 for simple. 

Implementation and Discussion  
We implement htpcc on top of the code of TFD (Eyerich et 
al, 2009) and LAMA (Richter et al. 2008). Additionally, 
we consider the estimated cost of comparison variable just 
like that in htcea for simple. To evaluate it, we test some 
benchmarks used in the temporal satisficing track of IPC 
2008 and obtain some primary results. From the primary 
results, we can see the potential power of htpcc on the 
improving of solutions, although it works worse on several 
benchmarks, which is mostly due to our currently very 
rough implementation. Therefore, we consider htpcc as a 
promising heuristic and will improve and perfect our 
implementation in the future work. 
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Introduction 

TLP-GP [Maris, Régnier, 2008], is a planner based on the 
use of a simplified planning graph and a Disjunctive 
Temporal Problem (DTP) solver. It can solve problems 
expressed in a language whose temporal expressivity is 
greater than that of PDDL2.1 since preconditions can be 
required and effects can occur on any temporal interval 
relative to the start-time of an action. TLP-GP can also 
take into account, in a natural way, exogenous events and 
temporally extended goals which must be true over a 
certain period of time. It is complete for the temporally 
expressive sublanguages of PDDL2.1. 

The TLP-GP Algorithm 

TLP-GP [Maris, Régnier, 2008] uses a similar method to 
that used by the family of BLACKBOX [Kautz, Selman, 
1999] and GP-CSP [Do, Kambhampati, 2001] planners. 
The planning graph is built until the goal are obtained, 
following the classic algorithm for the atemporal case, 
without the calculation of mutexes. TLP-GP then looks for 
a solution-plan searching backwards in the planning graph, 
using a Disjunctive Temporal Problem (DTP) solver. To 
achieve this, it places temporal constraints between actions 
and uses an agenda which is different to that used by TGP. 
Instead of a placing actions and propositions on a discrete 
time-line, TLP-GP uses real-valued temporal variables on 
which constraints are defined. At each back-chaining step, 
this set of constraints is fed into a solver which verifies 
global consistency. This operation is repeated until a 
solution is obtained. In case of failure, another level is 
added to the planning graph and the back-chaining process 
is restarted. 

Representation Language 
Actions are represented by 4-tuples (<action-name>, 
<preconditions>, <effects>, <duration>). <effects> and 
<preconditions> are sets of propositions each with a 

corresponding temporal label. This label represents an 
interval, defined relative to the start-time of the action, 
during which a precondition must be verified or an effect is 
produced. A label [t,t] containing a single value t is written 
simply as [t]. <duration> represents the duration of the 
action. We use τs(A) to denote the temporal variable 
corresponding to the start-time of the action A. We 
introduce two imaginary and instantaneous actions AI and 
AG which correspond, respectively, to the initial state and 
the achievement of the goal. The start and end times of a 
plan are given by τI = τs(A I) et τG = τs(AG). 

Example: consider the action (A, {a[-1, 2], b[0]}, { ¬a[3], 
c[5,7]}, 5). If τs(A) is the start-time of A, its duration is 5, 
the proposition a must hold between τs(A)-1 and τs(A)+2, b 
must hold at instant τs(A), ¬a appears at τs(A)+3 and c 
appears at τs(A)+5 and remains true at least until τs(A)+7. 
 
In the simpliest version of TLP-GP, each precondition or 
effect p have an associated interval over which p must be 
true and not p false. This corresponds to "over all" 
preconditions in PDDL2.1, extended to effects by [Cushing 
& al., 2007.b]. However, to represent real-word domains, 
we have implemented a more expressive language in which 
we can represent the fact that a precondition or effect p 
must be true (and not p false) during a minimal duration d 
anywhere within an interval [a,b]. Our language also 
allows the user to disassociate p and not p by stipulating, 
for example, that p must be true at the end of an interval 
[a,b] over all of which not p cannot be established. It is 
also possible, in a natural way, to represent external events 
or goals which have a duration. The former can be easily 
coded as effects of the dummy action AI and the latter as 
preconditions of the dummy action AG. 
 
(:durative-action fire-kiln2 
   :parameters (?k - kiln20) 
   :duration (= ?duration 20) 
   :condition (over all (energy )) 
   :effect (and 
        (somewhere [start (+start 2)] (ready ?k)) 
        (over [(+ start 2) end[ (ready ?k)) 
        (at end (not (ready ?k))))) 
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(:durative-action bake-ceramic1 
   :parameters (?p - piecetype1 ?k - kiln) 
   :duration (= ?duration 15) 
   :condition (over all (ready ?k)) 
   :effect (and 
        (over [start end[ (not (baked ?p))) 
        (over [start end[ (baking ?p)) 
        (at end (not (baking ?p))) 
        (somewhere [(- end 5) end] (baked ?p)))) 
 
(:durative-action treat-ceramic1 
   :parameters (?p - piece) 
   :duration (= ?duration 4) 
   :condition (and (over all (baking ?p))) 
   :effect (and (minimal-duration 3 anywhere 
                      [start end] (treated ?p)))) 

 
In the "temporal-machine-shop-2-3" domain the action 
fire-kiln is described using (somewhere [start (+ start 2)] 
(ready ?k)) to express the fact that the kiln will be ready at 
an unknown instant between start and start + 2. The 
expression (over [(+ start 2) end[ (ready ?k)) is used to 
enforce the kiln to be ready up to the end. Moreover, the 
time wich is necessary to bake a ceramic is not completely 
known and can be represented using (somewhere [(-
 end 5) end] (baked ?p)). A ceramic can be treated 
anywhere between the start and the end of the action treat-
ceramic. 

Expansion of the Temporal Planning Graph 
Unlike the planners TGP [Smith, Weld, 1999] or LPGP 
[Long, Fox, 2003], TLP-GP uses a planning graph without 
mutexes and constructed in an atemporal manner, without 
taking into account, to start with, either the duration or the 
start-time of actions. Conflicts between actions, including 
mutual exclusions, are managed entirely during the 
solution extraction phase by a constraint satisfaction 
system. This minimal usage of the planning graph means 
that TLP-GP does not have the same restrictions as other 
planners: decision epochs or time-line which limits the 
completeness to temporally simple problems or a number 
of levels which is too large to allow the practical resolution 
of temporally expressive problems (LPGP). The method 
we have chosen consists in entrusting a large part of the 
work to a DTP solver. This method has the double 
advantage of producing floating temporal plans and 
considerably increasing the expressivity of the 
representation language that can be used. This strategy 
turned out to be very effective in the context of classical 
planning (cf. the SATPLAN'04 system, successor to 
BLACKBOX [Kautz, Selman, 1999], which is still the 
winner in the optimal-planner category of the IPC'06 
competition). 
Since an action can produce and destroy the same 
proposition at different times, we also store in the graph 
the negations of propositions. Finally, unlike other 
temporal planners based on GRAPHPLAN [Blum, Furst, 
1995], the levels are not linked to a fixed time scale. Level 
0 contains the dummy action AI, which has no 
preconditions and produces all the propositions of the 
initial state, together with the corresponding effect arcs. In 

our running example [Maris, Régnier, 2008], we omit level 
0 since I is empty. For each level n≥1, we apply all those 
actions whose preconditions are all present at level n-1 and 
we add the corresponding precondition arcs to the graph. 
We then add the effects of these actions at level n together 
with the corresponding effect arcs. The graph is built in 
this way level by level until all the goals appear. Finally, 
we build an extra level containing the dummy action AG, 
which has no effects and has all the goals as its 
preconditions, and we add the corresponding precondition 
arcs. 
The extraction algorithm is then called. Each arc in the 
planning graph has a corresponding temporal label 
according to its type: 

• Precondition arc (proposition → action): the label 
represents the interval, relative to the start of the action, 
over which the precondition must be verified. 

• Effect arc (action → proposition): the label represents 
an interval, relative to the start of the action, at the start of 
which the effect appears and during which it remains true. 
After the end of this interval, there is no guarantee that it 
still holds. 

Extraction of a Floating Solution-Plan 
Once the planning graph has been extended to a level at 
which all goals are present, TLP-GP searches backward for 
a solution-plan. To this end, it places temporal constraints 
between actions and, instead of assigning actions and 
propositions to fixed time points, it uses mutually 
constraining real-valued temporal variables. At each step, 
the set of constraints is fed to a disjunctive temporal 
constraint satisfaction system which checks its 
satisfiability. This operation is repeated until a solution is 
found. In case of failure, an extra level is added to the 
planning graph and the back-chaining procedure restarted. 
The simplified extraction algorithm is given below. The 
search for a solution requires two data structures: Agenda 
and Constraints. 

Agenda is a set of lists, one for each proposition. For a 
proposition p, the corresponding list Agenda(p) is 
composed of intervals of the form [τs(A)+δ1, τs(B)+δ2], 
over which p must be true. When the interval consists of a 
single value, we denote it by [τs(A)+δ]. Two types of 
temporal intervals can be added to Agenda(p): 

• Intervals which correspond to a causality relationship 
between actions (if the proposition p is produced by an 
action A in order to fulfill a precondition of an action B, p 
must remain true until used by B). 

• Intervals which correspond to the appearance of the 
effects of a selected action (appearance of p). 

Constraints is a list of disjunctions of (at most two) binary 
temporal constraints between time points: 

• Constraints corresponding to causality relationships 
representing the fact that a precondition must be produced 
(by an action A at time τs(A)+δ1) before it is required (by 
an action B at time τs(B)+δ2). Such constraints are not, in 

International Planning Competition 2011

133



fact, disjunctions since they are of the form 
τs(A)+δ1 ≤ τs(B)+δ2. 

• Constraints imposing the non-intersection of the two 
intervals [τs(A)+δ1, τs(B)+δ2] and [τs(C)+δ3, τs(D)+δ4] over 
which a proposition and its negation hold. In the most 
general case, these constraints are disjunctive since they 
are of the form (τs(B)+δ2 ≤ τs(C)+δ3) •  

(τs(D)+δ4 ≤ τs(A)+δ1). The inequalities may or may not be 
strict depending on the type of intervals under 
consideration (open, closed or mixed). In most cases, this 
constraint simplifies to a non-disjunctive constraint. 

The set of constraints created by TLP-GP therefore 
constitutes a disjunctive temporal problem (DTP). The 
problem of solving or verifying the consistency of a DTP is 
NP-hard [Dechter, Mieri, Pearl, 1991] but the performance 
of the algorithms to solve these problems are regularly 
improved. The default ordering heuristics used in the 
choice of subgoals to be established and the choice of 
actions to establish them is the following: priority is given 
to subgoals which appear (for the first time) in the highest 
levels of the graph and, among actions which establish 
them, priority is given to those actions which appear (for 
the first time) in the lowest levels of the graph. 

Extraction algorithm 
Goals ← Pre(A G);  
For every effect e • Eff(A I ):  

Add an interval I to Agenda(e) for the 
apparition of the proposition e;  

End For;  
While Goals ≠ •  

For every proposition p • Goals:  
Goals ← Goals – p;  
Select (* Backtrack point *), using the 
heuristic, an action A to produce p;  
Goals ← Goals • Pre(A);  
Add a precedence constraint between A and 
B, the action whose p is a precondition;  
Add an interval I to Agenda(p) to maintain 
the precondition p;  
For every interval I in Agenda(¬p):  

Add a constraint to forbid the 
overlapping of I and I’;  

End For;  
For every effect e of A, e ≠ p:  

Add an interval I to Agenda(e) for the 
apparition of e;  
For every interval I’ in Agenda(¬e):  
Add a constraint to forbid the 
overlapping of I and I’;  
End For;  

End For;  
Check the consistency of constraints (call 
to the DTP solver);  
In case of failure, return to the back-
track point to select another action A;  

End For;  
End While;  
If constraints is satisfiable  

Then return the floating solution-plan 
(selected actions and constraints)  
Else there is no solution in this level;  

End If;  
End. 

Use of TLP-GP 

Generalities 
TLP-GP is implemented in OCaml 3.09.2. TLP-GP uses 
the SMT (Sat Modulo Theory) solver MathSat1 3.4 which 
is known to perform well on DTP (cf. results of the SMT-
COMP'062 competition). The archive contains the source 
code of TLP-GP and statically linked binaries of MathSat 
for Linux. Use "make" to build the binaries of TLP-GP. If 
you want to perform the program on an other operating 
system, you have to ask the authors for the good binaries of 
MathSat. 
 
The command line to run TLP-GP: 
./tlp-gp domain.pddl problem.pddl 

 
A graphic interface in Java is also available to run TLP-GP 
and to handle and store floating solutions-plans. 

Experimental results 
We compared TLP-GP with two state-of-the-art planners 
capable of solving temporally expressive problems: the 
LPGP [Long, Fox, 2003] planner which is an extension of 
GRAPHPLAN, and the partial-plan space planner VHPOP 
[Younes, Simmons, 2003]. Given that the previous 
temporal benchmarks were inappropriate, since temporally 
simple, we drew up several new temporally expressive 
benchmarks. All these benchmarks can be found at the 
adress which is given below3. 
 
The first test domains extend the problem of [Cushing et 
al., 2007.a, figure 3] in three different ways. The domain, 
tms-k-t-p (temporal machine shop, [Cushing et al., 
2007.a]) is inspired by a real-world application. It concerns 
the use of k kilns, each with different baking times, to bake 
p ceramic pieces (bake-ceramic) of t different types. Each 
of these types requires a different baking time. These 
ceramics can then be assembled to produce different 
structures (make-structure). The resulting structures can 
then be baked again to obtain a bigger structure (bake-
structure). The "cooking" domain allows us to plan the 
preparation of a meal, as well as its consumption by 
respecting constraints of warmth. Problems cooking-
carbonara-n which we used for this test allow us to plan the 
preparation of n dishes of pasta. The concurrency of 
actions is required to obtain the goal because it is necessary 
that the electrical plates works so that water and oil are hot 
to cook pasta and bacon cubes. It is also necessary to 
perform this baking in parallel to serve a hot dish during its 
consumption. 
 
 
 
                                                 
1 http://mathsat.itc.it/ 
2 http://www.smtcomp.org/2006/ 
3 http://tlpgp.free.fr/ 
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Figure 1 – The graphic interface of TLP-GP (solution of problem cooking-carbonara-01) 
 
 
As the expressivity of LPGP and VHPOP is less than that 
of TLP-GP, we tested simplified, but nevertheless 
temporally expressive, versions of these benchmarks. On 
these benches TLP-GP clearly outperforms LPGP as well 
as VHPOP. The results can be found at the address given 
below4. 
 
For the "cooking-carbonara-01" problem, TLP-GP finds a 
floating solution-plan and returns an example of valid 
static plan providing possible start times. The floating plan 
can be recovered using the files default.smt and plan.txt 
which contain the constraints and variables assignments. 
The graphic interface of TLP-GP allows us to exploit 
directly floating solutions-plans (Figure 1). 

Conclusion 

We have presented TLP-GP, a planner which can solve 
temporally expressive problems in a language whose 
expressivity is greater than PDDL2.1. No compromise 
needs to be made in terms of completeness in order to 
achieve this expressivity. On temporally expressive 
benchmarks, TLP-GP performed much better then two 

                                                 
4 http://tlpgp.free.fr/ 

state-of-the-art planners (LPGP and VHPOP) capable of 
solving the same types of problem. These results indicate 
the possibility of representing and solving problems which 
are closer to real-world applications. The production of a 
floating solution-plan rather than a single fixed solution 
also allows for a greater flexibility during the execution of 
the plan. 
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